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By using the sub- and supersolutions concept (Schmitt, 2007), we prove in this paper the existence of positive solutions of quasi-
linear Kirchhoff elliptic systems in bounded smooth domains. )is work is an extension of the recent work of Boulaaras
et al., 2020.

1. Introduction

)e scope of nonlinear partial differential equations is quite
wide. One of the main advances in the development of
nonlinear PDEs has been the study of wave propagation,
then comes the equations related to chemical and biological
phenomena, and later, the equations related to solid me-
chanics, fluid dynamics, acoustics, nonlinear optics, plasma
physics, quantum field theory, and engineering.

Studying these equations is a daunting task because there
are no general methods for solving them. Each problem
requires an appropriate approach depending on the type of
linearity ([1–10]).

)e p-Laplacian operator is a model of quasi-linear
elliptic operators which makes it possible to model physical
phenomena such as the flow of non-Newtonian aids, re-
action flow systems, nonlinear elasticity, the extraction of
petroleum, astronomy, through porous media, and glaci-
ology. Several authors in this field obtained many results of
existence (see, for example, [1, 3, 5, 11, 12]).

In this work, we consider the following quasi-linear
elliptic system:

−A 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu � λuαvc, inΩ,

−B 􏽚
Ω

|∇v|2dx􏼒 􏼓Δv � λuδvβ, inΩ,

v � u � 0, on zΩ ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN(N≥ 3) is a bounded domain and its
boundary zΩ. Also, A and B are two continuous functions
onR+, and the parameters α, β, δ, and c satisfy the following
conditions:

0≤ α< 1,

0≤ β< 1,

δ, c> 0,

θ � (1 − α)(1 − β) − cδ > 0 for each λ> 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Within previous studies [13–15], some nonlocal elliptical
problems of the Kirchhoff type of the following model were
extensively studied:

M 􏽚
Ω

|∇u|2dx􏼒 􏼓△u � h(x, u), inΩ,

u � 0, in zΩ ,

⎧⎪⎨

⎪⎩
(3)
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where Ω is a bounded open domain of Rn with a smooth
boundary zΩ and h(x, u) the right hand side is defined for
some exceptional functions similar to those in [13–16]. In
addition,M is a defined and continuous function onR+ with
values in R∗+. In recent years, various Kirchhoff or
p(x)-Kirchhoff-type problems have been widely studied by
many authors due to their theoretical and practical im-
portance. Such problems are often referred to as nonlocal
due to the presence of a full term on Ω or in Rn. It is well
known that this problem is analogous to the stationary
problem of a model introduced by Kirchhoff [17].

ρ
z2u

zt2
−

P0

h
+

E

2L
􏽚

L

0

zu

zx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2
dx􏼠 􏼡

z2u

zx2 � 0. (4)

More specifically, Kirchhoff proposed this model as an
extension of the wave equation of the Alembert classic by
considering the effects of variations in the length of the
strings during vibration. )e parameters of the above
equation have the followingmeanings:E is Young’s modulus
of the material, ρ is the mass density, L is the length of the
chain, h is the section area, and P0 is the initial tension.

In recent work in [18], we have discussed the existence of
the weak positive solution for the following Kirchhoff elliptic
systems:

−A ‖∇u‖L2(Ω)􏼐 􏼑△u � λ1uα + μ1′vβ, inΩ,

−B ‖∇u‖L2(Ω)􏼐 􏼑△v � λ2′uc + μ2′vd, inΩ,

u � v � 0, on zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where λ1, μ1′, λ2′, and μ2′ are positive parameters, α + c< 1,
and β + d< 1.

Motivated by the recent work in [13, 14, 18, 19] and by
using the sub- and supersolution method which is defined in
[20], existence of positive solutions of quasi-linear Kirchhoff
elliptic systems is shown in bounded smooth domains.

)e paper outline is as follows: some assumptions and
definitions related to problem (1) are given in Section 2.
Finally, our main result is given in Section 3.

2. Preliminaries and Assumptions

We assume the following hypothesis:

(H1): we assume that M: R+⟶ R+ is a nonin-
creasing and continuous function which satisfies

lim
t⟶0+

M(t) � m0, (6)

where m0 > 0, and there exists ai, bi > 0, i � 1, 2 such
that

a1 ≤A(t)≤ a2, b1 ≤B(t)≤ b2 for all t ∈ R+
. (7)

(H2): and
α, β ∈ C(Ω),

α(x)≥ α0 > 0, β(x)≥ β0 > 0
(8)

for all x ∈ Ω.

