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+e motivation of this study is to propose a novel multiple criteria group decision-making (MCDGM) method based on
Dempster–Shafer theory (DST) and probabilistic linguistic term sets (PLTSs) to handle the distinctions between compensatory
information at the criterion level and noncompensatory information at the individual level in the process of information fusion.
Initially, the information at the individual level is extracted by BPA functions. +en, they are fused with DST considering
ignorance and DMs’ reliabilities. Next, the obtained BPA functions are transformed into interval-valued PLTSs with the assistance
of intermediate belief and plausibility. Subsequently, the interval-valued PLTSs are converted into standard PLTSs. After
normalization, the holistic PLTS is obtained with weighted addition operation and the round function is applied to determine the
ultimate evaluation result. Finally, a case simulation study of evaluating the marine ranching ecological security is presented to
verify and improve the validity and feasibility of the proposed method and algorithm in practical application. +e proposed
method and its relevant algorithm are both innovative combination of DSTand PLTSs from the perspective of compensatory and
noncompensatory features of information, which provides a new angle of view for the development of probabilistic preference
theory and is beneficial to apply probabilistic preference theory in practice.

1. Introduction

Multiple criteria decision-making (MCDM) theory is
composed of a series of methods that deal with alternative
ranking or selection problems that are characterized by
multiple attributes and conflicting noncommensurable ob-
jectives. Introduced in the 1950s [1, 2], MCDM has since
received extensive attention from two kinds of methods: the
multiple attribute decision-making (MADM) method and
the multiple objective decision-making (MODM) method.
MCGDM is an indispensable branch of modern decision-
making theory. +e representative methods of MCDM, such
as multiobjective programming, analytic hierarchy process
(AHP), ELimination Et Choice Translating REality
(ELECTRE), and technique for order preference by simi-
larity to an ideal solution (TOPSIS), have been applied in

solving diversified practical MCDM problems [3–8]. As
decision-making problems are getting more complicated,
researchers have studied MCDM from the perspectives of
utility achievement, weight determination, consistency
measurement, fuzziness information, and so on [9–13].

MCDM methods usually comprehensively analyze
MCDM problems from all angles. +eir applications are
achieved by balancing multiple attributes or objectives to
find the best one among several given alternatives. In the
implementation process of classical MCDM, an individual
decision maker (DM) is the single source providing the
decision information that involves all the factors and forms
the final decision results. However, limited by the incom-
plete knowledge reserve, restricted ability of judgment, in-
adequate experience, and other such issues, an individual
DM cannot provide sufficient valid information for today’s
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complex and synthetic MCDM. Consequently, multiple
criteria group decision-making (MCGDM)methods [14–16]
have been proposed to solve MCDM problems that arise
under the group decision-making setting. +e major
MCGDM methods provide a basic framework for imple-
mentation that comprises extracting individual information
first and then fusing it into group information. Here, two
kinds of problems are of vital importance. One is about
information expression and extraction, and the other is
about information disposal and fusion. With respect to the
former, existing literature has a lot of focus on enhancing the
accuracy of the information given by each individual DM.
Linguistic term, interval value, fuzzy number, membership,
and other forms of information [17–20] are incorporated to
facilitate DMs determining or expressing their preference.
+e information characteristics of uncertainty, fuzziness,
and incompleteness [21–24] are also key concerns of
MCGDM. With respect to the problem of information
disposal and fusion, researchers have proposed several fu-
sion methods to fuse individual information, such as the
consensus model, fuzzy operators, Dempster–Shafer theory
(DST), evidence reasoning (ER) approach, and probabilistic
linguistic term set (PLTS) operations [25–27]. Different
disposal and fusion processes usually cause different degrees
of information loss, which affects the feasibility and validity
of the decision results. To address this issue, several solu-
tions, such as information conflict, reliability and weight of
single information, consistency measure, and correlation
measure [28–31] have been proposed in the published
literature.

+e motivation of this study is to propose a novel
MCGDMmethod based on DSTand PLTSs to overcome the
problem of distinctions between information at different
dimensions potentially disturbing the process of informa-
tion fusion and thus influencing the final result of the
MCGDM. +ese distinctions are performed since the in-
formation at the individual level is noncompensatory and
that at the criterion level is compensatory in the process of
information fusion. Note that MCGDM is the combination
of MCDM and group decision making (GDM). In MCDM,
the information at the criterion level is fused into a holistic
score or value pertaining to the whole alternative, and
according to this, the alternatives are ranked or selected [32].
In GDM, the final group decisions are derived through
fusing information at the individual level [33]. +e infor-
mation involved in MCGDM is related to both the criterion
and individual level.+erefore, the above distinctions should
be considered carefully in MCGDM and distinct fusion rules
corresponding to different information dimensions should
be utilized.

In the process of implementingMCGDM, a set of criteria
are selected to characterize the alternative in different as-
pects that are essential for the MCGDM problem [34]. For a
specific MCGDM problem, the alternative always has good
or poor performance (information at the criterion level) on
different criteria with different weights, and these perfor-
mances can compensate for each other [34–38] in additive
fusion. Additive fusion is a process of trade-off where poor
(good) performance on one criterion can be offset by good

(poor) performance on other criteria [34] and performance
on a high (low) weighted criterion can be offset by per-
formance on a low (high) weighted criterion [36]. Conse-
quently, the advantages or weaknesses of the alternative may
not be revealed in the final comprehensive results [35]. Based
on the above features, we believe that the fusion of infor-
mation at the criterion level should follow compensatory
strategies, which means that the holistic performance of the
alternative is derived by adding performances on the criteria
with equal or unequal weights [38]. In the published liter-
ature, common compensatory models are weighted additive,
including but not limited to simple additive weighting
(SAW), TOPSIS, AHP, and fuzzy AHP [39]. Among the
existing compensatory methods, PLTSs [27] are an effective
technique owing to their advantages of linguistic preference
expression, probability measure, and multiple operations
[40, 41]. PLTSs and its variants have solved various practical
problems. For example, the reliable participant selection
problem in mobile crowdsensing has been solved by a
probabilistic linguistic VIKOR method based on TODIM
[42], the edge node selection problem in edge computing has
been solved using the probabilistic linguistic ELECTRE II
method [43], and the problem of evaluating the Internet of
things platforms has been solved using an integrated
probabilistic linguistic MCDM method [44].

In addition to the criteria, individual DMs constitute
another dimension in the process of MCGDM. DMs in a
group are invited to give judgment information based on
their preference about the performance of the alternative on
a single criterion, and information at the individual level is
then fused into group judgment information on a single
criterion or an alternative (after information fusion at the
criterion level). However, limited by different degrees of
bounded rationality [38, 45], the information given by
different DMs is usually uncertain and has different degrees
of reliability, which is a key factor in the fusion of infor-
mation at the individual level. When a DM is definitely
reliable, their judgment information is assigned total belief
in the process of fusion. If a DM is not entirely reliable, their
judgment information is assigned a certain degree of belief
instead of total belief in the process of information fusion. In
other words, the fusion result is relative to the most reliable
judgment and cannot be reserved by others [34, 37, 38].
Influenced by lower reliable information, information at the
individual level is incomplete, and therefore, the compen-
satory strategies cannot be applied in the process of fusion
[38]. Hence, noncompensatory strategies are employed.
Compared with the analytic cognition in compensatory
strategies, noncompensatory strategies are akin to intuitive
cognition [46]. Noncompensatory strategies are more
suitable for explaining DMs’ decision-making behavior
because of their lower computational demand and depen-
dence on the most reliable information [36, 38]. In the
published literature, classical noncompensatory models
include conjunctive, disjunctive, elimination by aspects,
lexicographic, and “take the best” [37]. DST [26, 47] is a
superior method for noncompensatory strategies [48] be-
cause of its ability of expressing and fusing uncertain in-
formation. DST and its subsequent versions have been
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employed to solve multiple practical problems, such as
mapping flood susceptibility [49], predicting rolling bearing
faults [50], and determining artificial recharge location [51],
among others.

To sum up, compensatory and noncompensatory
strategies are two indispensable information fusion strate-
gies that are suitable when information belongs to different
dimensions. However, the published MCGDM methods
have not considered the distinctions between compensatory
information at the criterion level in MCDM and non-
compensatory information at the individual level in GDM,
which could result in compromised decision validity and
quality. As MCGDM problems are getting more and more
complex, it is advisable and effective to choose both type of
strategies in the process of information fusion. We propose a
new MCGDM method that considers both compensatory
and noncompensatory strategies. +e rest of this paper is
organized as follows. In Section 2, we introduce the back-
ground knowledge about DST and PLTSs. In Section 3, a
novel MCGDM method is proposed considering both
compensatory and noncompensatory strategies based on
DST and PLTSs, and the corresponding algorithm is con-
structed. A case simulation study of evaluating marine

ranching ecological security (MRES) is presented to test the
scientific validity and practical feasibility of the proposed
method and algorithm in Section 4. Section 5 concludes the
paper.