(H3): f, g, h, and τ are C1 on (0, +∞) and increasing
functions, where

limt⟶+∞f(t) � +∞, limt⟶+∞g(t) � +∞,

limt⟶+∞h(t) � +∞ � limt⟶+∞τ(t) � +∞.
􏼨 (9)

(H4): ∃c> 0 such that

lim
t⟶+∞

h(t)f k g(t)c
􏼂 􏼃( 􏼁

t
� 0, for all k> 0,

lim
t⟶+∞

τ ktc( )

tc−1 � 0, for all k> 0.

(10)

Lemma 1 (see [14]). Under assumption (H1),we suppose
further that function H(t) : � tM(t2) is increasing on R.

We assume that u and v are couple nonnegative functions,
where

−M 􏽚
Ω

|∇u|2dx􏼒 􏼓Δu≥ − M 􏽚
Ω

|∇v|2dx􏼒 􏼓Δv, inΩ,

u � v � 0, on zΩ ,

⎧⎪⎨

⎪⎩

(11)

and then u≥ v a.e. in Ω.

Lemma 2 (see [1]). If M verifies the conditions of Lemma 1,
then for each f ∈ L2(Ω), there exists a unique solution
u ∈ H1

0(Ω) to the M-linear problem:

−M 􏽚
Ω

|∇u|
2dx􏼒 􏼓Δu � f(x) inΩ and u � 0 in zΩ . (12)

Lemma 3 (see [1]). Let w solve Δw � g inΩ. If g ∈ C(Ω),
then w ∈ C1,α(Ω) for any α ∈ (0, 1), so particularly, w is
continuous in Ω.

Definition 1. Let (u, v) ∈ (H1
0(Ω)∩L∞(Ω) × H1

0(Ω)∩ L∞

(Ω)), and (u, v) is said a weak solution of (1) if it satisfies

A 􏽚
Ω

|∇u|2dx􏼒 􏼓􏽚
Ω
∇u∇ϕdx � λ􏽚

Ω
uαvcϕdx, inΩ,

B 􏽚
Ω

|∇v|2dx􏼒 􏼓􏽚
Ω
∇v∇ψdx � λ􏽚

Ω
uδvβ ψdx, inΩ,

(13)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).

Definition 2. We call the following nonnegative functions
(u, v), respectively; (u, v) in (H1

0(Ω)∩ L∞(Ω)× H1
0(Ω)∩

L∞(Ω)) are a weak subsolution (respectively, upersolution)
of (1) if they verify (u, v) and (u, v) � (0, 0) in zΩ:
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A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx≤ λ􏽚

Ω
u
α

v
cϕdx inΩ,

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx≤ λ􏽚

Ω
u
δ

v
β ψdx inΩ,

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx≥ λ􏽚

Ω
u
α
v

cϕdx inΩ,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx≥ λ􏽚

Ω
u
δ
v
β ψdx inΩ,

(14)

for all (ϕ,ψ) ∈ (H1
0(Ω) × H1

0(Ω)).
Before proving our main result, we need to prove the

existence of weak supersolution and subsolution in the
following section.

3. Weak Existence Results

3.1. Existence of Weak Supersolution. )e existence of a
positive weak supersolution for system (1) is established such
that each component belongs to C0,ρ(Ω), for ρ ∈ (0, 1).

Lemma 4. Suppose that (H1) holds, 0≤ α, β< 1, δ, c> 0, and
θ � (1 − α)(1 − β) − cδ > 0. Fen, system (1) possesses a
positive weak supersolution

(u, v) ∈ L
2 0, T, C

0,ρ1(Ω)􏼐 􏼑 × L
2 0, T, C

0,ρ2(Ω)􏼐 􏼑, (15)

for ρi ∈ [0, 1], i � 1, 2 and λ> 0.

Proof. Let ei ∈ C0,ρi (Ω), for i � 1, 2, ρi > 0, be the solution of
the following problem:

−△ei � 1, inΩ,

ei � 0, on zΩ .
􏼨 (16)

)en, by the strong maximum principle, we get ei > 0 in
Ω, i � 1, 2.