2. Preliminaries

2.1. Dempster–Shafer (eory. DST is an uncertainty rea-
soning technique proposed by Dempster [47] and Shafer
[26]. It can handle uncertain information at the individual
level on the basis of a frame of discernment, which is
composed of a set of mutually exclusive and collectively
exhaustive propositions. +e basic probability assignment
(BPA) function is applied to extract the uncertain
information.

Definition 1 (see [47]). Suppose a possible proposition is
θn(n � 1, 2, . . . , N), and each of the proposition is exclusive.
+en, a finite nonempty exhaustive set of all propositions
Θ � θ1, . . . , θN􏼈 􏼉 is called a frame of discernment, and its
power set that consists of 2N subsets ofΘ is usually expressed
as

P(Θ) � 2Θ � ∅, θ1, . . . , θN, θ1, θ2􏼈 􏼉, . . . , θN−1, θN􏼈 􏼉, . . . , θ1, . . . , θN−1􏼈 􏼉,Θ􏼈 􏼉. (1)

Definition 2 (see [47]). Suppose θ is a nonempty subset ofΘ,
and its belief is p(θ). If the mapping function
p: 2Θ ⟶ [0, 1] fulfills

p(θ) � 0, θ � ∅,

p(θ)⩾0, 􏽘
θ⊆Θ

p(θ) � 1, θ≠∅,

⎧⎪⎨

⎪⎩
(2)

where ∅ represents the empty set, then p(θ) is called the
BPA function. If p(θ)> 0, θ is named a focal element. p(θ) is
a basic probability that is assigned exactly to θ and not to any
smaller subset.

Considering the situation that counterintuitive problems
[52, 53] may impede the combination of evidences with the
orthogonal sum operator in Dempster’s rule, Shafer pro-
posed a discounting method, named Shafer discounting, to
solve these kinds of problems.

Definition 3 (see [26]). Suppose the belief distribution given
by a piece of evidence ei that points to a proposition θ is pθ,i,
andwi is the weight of evidence ei that is used to discount pθ,i

with 0≤wi ≤ 1, ∀i and 􏽐
I
i�1 wi � 1. +en, the Shafer dis-

counting can be defined to modify the BPA function for the
evidence as follows.

mi �
wipθ,i, θ ⊂ Θ.

wipθ,i + 1 − wi( 􏼁, θ � Θ.
􏼨 (3)

Definition 4 (see [26]). Suppose the discounted BPA
functions of two pieces of evidence e1 and e2 are, respec-
tively, m1 and m2 on Θ, and ⊗ is the orthogonal sum
operator. For any θ ⊆ Θ, Dempster’s rule is described as
follows.

mθ,e(2) � m1 ⊗m2􏼂 􏼃(θ) �

0, θ � ∅,

􏽐θ′ ∩ θ″�θ,θ′ ,θ″⊆Θmθ′ ,1mθ″ ,2

1 − 􏽐θ′ ∩ θ″�∅,θ′ ,θ″⊆Θmθ′ ,1mθ″ ,2
, θ⊆Θ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

A belief measure associated with the BPA function and
composed of the belief function and the plausibility function
is necessary. +e belief function measures the total mass that
must be allocated to the elements of a certain subset of Θ,
and the plausibility function measures the maximal amount

of mass that can be allocated to the elements of a certain
subset of Θ.

Definition 5 (see [47]). Suppose m(θ) is a piece of BPA
function on the frame of discernment Θ. +en, the belief
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function and the plausibility function of a subset θ of Θ can
be denoted by

Bel(θ) � 􏽘

θ′⊆θ

m θ′( 􏼁,

Pl(θ) � 􏽘

θ′ ∩ θ≠∅

m θ′( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where Pl(θ)≥Bel(θ) and Pl(θ) � 1 − Bel(θ). θ is the clas-
sical complement of θ. In equation (5), Bel(θ) is known as
the belief function that represents the lower limit of the belief
level of θ, and Pl(θ) is known as the plausibility function that
represents the upper limit of the belief level of θ. +erefore,
the confidence interval [Bel(θ), Pl(θ)] can describe the
uncertainty about θ, where Bel(θ) and Pl(θ), respectively,
describe the minimal and maximal uncertainty about θ.

2.2. Probabilistic Linguistic Term Sets. PLTSs [27] are an
extension of hesitant fuzzy linguistic term sets (HFLTSs)
[54] with the intention of providing a more convenient way
for DMs to express their preference with probability. A series
of operational laws and aggregation operations are also

introduced to facilitate the fusion of information. We firstly
introduce the definition of linguistic term sets (LTSs).

Definition 6 (see [55]). Let S � sα|α � 0, 1, . . . , τ􏼈 􏼉 be an LTS
and sα, α � 0, 1, . . . , τ be an optional value for a linguistic
variable, where τ is a positive integer that represents the total
number of the linguistic terms in the LTS. +en, we have

(1) +e set ordering rule as sα > sβ, if α> β.
(2) +e negation operator defined as neg(sα) � sβ, such

that β � τ − α.

Actually, HFLTSs mainly consider the situation wherein
DMs hesitate among several optional linguistic terms in the
moment of making their decision. HFLTSs ignore the
probabilistic messages associated with linguistic terms [27].
+erefore, PLTSs are proposed by introducing probabilistic
messages in LTSs as follows.

Definition 7 (see [27]). Suppose S � sα|α � 0, 1, . . . , τ􏼈 􏼉 is an
LTS. +en, its relative PLTS is denoted by

L(p) � L
(k)

p
(k)

􏼐 􏼑|L
(k) ∈ S, p

(k) ≥ 0, k � 1, 2, . . . , #L(p), 􏽘

#L(p)

k�1
p

(k) ≤ 1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (6)

where L(k)(p(k)) means that the associated probability of the
kth linguistic term L(k) in L(p) is p(k) and #L(p) is the total
number of the linguistic terms in PLTS L(p). It is worth
noting that 􏽐

#L(p)

k�1 p(k) represents the degree of information
completeness with respect to the probabilistic distribution
on all possible linguistic terms. We have 􏽐

#L(p)

k�1 p(k) � 1
under complete information, 􏽐

#L(p)

k�1 p(k) � 0 under com-
plete ignorance, and 0< 􏽐

#L(p)

k�1 p(k) < 1 under partial ig-

norance, where the ignorance represented by 1 − 􏽐
#L(p)

k�1 p(k)

should be averagely assigned to all of the linguistic terms in
L(p).

+e PLTSs in equation (6) are called standard PLTSs [56]
with a certain point value of probability.+e interval value of
probability is more suitable for solving practical decision-
making problems because of its consideration of DMs’
vagueness. However, it is also less computable. +erefore,
Gu et al. [56] provided a method for converting interval-
valued PLTSs into standard PLTSs as follows.

Definition 8 (see [56]). Suppose an interval-valued PLTS is
given as L(p) � L(k)[l(k), u(k)]|L(k) ∈ S, 0≤ l􏼈

(k)≤ u(k) ≤ 1, k � 1, 2, . . . , #L(p)}. +en, the method for
converting interval-valued PLTSs into standard PLTSs is
denoted by

p
(k)

�
􏽐
#L(p)

k�1 u
(k)

− 1

􏽐
#L(p)

k�1 u
(k)

− 􏽐
#L(p)

k�1 l
(k)

× l
(k)

+
1 − 􏽐

#L(p)

k�1 l
(k)

􏽐
#L(p)

k�1 u
(k)

− 􏽐
#L(p)

k�1 l
(k)

× u
(k)

, (7)

where l(k) and u(k) are, respectively, the lower limit and
upper limit of the given interval value of probability. Ob-
viously, standard PLTSs are special interval-valued PLTSs
when l(k) � u(k).

Certain problems are caused by the different numbers of
linguistic terms in PLTSs. +erefore, an extension rule for
PLTSs is introduced. +e normalization of PLTSs to avoid
information distortion [57] follows the rules of association
and extension, as below.

Definition 9 (see [27]). If 0< 􏽐
#L(p)

k�1 p(k) < 1, the associated
PLTS _L(p) of a given PLTS L(p) is denoted by

_L(p) � L
(k) _p

(k)
􏼐 􏼑|k � 1, 2, . . . , #L(p)􏽮 􏽯, (8)

where _p
(k)

� p(k)/􏽐
#L(p)

k�1 p(k), k � 1, 2, . . . , #L(p).

Definition 10 (see [27]). If #L1(p)≠ #L2(p), where #L1(p)

and #L2(p) are the numbers of linguistic terms in L1(p) and
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L2(p) respectively, suppose L1(p) and L2(p) are two PLTSs
given as L1(p) � L

(k)
1 (p

(k)
1 )| k � 1, 2, . . . , #L1(p)􏽮 􏽯 and

L2(p) � L
(k)
2 (p

(k)
2 )| k � 1, 2, . . . , #L2(p)􏽮 􏽯. +en, we should

choose a PLTS with the smaller number of linguistic terms
between L1(p) and L2(p) and add |#L1(p) − #L2(p)| lin-
guistic terms to it.+e added linguistic terms are the smallest
one(s) in the chosen PLTS, and the corresponding proba-
bility is equal to zero.

+e elements in a PLTS are often disordered, which may
cause operational problems. +erefore, the following or-
dering rule is introduced.

Definition 11 (see [27]). Given a PLTS
L(p) � L(k)(p(k))| k � 1, 2, . . . , #L(p)􏼈 􏼉, let r(k) be the
subscript of the linguistic term L(k). +en, the ordered PLTS
is obtained by arranging the elements in the normalized
PLTS in accordance to the values of r(k)p(k) in descending
order.

Remark 1. Considering the situation wherein two or more
elements in a PLTS have equal values of r(k)p(k), a com-
plement for the ordering rule as in Definition 11 is intro-
duced. Generally, when the values of r(k) in r(k)p(k) are

unequal, the chosen elements in L(p) are arranged
according to the values of r(k) in descending order. Oth-
erwise, the chosen elements in L(p) are arranged according
to the values of p(k) in descending order [57].

Based on the above definitions, some operations are
defined as follows.

Definition 12 (see [27]). Given two ordered PLTSs L1(p)

and L2(p), where L1(p) � L
(k)
1 (p

(k)
1 )| k � 1, 2, . . . , #L1(p)􏽮 􏽯

and L2(p) � L
(k)
2 (p

(k)
2 )| k � 1, 2, . . . , #L2(p)􏽮 􏽯, then the

addition operation is defined as

L1(p)⊕ L2(p) � ∪
L

(k)
1 ∈L1(p),L

(k)
2 ∈L2(p)

p
(k)
1 L

(k)
1 ⊕p

(k)
2 L

(k)
2􏽮 􏽯,

(9)

where L
(k)
1 and L

(k)
2 are the kth linguistic terms in L1(p) and

L2(p), respectively, and the condition λ1Sα ⊕ λ2Sβ � Sλ1α+λ2β
is satisfied [58]. +en, the uniqueness of PLTSs compared
with the ordinary LTSs, that is, probability, is not revealed.
Zhang et al. [59] defined a new operation for normalized and
ordered PLTSs as

L
N k1( )
1 (p)⊕L

N k2( )
2 (p) � ∪ L

N k3( )
3 p

N k3( )
3􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌 k1 � 1, 2, . . . , #L
N
1 (p), k2 � 1, 2, . . . , #L

N
2 (p)􏼚 􏼛, (10)

where L
N(k3)
3 � L

N(k1)
1 ⊕L

N(k2)
2 , p

N(k3)
3 � p

N(k1)
1 p

N(k2)
2 , L

(k1)
1

and L
(k2)
2 are the k1th and k2th linguistic terms in L

N(k1)
1 (p)

and L
N(k2)
2 (p), respectively, and N in L

N(k1)
1 represents that

L
N(k1)
1 is a normalized PLTS.
Virtual linguistic terms may exist when PLTSs satisfy

λ1Sα ⊕ λ2Sβ � Sλ1α+λ2β. +en, the round function is as follows.

Definition 13. (see [57]). Given a PLTS
L(p) � L(k)(p(k))| k � 1, 2, . . . , #L(p)􏼈 􏼉, the integer score
(linguistic term) of L(p) is denoted by

E(L(p)) � round sα( 􏼁, (11)

where α � 􏽐
#L(p)

k�1 r(k)p(k)/􏽐
#L(p)

k�1 p(k), r(k) is the subscript of
the kth linguistic term L(k), andround(sα) is the classical
round function that is used to determine the linguistic term
that nearest to sα with the rounding-off method.

3. The Proposed Method

3.1. Extraction of Information. MCGDM is usually con-
ducted by a group of DMs who evaluate a set of given al-
ternatives according to their own preference, with the aim to
seek a satisfactory alternative or alternative rank based on a
common criteria system. +e only information sources in
MCGDM are the DMs in the group, who may come from
various fields with different degrees of knowledge reserves,
experience, and cognitive styles, leading to diverse judgment

information at the beginning of theMCGDM.+e judgment
information is subjectively given by DMs with different
degrees of epistemic uncertainty, which could generate in-
accurate decisions. +erefore, considering the uncertainty
along with the preference expression of DMs is of vital
importance in the extraction of information. In this regard,
the BPA function in DSTis an appropriate tool for extracting
information, as it provides a unified way to represent
preference and model uncertainty [60, 61].

For a specific MCGDM problem of evaluating alterna-
tives, we give the following description. In order to solve the
MCGDM problem, a group of DMs are invited to make
judgment about the alternative on each given criterion. +e
DM set and criterion set are denoted by
E � ei| i � 1, 2, . . . , I􏼈 􏼉 and C � cn| n � 1, 2, . . . , N􏼈 􏼉, where I

and N represent the number of DMs and criteria, respec-
tively. A set of linguistic terms denoted by
Θ � θj| j � 1, 2, . . . , J􏽮 􏽯 is given for facilitating DMs tomake
their judgment based on their own preference with uncer-
tainty. θj refers to the jth linguistic term in the given J ones.
Linguistic terms in Θ are actually a series of variable values
expressed in a way that conforms to human language, and
each of them is mutually exclusive and exhaustive. +ere-
fore, Θ is a finite nonempty set, called the frame of dis-
cernment, according to Definition 1. +en, the preference
information given by DM ei on criterion cn can be extracted
by a piece of the individual BPA function satisfying Defi-
nition 2 as
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P
n
i � θ, p

n
i (θ)( 􏼁|p

n
i (θ) ≥ 0, 􏽘

θ⊆Θ
p

n
i (θ) � 1, θ⊆Θ

⎧⎨

⎩

⎫⎬

⎭, (12)

where θ is an element of the power set of the frame of
discernment P(Θ) as in equation (1) and pn

i (θ) is the
probability related to θ. In terms of extracting and expressing
information at the individual level, the BPA function is more
suitable than PLTSs to reflect the actual cognitive compe-
tence of the DMs. Since PLTSs can just reflect judgment
using single linguistic term with associated probability, the
BPA function additionally has the ability of presenting
judgment information with local ignorance. As shown in
equation (12), the value of θ describes the completeness of
the DMs’ recognition. When θ � θj and Pn

i � (θj,􏽮

pn
i (θj))| pn

i (θj) � 1}, we believe that DM ei has complete
recognition about the alternative’s performance on criterion
cn, and he/she can give a certain judgment with no ignorance
[63]. When θ � Θ and Pn

i � (Θ, pn
i (Θ))| pn

i (Θ) � 1􏼈 􏼉, it is
believed that DM ei can recognize nothing about the al-
ternative’s performance on criterion cn, and he/she makes
judgment with global ignorance [62]. Pn

i � (θ,{

pn
i (θ))| pn

i (θ) � 1} means that DM ei has incomplete rec-
ognition about the alternative’s performance on criterion cn,
and he/she can make judgment with local ignorance [62];
that is, DM ei believes that the alternative’s performance on
criterion cn can be depicted by linguistic terms in θ, but he/
she cannot decide which one in θ is the best. Equation (12)
represents a more general case wherein DM ei believes that
the alternative’s performance on criterion cn can be depicted
by θwith several different values, and he/she can give relative
probabilities to each of them.

3.2. Fusion of Information at the Individual Level. With the
application of the BPA function, the DMs’ judgment infor-
mation about the alternative’s performance on each criterion
with corresponding probability is obtained. +en, the in-
formation at the individual level needs to be fused to get the
group judgment about the alternative’s performance on each
criterion. It is worth noting that the BPA functions from
different DMs are always associated with different degrees of
uncertainty caused by objective environmental factors, sub-
jective cognitive factors, and other factors. Even though the
BPA function has abilities to express the judgments of
“uncertain” or “unaware,” the uncertainty caused by differ-
ences among DMs still needs to be attended. Generally, the
differences among DMs are reflected in various aspects of the
DMs, such as knowledge, experience, background, and au-
thority, resulting in different degrees of reliabilities that play
an important role in the process of information fusion for a
particular MCGDM problem. Accordingly, the reliability of a
DM is a key factor that needs to be considered in the fusion of
information at the individual level.