We define

(u, v) � C1e1, C2e2( 􏼁, (17)

where C1 and C2 are positive constants which we will fix
them later.

Let (ϕ,ψ) ⊂ (H1
0(Ω) × H1

0(Ω)), with (ϕ,ψ)≥ 0.
)en, we obtain

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx � A 􏽚

Ω
|∇u|

2dx􏼒 􏼓C1􏽚
Ω
∇e1∇ϕdx

� A 􏽚
Ω

|∇u|
2dx􏼒 􏼓C1􏽚

Ω
ϕdx

≥ a1C1􏽚
Ω
ϕdx,

(18)

and similarly,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx � B 􏽚

Ω
|∇v|

2dx􏼒 􏼓C2􏽚
Ω
ψdx

≥ b1C2􏽚
Ω
ψdx.

(19)

If

l � e1
����

����∞, L � e2
����

����∞,

0≤ α< 1, 0≤ β< 1,

λ> 0, θ> 0,

(20)

and (H1) holds, it is easy to prove that there exist positive
constants C1 and C2 such that

a1C
1−α
1 � λC

c
2l
α
L

c
,

b1C
1−β
2 � λC

c
1l
δ
L
β
.

(21)

)us, from (21), we obtain for all x ∈ Ω
λuαvc ≤ λCα

1C
c
2l
αLc ≤ a1C1,

λuδvβ ≤ λCδ
1C

β
2lδLβ ≤ b1C2.

(22)

)erefore, by using (18), (19), and (22), we conclude that

A 􏽚
Ω

|∇u|
2dx􏼒 􏼓􏽚

Ω
∇u∇ϕdx≥ λ􏽚

Ω
u
α
v

cϕdx, inΩ,

B 􏽚
Ω

|∇v|
2dx􏼒 􏼓􏽚

Ω
∇v∇ψdx≥ λ􏽚

Ω
u
δ
v
βψdx, inΩ.

(23)

Hence, (u, v) ∈ C0,ρ1(Ω) × C0,ρ2(Ω) is a positive weak
supersolution of system (1). □

3.2. Existence of Weak Subsolution. Existence of a positive
weak subsolution for system (1) is proved such that each
component belongs to C0(Ω).

Lemma 5. We assume that (H1) holds:

0≤ α, β< 1, δ, c> 0,

θ � (1 − α)(1 − β) − cδ > 0.
(24)

)erefore, system (1) possesses a positive weak sub-
solution (u, v) ∈ C0(Ω) × C0(Ω), for all λ> 0.

Proof. We assume that λ1 is the first eigenvalue of −Δ with
Dirichlet condition with ϕ1 which is its corresponding
eigenfunction and ϕ1belongs to C0,ρ1(Ω) × C0,μ1(Ω), ϕ1 > 0
inΩ and |∇ϕ1|≥ σ1 on zΩ, for some positive constants σ1, μ1,
and ρ1.

We define

u, v( 􏼁 � cϕ21, c
kϕ21􏼐 􏼑 (25)

which belongs to (C0(Ω)∩C1(Ω)) × (C0(Ω)∩C1(Ω)),
with c> 0 to be fixed later, and
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δ
1 − β
< k<

1 − α
c

(26)

because θ > 0, 1 − α> 0, and 1 − β> 0. )en, for all
(ϕ,ψ) ∈ (H1

0(Ω) × H1
0(Ω)), with ϕ, ψ ≥ 0, we have

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx � 2cA 􏽚

Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
ϕ1∇ϕ1∇ϕ,

� 2cA 􏽚
Ω
∇u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ϕdx.

(27)

Similarly,

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx � 2c

k
B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω

· λ1ϕ
2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ψdx.

(28)

Since ϕ1 � 0 and |∇ϕ1|≥ σ1 on zΩ, there exists η> 0 such
that, for every x ∈ Ωη � x ∈ Ω: d(x, zΩ)≤ η􏼈 􏼉, we have

λ1ϕ
2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ 0,

λ1ψ
2
1 − ∇ψ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ 0.

(29)

)en, for each λ> 0, we get

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ωη
∇ u∇ϕdx≤ 0≤ λ􏽚

Ωη
u
α

u
cϕdx, (30)

for all ϕ ∈ H1
0(Ω), ϕ≥ 0, and

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ωη
∇ v∇ψdx≤ 0≤ λ􏽚

Ωη
u
δ

u
βψdx, (31)

for all ψ ∈ H1
0(Ω) and ψ ≥ 0.