From a group point of view, the reliability of DM ei

actually measures the degree of influence brought by his/
her individual BPA function on the group result relative to

the BPA functions given by other DMs. However, as
mentioned in Section 1, this kind of influence is dominant
in the process of information fusion, and influence with a
low degree of reliability cannot offset that with a high
degree of reliability. In other words, the information at the
individual level, which is formalized as the individual BPA
function, is noncompensatory, and the group result de-
pends more on the individual BPA function given by a DM
with greater reliability. For example, in the problem of
evaluating the school performance of a student by three
teachers, the final evaluation result is usually influenced
more by (or even determined by) the teacher who knows
the evaluated student more because their judgment is
considered the most reliable. Suppose that the three invited
teachers are e1, e2, and e3. Teachers e2 and e3 just have
information about the evaluated student in terms of
learning and activities, and their judgments are given with
local ignorance as (poor, average) and average, respec-
tively. Teacher e1, who has more information about the
evaluated student in terms of various aspects, gives judg-
ment as poor because he/she knows about a punishment
the evaluated student has received. As a result, the final
evaluation result should be poor because the judgment
given by the most reliable teacher e1 has vote power. In this
example, the information given by teacher e1 has dominant
influence on the evaluation result and cannot be com-
pensated by information given by teachers e2 and e3.
Similarly, the judgments given by each DM in an MCGDM
problem are also noncompensatory. In this scenario, DST is
an effective tool for handling noncompensatory informa-
tion in a more rational way [63]. In DST, an evidence with
100% reliability is totally supported; thus, it can have
dominant influence on the fusion result. Otherwise, re-
sidual supports are assigned on the frame of discernment
[63], which makes it possible that the residual supports are
assigned on any element in the frame of discernment rather
than to compensate other evidences.

Consequently, we applied DST to fuse information at the
individual level. Suppose that the reliability set of DMs is
R � ri| i � 1, 2, . . . , I􏼈 􏼉. Subsequently, the extracted indi-
vidual BPA functions as in equation (12) are first discounted
with Shafer’s discounting by taking Pn

i and R into equation
(3). +e discounted individual BPA functions can be rep-
resented as

M
n
i � θ, m

n
i (θ)( 􏼁|m

n
i (θ)≥ 0, 􏽘

θ⊆Θ
m

n
i (θ) � 1, θ ⊆ Θ

⎧⎨

⎩

⎫⎬

⎭,

(13)

where mn
i (θ) is the discounted probability associated with

the linguistic terms in θ, and we have mn
i (θ) � rip

n
i (θ) +

(1 − ri) when θ � Θ; otherwise, mn
i (θ) � rip

n
i (θ).

Next, the discounted individual BPA functions are fused
with Dempster’s rule by takingMn

i into equation (4). For any
two given individual BPA functions from DM ei and ei′ , the
fusion formula is described as
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m
n
e(2)(θ) � m

n
i ⊗m

n
i′􏼂 􏼃(θ) �

0, θ � ∅,

􏽐θ′ ∩ θ″�θ,θ′ ,θ″⊆Θm
n
i θ′( 􏼁m

n
i′ θ″( 􏼁

1 − 􏽐θ′ ∩ θ″�∅,θ′ ,θ″⊆Θm
n
i θ′( 􏼁m

n
i′ θ″( 􏼁

, θ⊆Θ.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

Accordingly, I pieces of individual BPA functions as
demonstrated in equation (12) given by DM e1, e2, . . . , eI can
be recursively fused into a group BPA function relative to
criterion cn. In the above process of applying DST, the re-
liabilities of DMs are used to discount the extracted in-
formation, where the dominant influences of DMs with
higher reliabilities on the group BPA function are enhanced.
Furthermore, the group judgment depends more on BPA
functions with higher degrees of reliabilities under the

application of the orthogonal sum operator in Dempster’
rule. As a result, the influence of each individual BPA
function on the group BPA function cannot compensate one
another in the process of fusion, and the influences of the
total reliable individual BPA functions could be entirely
brought to the group BPA function with no discount.
Eventually, the group BPA function relative to criterion cn is
derived based on noncompensatory strategies as follows.

M
n

� M
n
1 ⊗M

n
2 ⊗ · · · ⊗M

n
I � θ, m

n
(θ)( 􏼁|m

n
(θ)≥ 0, 􏽘

θ⊆Θ
m

n
(θ) � 1, θ⊆Θ

⎧⎨

⎩

⎫⎬

⎭. (15)

3.3. Transformation from BPA Functions into PLTSs.
Based on the demonstration of DST, we have obtained N

pieces of group BPA functions that describe the group
judgments about the alternative’s performance on each
criterion. In fact, the expression of information by the BPA
functions facilitates handling uncertainty in DMs’ judg-
ments through assigning probabilities on the power set of
the frame of discernment.When probabilities are assigned to
single elements of the frame of discernment like θj, we
believe that the judgment is precise with no ignorance.
When probabilities are assigned to a subset including more
than one element like θ, we believe that the judgment is
“uncertain” with local ignorance. When probabilities are
assigned to the frame of discernment itself likeΘ, we believe
that the judgment is “unaware” with global ignorance.
However, these kinds of data make it difficult and com-
plicated to fuse the group judgments on each criterion. As
mentioned above, the information at the criterion level, that
is, the group BPA functions demonstrated by equation (15),
is actually compensatory in the process of fusion. +us, the
influence given by the group BPA function on some criterion
can offset that given by others in the process of fusion.
+erefore, the fusion result of the information at the cri-
terion level can reflect the comprehensive performance on
all criteria and needs to be obtained with the weighted
additive fusion rule. +e information expression form of the
BPA function is not suitable for the weighted additive fusion
rule because of its assignment of probabilities. In order to
establish links between information at the criterion level
(group BPA functions) and the application of the weighted
additive operations, the transformation method is proposed

to convert the group BPA functions as in equation (15) into a
simple expression appropriate for compensatory model,
such as PLTSs.

In general, the probability in the BPA function usually
describes the support degree of a proposition obtained from
DMs. +e higher the degree of support, the more certain is
the proposition. In other words, the probabilities in the BPA
functions are actually a kind of representation of uncertainty
arising from DMs’ judgments. In DST, this kind of un-
certainty is measured by two functions with respect to each
single linguistic term, namely, the belief function and
plausibility function, which separately measure the lowest
and highest probability of the proposition being true [64]. By
taking the group BPA function as in equation (15) into
equation (5), we can derive the belief and plausibility of the
group BPA function Mn as Beln(θj) and Pln(θj), which,
respectively, depict the lower and upper limits of proba-
bilities relative to single linguistic term θj on criterion cn.
From the perspective of PLTSs, Beln(θj) and Pln(θj) actually
constitute the probability associated with linguistic term θj

in the form of an interval value. For convenience, illustra-
tion, and understanding, we redefine the frame of dis-
cernment Θ � θj| j � 1, 2, . . . , J􏽮 􏽯 as an LTS
S � sα| α � 0, 1, . . . , τ􏼈 􏼉 that satisfies Definition 6, where
s0 � θ1, s1 � θ2, . . ., sτ � θJ. Beln(θj) and Pln(θj) are
redefined as l(k)

n and u(k)
n , which separately represent the

lower and upper limits of probability relative to the kth
linguistic term in LTS S on criterion cn. Accordingly, the
group BPA function Mn as in equation (15) can be trans-
formed into a PLTS Ln(p) as follows according to Definition
8.

Ln(p) � L
(k)
n l

(k)
n , u

(k)
n􏽨 􏽩|L

(k)
n ∈ S, 0≤ l

(k)
n ≤ u

(k)
n ≤ 1, k � 1, 2, . . . , #Ln(p)􏽮 􏽯, (16)
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where L(k)
n represents the kth linguistic term relative to

criterion cn and #Ln(p) represents the number of linguistic
terms in Ln(p). Note that standard PLTSs are a special case
of interval-valued PLTSs as in equation (16) when l(k)

n � u(k)
n .

3.4. Fusion of Information at the Criterion Level. +e ob-
tained group judgments, which are demonstrated in the
form of interval-valued PLTSs on each criterion, need to be
further fused to derive the holistic judgment about the whole
alternative. As mentioned in Section 1, the group judgments
on each criterion are actually information at the criterion
level and compensatory to each other. For the whole al-
ternative or the MCGDM problem, each criterion is selected
according to a set of principles, such as systematic, typical,
scientific, and comprehensive, so that the constructed cri-
terion system can consider aspects that are integrated and
valid enough for describing the MCGDM problem. In other
words, each criterion in an MCGDM problem describes an
essential aspect of the alternative, and the final decision is
made by comprehensively combining the alternative’s
performance on all aspects, which is a process of trade-off.
For example, in the problem of evaluating a student from the
aspects of academic record (c1), student leader work (c2),
and activity achievements (c3), bad performance on one
aspect can usually be compensated by good work on other
aspects because the school always train students following
the principle of integrated development and any single as-
pect cannot decide the evaluation results. After a trade-off, a
student with good performance on criterion c1, excellent
performance on criterion c2, and poor performance on
criterion c3 may be evaluated as a good student because of

the mutual compensation of performance on each aspect.
Similarly, the information at the criterion level in an
MCGDM problem is also compensatory. +erefore, the
obtained PLTSs on each criterion as in equation (16) need to
be fused into a holistic result in accordance with compen-
satory strategies.

As demonstrated in equation (16), the obtained PLTSs
contain the information of criterion cn, associated linguistic
term L(k)

n , and its corresponding interval value of probability
[l(k)

n , u(k)
n ]. As mentioned above, the interval value of

probability is more suitable to demonstrate the vagueness of
the linguistic term. However, it is not applicable for fusion
operations on PLTSs. In order to solve this problem, several
researchers have made strong attempts [65–67] by intro-
ducing new aggregation operators and comparison laws for
interval values, which provide new calculation methods to
accommodate the vagueness of linguistic terms and com-
plicated calculations. We believe that the method as in
equation (7) proposed by Gu et al. [56] is simple and ap-
plicable to deal with interval-valued probability. Addition-
ally, it should be noticed that the situation of
Beln(θj) � Pln(θj) actually exists in practice when DMs only
definitely assign the probabilities with no ignorance on
single elements of the frame of discernment rather than any
subset including more than one element. +us, it is possible
to have l(k)

n � u(k)
n when the interval value of probability in

the PLTSs can be regarded as a certain point value, that is,
p(k)

n � (l(k)
n + u(k)

n )/2. Equation (7) does not work under this
circumstance. Accordingly, the obtained interval values of
probabilities in the PLTSs are first converted into equivalent
certain point values of probabilities as follows.

p
(k)
n �

l
(k)
n + u

(k)
n

2
, l

(k)
n � u

(k)
n ,

􏽐
#Ln(p)

k�1 u
(k)
n − 1

􏽐
#Ln(p)

k�1 u
(k)
n − 􏽐

#Ln(p)

k�1 l
(k)
n

× l
(k)
n +

1 − 􏽐
#Ln(p)

k�1 l
(k)
n

􏽐
#Ln(p)

k�1 u
(k)
n − 􏽐

#Ln(p)

k�1 l
(k)
n

× u
(k)
n , l

(k)
n ≠ u

(k)
n .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Hence, the interval-valued PLTSs as in equation (16) can
be converted into standard PLTSs as Ln(p) � L(k)

n􏼈

(p(k)
n )|L(k)

n ∈ S, p(k)
n ≥ 0, k � 1, 2, . . . , #Ln(p), 􏽐

#Ln(p)

k�1
p(k)

n � 1}. Afterwards, the procedure of fusing information at
the criterion level can be implemented through normali-
zation of the standard PLTSs Ln(p). In conformity to the
procedure of normalization of PLTSs, association and ex-
tension need to be carried out. However, the situation
explained in Definition 9 is out of consideration here

because #Ln(p) � #Ln(p) and 􏽐
#Ln(p)

k�1 p(k)
n � 1, which can be

easily proven. +erefore, there is no need for association.
+en, the PLTSs Ln(p) need to be extended according to
Definition 10. +e probabilities assigned on the added
linguistic terms are zero. +en, the extended PLTSs are
arranged according to the value of r(k)

n p(k)
n in descending

order, where r(k)
n is the subscript of linguistic term L(k)

n (see
Definition 11). As a result, the normalized and ordered
PLTSs are obtained as

Ln(p) � L
(k)

n p
(k)
n􏼐 􏼑|L

(k)

n ∈ S, p
(k)
n ≥ 0, k � 1, 2, . . . , #Ln(p), 􏽘

#Ln(p)

k�1
p

(k)
n � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (18)
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Subsequently, we need to choose an operation to derive
the fusion result of information at the criterion level, where
the weight of the criterion is also a necessary factor that has
substantial effect on the fusion result. +erefore, we apply
the redefined addition operation [19] to fuse the normalized
and ordered PLTSs. Let W � wn|0t≤ nwnq≤ h1,x􏽮

􏽐
N
n�1 wn � C1; , n � 1, 2, . . . , N} be the weight set corre-

sponding to criterion set C � cn| n � 1, 2, . . . , N􏼈 􏼉. +en, any
two given PLTSs Ln(p) and Ln′(p) satisfy
wnSα ⊕wn′Sβ � Swnα+w

n′β
, α, β � 0, 1, . . . , τ. Based on Defi-

nition 12, the weighted addition operation of any two given
PLTSs Ln(p) and Ln′(p) is as follows.

wnL
kn( )

n (p)⊕wn′L
k

n′􏼐 􏼑

n′ (p) � ∪ L
kδ( )

δ p
kδ( )

δ􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌 kn � 1, 2, . . . , #Ln(p), kn′ � 1, 2, . . . , #Ln′(p)􏼚 􏼛, (19)

where

L
kδ( )

δ � wnL
kn( )

n ⊕wn′L
k

n′􏼐 􏼑

n′ , p
kδ( )

δ � p
kn( )

n p
k

n′􏼐 􏼑

n′ ,􏼨 (20)

in which L
(kδ)

δ , kδ � 1, 2, . . . , #Lδ(p) represents the kδth
linguistic term in the fusion result of PLTSs L1(p) and
L2(p). +e value of L

(kδ)

δ is calculated by wnL
(kn)
n ⊕wn′L

(k
n′ )

n′ ,
which obeys the rule wnSα ⊕wn′Sβ � Swnα+w

n′β
,

α, β � 0, 1, . . . , τ. p
(kδ)

δ is the probability relative to the lin-
guistic term L

(kδ)

δ in the fusion result, which is determined

based on the redefined addition operation as in equation
(10). For convenience of understanding, here we introduce a
simple example to illustrate.

Example 1. Given two PLTSs demonstrated by equation (18)
as L1(p) � (s0, 0.1), (s1, 0.3), (s2, 0.6)􏼈 􏼉 and
L2(p) � (s0, 0.4), (s1, 0.3), (s2, 0.3)􏼈 􏼉 and their respective
weights as w1 � 0.3 and w2 � 0.7, the calculation of fusing
these two PLTSs by equations (19) and (20) is as follows.

w1
�L1(�p)⊕w2

�L2(�p) � s0.3×0+0.7×0, 0.1 × 0.4( 􏼁, s0.3×0+0.7×1, 0.1 × 0.3( 􏼁, s0.3×0+0.7×2, 0.1 × 0.3( 􏼁, s0.3×1+0.7×0, 0.3 × 0.4( 􏼁,􏼈

s0.3×1+0.7×1, 0.3 × 0.3( 􏼁, s0.3×1+0.7×2, 0.3 × 0.3( 􏼁, s0.3×2+0.7×0, 0.6 × 0.4( 􏼁, s0.3×2+0.7×1, 0.6 × 0.3( 􏼁,

s0.3×2+0.7×2, 0.6 × 0.3( 􏼁􏼉

� s2, 0.18( 􏼁, s1.3, 0.18( 􏼁, s1.7, 0.09( 􏼁, s0.6, 0.24( 􏼁, s1, 0.09( 􏼁, s1.4, 0.03( 􏼁, s0.3, 0.12( 􏼁, s0.7, 0.03( 􏼁, s0, 0.04( 􏼁􏼈 􏼉.

(21)

Subsequently, the information at the criterion level is
fused into a piece of holistic PLTS relative to the whole
alternative by recursively repeating the fusion as in equa-
tions (19) and (20) for N − 1 times, where the weight of each
intermediate PLTS should be determined carefully. Suppose
wΔ is the weight of the intermediate PLTS that is the fusion
result of the first few PLTSs. Initially, for n � 1, we have wΔ �

0 and then 􏽢L
(k)

� L
(k1)

1 , 􏽢p
(k)

� p
(k1)
1 . +en, for n � 2, we

conduct the first fusion and have wΔ � w1, and
􏽢L

(k)
� wΔ

􏽢L
(k) ⊕w2L

(k2)

2 , 􏽢p
(k)

� 􏽢p
(k)

p
(k2)
2 . For n � 3, we

conduct the second fusion and have wΔ � wΔ + w2, and
􏽢L

(k)
� wΔ

􏽢L
(k) ⊕w3L

(k3)

3 , 􏽢p
(k)

� 􏽢p
(k)

p
(k3)
3 . In general, for

∀n � 2, . . . , N, we have wΔ � wΔ + wn−1, and
􏽢L

(k)
� wΔ

􏽢L
(k) ⊕wnL

(kn)

n , 􏽢p
(k)

� 􏽢p
(k)

p(kn)
n . Finally, the ob-

tained holistic PLTS that describes the group judgment on all
criteria is denoted by

􏽢L(􏽢p) � w1L1(p)⊕w2L2(p)⊕ · · · ⊕wNLN(p) � 􏽢L
(k)

􏽢p
(k)

􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌
􏽢L

(k) ∈ S, 􏽢p
(k) ≥ 0, k � 1, 2, . . . , #􏽢L(􏽢p)􏼚 􏼛. (22)

Obviously, virtual linguistic terms may exist in 􏽢L(􏽢p) (see
Example 1). +e ultimate result of MCGDM is calculated by
taking 􏽢L(􏽢p) into equation (11), and we have
α � 􏽐

#􏽢L(p)

k�1 􏽢r(k) 􏽢p
(k)/􏽐

#􏽢L(p)

k�1 􏽢p
(k), where 􏽢r(k) is the subscript of

the kth linguistic term 􏽢L
(k) in holistic PLTS 􏽢L(􏽢p), and 􏽢p

(k) is
its associated probability. Let the ultimate result of the

MCGDM be s∗. +en, s∗ � round(sα) is the linguistic term
that is nearest to sα.