Now, as ϕ1 > 0 in Ω and ϕ1 is continuous, then there
exists μ> 0 such that ϕ1(x)≥ μ> 0 for all x ∈ Ω\Ωη.
)erefore, from (26), we obtain a0 > 0 such that the fol-
lowing inequalities hold:

2b2λ1c
k(1− β)− δϕ2−2β

1 (x)≤ λμ2δ ≤ λϕ2δ1 (x), ∀x ∈
Ω
Ωη

,

(32)

2a2λ1c
1− α− kcϕ2−2α

1 (x)≤ λμ2c ≤ λϕ2c
1 (x), ∀x ∈

Ω
Ωη

, (33)

for each c ∈ (0, a0).
)en,

2cA 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩ϕ

≤ 2a2cλ1ϕ
2
1

� 2a2λ1c
1− α− kcϕ2−2α

1 c
kc

c
αϕ2α1􏽨 􏽩.

(34)

By (33), we have

2cA 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤ λϕ2c
1 c

kc
c
αϕ2α1

� λ u
α

v
c
.

(35)

And similarly, from (32), we have

2c
k
B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 λ1ϕ

2
1 − ∇ϕ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩

≤ λ u
δ

v
β

(36)

in Ω/Ωη and each c ∈ (0, a0).
)erefore,

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω/Ωη
∇ u∇ϕdx≤ λ􏽚

Ω/Ωη
u
α

v
cϕdx, (37)

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω/Ωη
∇ v∇ψdx≤ λ􏽚

Ω/Ωη
u
δ
v
β
ψdx. (38)

Hence, from (30), (31), (37), and (38), it follows that

A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ u∇ϕdx + 􏽚

Ω/Ωη
∇ u∇ϕdx􏼢 􏼣

� A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ u∇ϕdx≤􏽚

Ω
uαvcϕdx,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓 􏽚

Ωη
∇ v∇ψdx + 􏽚

Ω/Ωη
∇ v∇ψdx􏼢 􏼣

� B 􏽚
Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓􏽚

Ω
∇ v∇ψdx≤ λ􏽚

Ω
uδ uβψdx.

(40)

)en, by (39) and (40), (u, v) is a positive weak sub-
solution of system (1), for each c ∈ (0, a0). □

4. Main Result

In this section, we give the result of the existence of the
positive weak solution to quasi-linear elliptic system (1) by
using the sub- and supersolution method which has been
already used for some classical elliptic equations by known
authors (see [1, 4, 11, 19, 21]).

Theorem 1. Suppose that (H1) holds, 0≤ α, β< 1, δ, c> 0,
and θ � (1 − α)(1 − β) − cδ > 0 as well as under the results of
Lemma 4 and 5. Fen, system (1) possesses a weak solution
(u, v) ∈ (H1

0(Ω) × H1
0(Ω)), where each component is positive

and belongs to C0,ρ(Ω)∩C1,μ(Ω) for some ρ ∈ [0, 1], μ> 0,
and each λ> 0.

Proof 3. In order to obtain a weak solution of problem (1),
we shall use the arguments by Azzouz and Bensedik [13]. For
this purpose, we define a sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) ×

H1
0(Ω)) as follows: u0 :� u, v0 � v, and (un, vn) is the unique

solution of the system

4 Mathematical Problems in Engineering



−A 􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△un � λuα

n−1v
c
n−1, inΩ,

−B 􏽚
Ω
∇vn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△vn � λuδ

n−1v
β
n−1, inΩ,

un � vn � 0, on zΩ .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(41)

Problem (41) is (A, B)−linear in the sense that if

un−1, vn−1( 􏼁 ∈ H
1
0(Ω) × H

1
0(Ω)􏼐 􏼑 (42)

is given, the right-hand sides of (41) are independent of
un, vn.

Set

A(t) � tA t
2

􏼐 􏼑,

B(t) � tB t
2

􏼐 􏼑.
(43)

)en, since

A(R) � R, B(R) � R,

f un−1, vn−1( 􏼁 � u
α
n−1v

c
n−1 ∈ L

2
(Ω),

g un−1, vn−1( 􏼁 � u
δ
n−1v

β
n−1 ∈ L

2
(Ω).