Example 2. Considering the situation that the criterion set is
C � c1, c2􏼈 􏼉 and the holistic PLTS is obtained as in Example
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1, then the integer score of 􏽢L(􏽢p) is calculated by
E(􏽢L(􏽢p)) � round(sα), where

α �
0 × 0.04 + 0.7 × 0.03 + 1.4 × 0.03 + 0.4 × 0.12 + 1 × 0.09 + 1.7 × 0.09 + 0.6 × 0.24 + 1.3 × 0.18 + 2 × 0.18

0.04 + 0.03 + 0.03 + 0.12 + 0.09 + 0.09 + 0.24 + 0.18 + 0.18
� 1.092. (23)

+us, we have s∗ � round(s1.092) � s1.

3.5. MCGDM Process and Algorithm. For convenience of
illustration, the operational process of the proposed method
is summarized in Figure 1. In summary, we present a novel
MCGDM method using DST and PLTSs for distinguishing
the noncompensatory information at the individual level
and compensatory information at the criterion level in the
process of information fusion. Firstly, the extraction of
information based on the BPA function in DSTis introduced
considering ignorance that exists in DMs’ judgments. +en,
DST is applied to discount and obtain the group judgment
on each criterion, where the reliabilities of DMs are con-
sidered. +e information at the individual level is fused
based on the noncompensatory strategy. In order to establish
links between the group judgment formed in the group BPA
function and the compensatory fusion strategy for infor-
mation at the criterion level, we propose a transformation
from BPA functions into PLTSs based on the belief and
plausibility function in DST. Consequently, we obtain the
information at the criterion level, which is in the form of
interval-valued PLTSs. +us, a method for converting in-
terval-valued PLTSs into standard PLTSs is constructed.
Finally, the standard PLTSs on each criterion are fused into a
holistic PLTS with weighted addition operations, and the
final MCGDM result is determined based on the round
function. To facilitate practical demonstration, the above
process is simplified as in the following Algorithm 1.

4. Case Simulation Study

In order to verify and improve the scientific validity and
practical feasibility of the proposed method and algorithm,
we give a case simulation study of evaluating marine
ranching ecological security in this section to offer a sim-
ulative demonstration of the proposed MCGDM method.
According to the definition given by the Chinese Academy
of Aquatic Sciences, marine ranching is a fishery mode based
on the principle of marine organisms to breed, grow bait, or
avoid enemies, through releasing artificial reefs and stock
enhancement. It is conductive to increase and protect fishery
resources, improve the marine ecological environment, and
realize sustainable utilization of fishery resources [57]
(Aquatic Industry SC/T9111-2017). As a fishery mode that
safeguards economic, social, and environmental revenue,
marine ranching has received substantial attention in terms
of various aspects, especially MRES.+e objective of the case
simulation study is to evaluate the MRES of a marine ranch
by applying the proposed method and algorithm.

MRES is a kind of integral balance of the marine re-
sources, marine environment, fishery activities, and other
human activities. In order to keep this kind of balance,
humans perform actions of releasing artificial reef and
cultivating seaweed and other measures to develop a
habitat for the target species. Other environmental actions
are also taken to protect and improve the marine ranching
ecosystem. Enhancement of fishery resources and sus-
tainable increase of the fishery output are two main
components of MRES. Consequently, we believe that the
problem of evaluating MRES of a specific marine ranch
includes five indispensable criteria: special funds acqui-
sition and management (c1), cost and profit of the marine
ranch (c2), monitoring system and regular inspections (c3),
main biomass index (c4), and seawater and seaweed bed
quality (c5). Suppose five DMs, namely, marine environ-
mental monitoring technician (e1), aquaculture expert
(e2), manager of the evaluated marine ranching (e3),
marine environment and resource specialist (e4), and local
governmental personnel (e5), are invited to participate in
the evaluation of MRES. We denote the criterion set
and DM set by C � cn| n � 1, 2, . . . , 5􏼈 􏼉 and E � ei| i � 1, 2,􏼈

. . . , 5}. Correspondingly, the weight set of the criteria and
reliability set of the DMs are obtained as
W � (0.150, 0.050, 0.100, 0.400, 0.300) and R �(0.680,

0.920, 0.600, 1.000, 0.800), respectively. +e DMs need to
make judgment about the performance of the specific
marine ranch on each criterion based on the given frame of
discernment that includes three linguistic terms:
Θ � (θ1 � bad, θ2 � average, θ3 � good).

4.1. Extracting Information from the Five DMs. Based on the
above description, the individual information on each cri-
terion given by each DM is extracted with the BPA function
as in equation (12), as shown in Table 1.

It is clearly shown in Table 1 that DMs e1, e2, . . ., e5 give
their judgments about the MRES performance of the eval-
uated marine ranch on five criteria relative to the power set
of frame of discernment with probabilities. For example, the
extracted information given by DM e1 on criterion c1 can be
expressed as P1

1 � (θ2, 0.300), (θ3, 0.600), (Θ, 0.100)􏼈 􏼉,
which means that DM e1 believes that the MRES perfor-
mance of the evaluated marine ranch on criterion c1 has 30%
probability to be average (θ2), 60% probability to be good
(θ3), and 10% probability that the DM cannot make judg-
ment with global ignorance. As another example, DM e5
believes that the MRES performance of the evaluated marine
ranch on criterion c2 can be evaluated as average (θ2) or
good (θ3); he/she only has 10% probability to hold average
(θ2). For the remaining 90% probability, he/she cannot
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Information at criterion levelNoncompensatory strategy:
Dempster’s rule

R

Compensatory strategy:
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Figure 1: Operational process of the proposed method.

Input: extracted information from DM ei on criterion cn named Pn
i , ∀i, n, the DMs’ reliability set R, and the criteria weight set W.

Output: the ultimate linguistic term s∗

Begin
% Fusion of information at the individual level based on noncompensatory strategies
% Discount the individual BPA functions with Shafer discounting
For i � 1 to I

If θ � Θ
+en mn

i (θ) � rip
n
i (θ) + (1 − ri)

Else mn
i (θ) � rip

n
i (θ)

EndIf
EndFor
% Fuse the discounted individual BPA functions with Dempster’s rule
For n � 1 to N

If θ � ∅
+en mn(θ) � 0
Else mn(θ) � mn

1(θ)

For i � 2 to I

mn(θ) � 􏽐θ′ ∩ θ″�θ,θ′ ,θ″⊆Θm
n
i (θ′)mn

i′(θ″)/[1 − 􏽐θ′ ∩ θ″�∅,θ′ ,θ″⊆Θm
n
i (θ′)mn

i′(θ″)]
EndFor

EndIf
EndFor

% Transformation from BPA function into PLTSs
% Calculate the belief and plausibility of the group BPA functions
For n � 1 to N

For j � 1 to J

Beln(θj) � 􏽐θ′⊆θj
mn(θ′)

Pln(θj) � 􏽐θ′ ∩ θj ≠∅m
n(θ′)

EndFor
EndFor
% Define the LTS and interval-valued probabilities
For α � 0 to τ

sα � θj−1
S � sα|α � 0, 1, . . . , τ􏼈 􏼉⟺Θ � θj|j � 1, 2, . . . , J􏽮 􏽯

For n � 1 to N

[l(k)
n , u(k)

n ]⟺[Beln(θj), Pln(θj)]

% Form the interval-valued PLTSs
Ln(p) � L(k)

n [l(k)
n , u(k)

n ]| L(k)
n ∈ S, 0≤ l(k)

n ≤ u(k)
n ≤ 1, k � 1, 2, . . . , #Ln(p)􏼈 􏼉

EndFor

ALGORITHM 1: Continued.
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decide which one of the two linguistic terms ( θ2, θ3􏼈 􏼉) is the
best. Accordingly, the extracted information is
P2
5 � (θ2, 0.100), ( θ2, θ3􏼈 􏼉, 0.900 )􏼈 􏼉, which includes local ig-

norance. DM e3 thinks that the MRES performance of the
evaluated marine ranching on criterion c1 can definitely be
evaluated as average (θ2); thus, his/her individual BPA function
on criterion c1 is P1

3 � (θ2, 1.000)􏼈 􏼉 with no ignorance.

4.2. Fusing Informationat the IndividualLevel. Asmentioned
in Section 3.2, the information given by different DMs has
different degrees of reliabilities in the problem of evaluating
MRES. To be specific, MRES is a complicated MCGDM
problem with various aspects that are represented as the five
criteria in this case. However, not every DM has enough
ability, knowledge, and experience to give reliable judgment,
as MRES involves many professional fields, such as gov-
ernment policy standards, marine sediment quality, marine
environment monitoring technology, and so on. For the
problem of evaluating MRES in this case, the invited marine
environment and resource specialist (e4) is authoritative in
the field of marine environmental protection and marine
resource management, and his/her judgment is the most
reliable in the judgments given by the five DMs. +is DM’s
reliability is 1.000. +e marine environmental monitoring
technician (e1), aquaculture expert (e2), and local

governmental personnel (e5), respectively, have a certain
degree of abilities to make judgment with reliabilities of 0.680,
0.920, and 0.800. Even though the manager of the evaluated
marine ranch (e3) knows a lot about the operation and
management of the evaluated marine ranch, such as the cost
and profit of the marine ranch (c2), he/she has the lowest
reliability of 0.600 in the synthetic evaluation of theMRES. By
taking the DM reliability set R and the information at the
individual level in Table 1 into equation (13), we obtain the
discounted individual BPA functions as follows.

In the process of fusion, the information from the DM
with lower reliability (e.g., DM e3) cannot compensate for the
information from a DMwith a higher reliability (e.g., DM e4).
So, the fusion result is effective and reliable as much as
possible. +erefore, the fusion rule based on non-
compensatory strategies, such as Dempster’s rule, is applied,
and the group BPA functions representing the group judg-
ment of the five DMs on each criterion are obtained by taking
the discounted BPA functions in Table 2 into equation (14).
+e obtained group BPA functions are shown in Table 3.

4.3. Transforming Group BPA Functions into PLTSs. As
mentioned in Section 3.3, the BPA function provides a
unified way to model and dispose the uncertainty existing in

EndFor
% Fuse information at the criterion level based on compensatory strategies
% Convert interval-valued PLTSs into standard PLTSs
For n � 1 to N

For k � 1 to #Ln(p)

If l(k)
n � u(k)

n

+en p(k)
n � (l(k)

n + u(k)
n )/2

Else p(k)
n � l(k)

n × [􏽐
#Ln(p)

k�1 u(k)
n − 1]/[􏽐

#Ln(p)

k�1 u(k)
n − 􏽐

#Ln(p)

k�1 l(k)
n ] + u(k)

n × [1 − 􏽐
#Ln(p)

k�1 l(k)
n ]/[􏽐

#Ln(p)

k�1 u(k)
n − 􏽐

#Ln(p)

k�1 l(k)
n ]

EndIf
EndFor

% Extend and arrange the linguistic terms in standard PLTSs and form the normalized and ordered PLTSs
Ln(p) � L

(k)

n (p(k)
n )|L

(k)

n t ∈ nSq, hp(k)
n ≥x07, Ck; � 1, 2, . . . , #Ln(p), 􏽐

#Ln(p)

k�1 p(k)
n � 1􏼚 􏼛

EndFor
% Fuse the normalized and ordered PLTSs with the weighted addition operation
For n � 1

wΔ � 0
􏽢L

(k)
� L

(k1)

1
􏽢p

(k)
� p

(k1)
1

For n � 2 to N

wΔ � wΔ + wn−1

􏽢L
(k)

� wΔ
􏽢L

(k) ⊕wnL
(kn)

n

􏽢p
(k)

� 􏽢p
(k)

p(kn)
n

EndFor
EndFor
% Determine the ultimate MCGDM result
For k � 1 to #Ln(p)

α � 􏽐
#L(p)

k�1 r(k)p(k)/􏽐
#L(p)

k�1 p(k)

s∗ � round(sα)

EndFor
End

ALGORITHM 1: MCGDM with DST and PLTSs.
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DMs’ judgments. As is shown in Table 3, the group BPA
function on criterion c1 is M1 � (θ1, 0.011), (θ2, 0.924),􏼈

(θ3, 0.031), ( θ1, θ2􏼈 􏼉, 0.022 ), ( θ2, θ3􏼈 􏼉, 0.008), (Θ, 0.003) },
which contains both local ignorance and global ignorance of
the DM group. +e group BPA function on criterion c5 is
M5 � (θ1, 0.097), (θ2, 0.903)􏼈 􏼉, which assigns the probabil-
ities to single elements with no ignorance. Irrespective of the
kind of ignorance contained, all information in the group
BPA functions is associated with a degree of uncertainty,
which is measured by the belief and plausibility function in
DST.+erefore, we calculate the belief and plausibility of the
group BPA functions by taking the group BPA functions in
Table 3 into equation (5). +e calculation result is provided
in Table 4.

As a result, we obtain the lower and upper limits of
the probability assigned to each linguistic term. For
convenience of illustration and understandability,
we redefine the LTS and its associated value limit of
probability. According to the explanation in Section 3.3,
the frame of discernment Θ � (θ1 � bad,

θ2 � average, θ3 � good) is redefined as an LTS
S � (s0 � bad, s1 � average, s2 � good), and the associated
value limit of the probability is redefined each to each.
For example, the belief (Bel2(θ1)) and plausibility
(Pl2(θ1)) of the group BPA function M2 relative to lin-
guistic term θ1 are redefined as l

(1)
2 and u

(1)
2 , respectively.

Accordingly, the group BPA functions in Table 3 are
transformed into interval-valued PLTSs as shown in
Table 5.

4.4. Fusing Information at the Criterion Level. Based on the
above procedure, we obtain the interval-valued PLTSs on
each criterion, which describe the possible linguistic terms
and associated probabilities. For example, the interval-val-
ued PLTS on criterion c1 is
L1(p) � s0[0.011, 0.037], s1[0.924, 0.958], s2[0.031, 0.042]􏼈 􏼉,
which represents that the MRES performance on special
funds acquisition and management (c1) situation of the
evaluated marine ranch is possible to be evaluated as bad
(s0),average (s1), and good (s2). Correspondingly, the as-
sociated possibilities are, respectively, between intervals
[1.1%, 3.7%], [92.4%, 95.8%], and [3.1%, 4.2%]. Subse-
quently, the five interval-valued PLTSs need to be fused to
get the holistic PLTS. We should convert the interval-valued
PLTSs into standard PLTSs with certain point-valued
probabilities first so that the compensatory operations of
PLTSs are applicable. By taking the interval-valued PLTSs in
Table 5 into equation (17), we derive the standard PLTSs.
After normalization and arrangement, the normalized and
ordered PLTSs are obtained (Table 6), where r(k)

n is the
subscript of the kth linguistic term in the normalized and
ordered PLTSs and r(k)

n p(k)
n is the value that is used to ar-

range the linguistic terms in descending order.
Generally, each PLTS in Table 6 describes the infor-

mation at the criterion level. As illustrated in Section 3.4,
each criterion of MRES is an independent and indispensable
aspect, and all criteria compose the MCGDM problem
jointly. In this case, the evaluation of MRES includes five
criteria, and the information at the criterion level is

Table 1: Extracted information at the individual level.

DM Criterion Individual probability assignment (pn
i (θ))

θ1􏼈 􏼉 θ2􏼈 􏼉 θ3􏼈 􏼉 θ1, θ2􏼈 􏼉 θ2, θ3􏼈 􏼉 θ1, θ3􏼈 􏼉 Θ

e1

c1 0.000 0.300 0.600 0.000 0.000 0.000 0.100
c2 0.000 0.200 0.500 0.000 0.200 0.000 0.100
c3 0.000 0.300 0.000 0.150 0.550 0.000 0.000
c4 0.600 0.000 0.200 0.000 0.200 0.000 0.000
c5 0.600 0.000 0.000 0.000 0.000 0.000 0.400

e2

c1 0.000 0.600 0.000 0.000 0.350 0.000 0.050
c2 0.000 0.000 0.300 0.000 0.000 0.000 0.700
c3 0.000 0.000 0.400 0.000 0.400 0.000 0.200
c4 0.650 0.150 0.200 0.000 0.000 0.000 0.000
c5 0.000 0.500 0.500 0.000 0.000 0.000 0.000

e3

c1 0.000 1.000 0.000 0.000 0.000 0.000 0.000
c2 0.000 0.400 0.600 0.000 0.000 0.000 0.000
c3 0.000 0.200 0.200 0.600 0.000 0.000 0.000
c4 0.000 0.300 0.400 0.300 0.000 0.000 0.000
c5 0.000 0.000 0.300 0.300 0.000 0.000 0.400

e4

c1 0.300 0.000 0.000 0.400 0.000 0.000 0.300
c2 0.000 0.000 0.000 0.000 0.000 0.000 1.000
c3 0.000 0.200 0.200 0.600 0.000 0.000 0.000
c4 0.000 0.000 0.300 0.000 0.000 0.000 0.700
c5 0.300 0.700 0.000 0.000 0.000 0.000 0.000

e5

c1 0.000 0.200 0.200 0.600 0.000 0.000 0.000
c2 0.000 0.100 0.000 0.000 0.900 0.000 0.000
c3 0.100 0.000 0.000 0.900 0.000 0.000 0.000
c4 0.000 0.200 0.800 0.000 0.000 0.000 0.000
c5 0.000 0.000 0.500 0.000 0.000 0.000 0.500
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Table 2: +e discounted individual BPA functions.