(44)

According to the result in [1], we can deduce that system
(41) admits a unique solution

un, vn( 􏼁 ∈ H
1
0(Ω) × H

1
0(Ω)􏼐 􏼑. (45)

By using (41) and the fact that (u0, v0) is a supersolution
of (1), we have

−A 􏽚
Ω
∇u0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△u0 ≥ λu

α
0v

c
0 � −A 􏽚

Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△u1,

−B 􏽚
Ω
∇v0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△v0 ≥ λu

δ
0v

β
0 � −B 􏽚

Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓△v1.

(46)

Also, by using Lemma 1, u0 ≥ u1 and v0 ≥ v1 , and since
u0 ≥ u, v0 ≥ v, and the monotonicity of f(u, v) � uαvc and
g(u, v) � uδvβ, one has

−A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λu

α
0v

c
0 ≥ λu

α
v
c

≥ − A 􏽚
Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

−B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv1 � λu

δ
0v

β
0 ≥ λu

δ
v
β
≥ − B 􏽚

Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v,

(47)

from which, according to Lemma 1, u1 ≥ u and v1 ≥ v. For
u2, v2, we write

−A 􏽚
Ω
∇u1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu1 � λu

α
0v

c
0 ≥ λu

α
1v

c
1 � −A 􏽚

Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2,

−B 􏽚
Ω
∇v1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx􏼒 􏼓Δv1 � λu

δ
0v

β
0 ≥ λu

δ
1v

β
1 � −B 􏽚

Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2,

(48)

and then u1 ≥ u2 and v1 ≥ v2. Similarly, u2 ≥ u and v2 ≥ v

because

−A 􏽚
Ω
∇u2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δu2 � λu

α
1v

c
1 ≥ λu

α
1v

c
1 ≥ − A 􏽚

Ω
∇ u

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ u,

−B 􏽚
Ω
∇v2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓Δv2 � λu

δ
1v

β
1 ≥ λu

δ
1v

β
1 ≥ − B 􏽚

Ω
∇ v

􏼌􏼌􏼌
􏼌􏼌􏼌2dx􏼒 􏼓Δ v .

(49)

Repeating this argument, we get a bounded monotone
sequence (un, vn)􏼈 􏼉 ⊂ (H1

0(Ω) × H1
0(Ω)) satisfying

u � u0 ≥ u1 ≥ u2 ≥ . . . ≥ un ≥ . . . ≥ u > 0, (50)

v � v0 ≥ v1 ≥ v2 ≥ . . . ≥ vn ≥ . . . ≥ v > 0. (51)

Using the continuity of the functions f and g and the
definition of the sequence un􏼈 􏼉, vn􏼈 􏼉, there exist constants
Ci > 0, i � 1, . . . 4, independent of n such that

f un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C1,

g un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤C2, for all n.
(52)

From (52), we multiply the first equation of (41) by un; in
addition, by using the Holder inequality combined with
Sobolev embedding, we have

a1􏽚
Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx≤A 􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx􏼒 􏼓􏽚

Ω
∇un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2dx

� λ􏽚
Ω

f un−1, vn−1( 􏼁undx

≤ λ􏽚
Ω

f un−1, vn−1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx

≤C1λ 􏽚
Ω

un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒 􏼓
(1/2)

dx

≤C3 un

����
����H1

0(Ω)

or un

����
����H1

0(Ω)
≤C3,∀n,

(53)

where C3 > 0 is a constant independent of n. Similarly, there
exists C2 > 0 independent of n such that

vn

����
����H1

0(Ω)
≤C4,∀n. (54)

From (53) and (54), we deduce that the couple (un, vn)􏼈 􏼉

converges weakly in H1
0(Ω,R2) to the couple

(u, v)withu≥ u > 0 and v≥ v> 0.
By using a standard regularity argument, (un, vn)􏼈 􏼉

converges to (u, v). )us, when n⟶ +∞ in (41), we can
see that (u, v) is a positive solution of system (1).

)e proof is completed. □

5. Conclusion

As a conclusion of this contribution, we have proved the
existence of positive solutions of quasi-linear Kirchhoff elliptic
systems in bounded smooth domains by using the sub- and
super-solutionmethod [20], which is an extension of our recent
works of Boulaaras et al. in [18]. In the next work, some other
methods such as variational and Galerkin methods (see, for
example, [15]) will be used for this problem, and some nu-
merical examples will also be given [9, 22].
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