DM Criterion Discounted individual probability assignment (mn
i (θ))

θ1􏼈 􏼉 θ2􏼈 􏼉 θ3􏼈 􏼉 θ1, θ2􏼈 􏼉 θ2, θ3􏼈 􏼉 θ1, θ3􏼈 􏼉 Θ

e1

c1 0.000 0.204 0.408 0.000 0.000 0.000 0.388
c2 0.000 0.136 0.340 0.000 0.136 0.000 0.388
c3 0.000 0.204 0.000 0.102 0.374 0.000 0.320
c4 0.408 0.000 0.136 0.000 0.136 0.000 0.320
c5 0.408 0.000 0.000 0.000 0.000 0.000 0.592

e2

c1 0.000 0.552 0.000 0.000 0.322 0.000 0.126
c2 0.000 0.000 0.276 0.000 0.000 0.000 0.724
c3 0.000 0.000 0.368 0.000 0.368 0.000 0.264
c4 0.598 0.138 0.184 0.000 0.000 0.000 0.080
c5 0.000 0.460 0.460 0.000 0.000 0.000 0.080

e3

c1 0.000 0.600 0.000 0.000 0.000 0.000 0.400
c2 0.000 0.240 0.360 0.000 0.000 0.000 0.400
c3 0.000 0.120 0.120 0.360 0.000 0.000 0.400
c4 0.000 0.180 0.240 0.180 0.000 0.000 0.400
c5 0.000 0.000 0.180 0.180 0.000 0.000 0.640

e4

c1 0.300 0.000 0.000 0.400 0.000 0.000 0.300
c2 0.000 0.000 0.000 0.000 0.000 0.000 1.000
c3 0.000 0.200 0.200 0.600 0.000 0.000 0.000
c4 0.000 0.000 0.300 0.000 0.000 0.000 0.700
c5 0.300 0.700 0.000 0.000 0.000 0.000 0.000

e5

c1 0.000 0.160 0.160 0.480 0.000 0.000 0.200
c2 0.000 0.080 0.000 0.000 0.720 0.000 0.200
c3 0.080 0.000 0.000 0.720 0.000 0.000 0.200
c4 0.000 0.160 0.640 0.000 0.000 0.000 0.200
c5 0.000 0.000 0.400 0.000 0.000 0.000 0.600

Table 3: +e group BPA functions.

Criterion Group probability assignment (mn(θ))
θ1􏼈 􏼉 θ2􏼈 􏼉 θ3􏼈 􏼉 θ1, θ2􏼈 􏼉 θ2, θ3􏼈 􏼉 θ1, θ3􏼈 􏼉 Θ

c1 0.011 0.924 0.031 0.022 0.008 0.000 0.003
c2 0.000 0.216 0.603 0.000 0.152 0.000 0.029
c3 0.009 0.848 0.034 0.109 0.000 0.000 0.000
c4 0.273 0.118 0.590 0.005 0.004 0.000 0.010
c5 0.097 0.903 0.000 0.000 0.000 0.000 0.000

Table 4: +e belief and plausibility of the group BPA functions.

Criterion Belief and plausibility of the group BPA functions (Beln(θj) & Pln(θj))
Beln(θ1) Pln(θ1) Beln(θ2) Pln(θ2) Beln(θ3) Pln(θ3)

c1 0.011 0.037 0.924 0.958 0.031 0.042
c2 0.000 0.029 0.216 0.397 0.603 0.784
c3 0.009 0.119 0.848 0.957 0.034 0.034
c4 0.273 0.288 0.118 0.137 0.590 0.604
c5 0.097 0.097 0.903 0.903 0.000 0.000

Table 5: +e interval-valued PLTSs.

Criterion Interval value of probability ([l(k)
n , u(k)

n ])
L(1)

n [l(1)
n , u(1)

n ] L(2)
n [l(2)

n , u(2)
n ] L(3)

n [l(3)
n , u(3)

n ]

c1 s0[0.011, 0.037] s1[0.924, 0.958] s2[0.031, 0.042]

c2 s0[0.000, 0.029] s1[0.216, 0.397] s2[0.603, 0.784]

c3 s0[0.009, 0.119] s1[0.848, 0.957] s2[0.034, 0.034]

c4 s0[0.273, 0.288] s1[0.118, 0.137] s2[0.590, 0.604]

c5 s0[0.097, 0.097] s1[0.903, 0.903] −
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Table 6: +e normalized and ordered PLTSs.

Criterion Probability and associated value (r(k)
n p(k)

n )
L

(1)

n p(1)
n r(1)

n p(1)
n L

(2)

n p(2)
n r(2)

n p(2)
n L

(3)

n p(3)
n r(3)

n p(3)
n

c1 s1 0.940 0.940 s2 0.036 0.072 s0 0.023 0.000
c2 s2 0.687 1.374 s1 0.300 0.300 s0 0.014 0.000
c3 s1 0.902 0.902 s2 0.034 0.068 s0 0.064 0.000
c4 s2 0.595 1.190 s1 0.125 0.125 s0 0.279 0.000
c5 s1 0.903 0.903 s0 0.097 0.000 s0 0.000 0.000

Table 7: +e holistic PLTS.

Linguistic term Probability assignment
􏽢r(k) 􏽢p

(k)

􏽢L
(1) 0.0000 0.0000005

􏽢L
(2) 0.0021 0.0000121

􏽢L
(3) 0.0042 0.0000276

􏽢L
(4) 0.0063 0.0000220

􏽢L
(5) 0.0084 0.0004887

􏽢L
(6) 0.0105 0.0011203

􏽢L
(7) 0.0126 0.0000009

􏽢L
(8) 0.0147 0.0000189

􏽢L
(9) 0.0168 0.0000434

􏽢L
(10) 0.0210 0.0000076

􏽢L
(11) 0.0231 0.0001697

􏽢L
(12) 0.0252 0.0003890

􏽢L
(13) 0.0273 0.0003098

􏽢L
(14) 0.0294 0.0068758

􏽢L
(15) 0.0315 0.0157618

􏽢L
(16) 0.0336 0.0000120

􏽢L
(17) 0.0357 0.0002661

􏽢L
(18) 0.0378 0.0006101

􏽢L
(19) 0.0420 0.0000003

􏽢L
(20) 0.0441 0.0000063

􏽢L
(21) 0.0462 0.0000145

􏽢L
(22) 0.0483 0.0000116

􏽢L
(23) 0.0504 0.0002572

􏽢L
(24) 0.0525 0.0005895

􏽢L
(25) 0.0546 0.0000004

􏽢L
(26) 0.0567 0.0000100

􏽢L
(27) 0.0588 0.0000228

􏽢L
(28) 0.2800 0.0000002

􏽢L
(29) 0.2821 0.0000054

􏽢L
(30) 0.2842 0.0000124

􏽢L
(31) 0.2863 0.0000099

􏽢L
(32) 0.2884 0.0002192

􏽢L
(33) 0.2905 0.0005025

􏽢L
(34) 0.2926 0.0000004

􏽢L
(35) 0.2947 0.0000085

􏽢L
(36) 0.2968 0.0000194

􏽢L
(37) 0.3000 0.0000051

􏽢L
(38) 0.3010 0.0000034

􏽢L
(39) 0.3021 0.0001125

􏽢L
(40) 0.3031 0.0000761

􏽢L
(41) 0.3042 0.0002578

􏽢L
(42) 0.3052 0.0001745

􏽢L
(43) 0.3063 0.0002053

􏽢L
(44) 0.3073 0.0001389

􏽢L
(45) 0.3084 0.0045567

􏽢L
(46) 0.3094 0.0030839

􏽢L
(47) 0.3105 0.0104456

􏽢L
(48) 0.3115 0.0070694

􏽢L
(49) 0.3126 0.0000079

Table 7: Continued.
􏽢L

(50) 0.3136 0.0000054
􏽢L

(51) 0.3147 0.0001764
􏽢L

(52) 0.3157 0.0001194
􏽢L

(53) 0.3168 0.0004043
􏽢L

(54) 0.3178 0.0002736
􏽢L

(55) 0.3210 0.0000713
􏽢L

(56) 0.3220 0.0000001
􏽢L

(57) 0.3231 0.0015821
􏽢L

(58) 0.3241 0.0000028
􏽢L

(59) 0.3252 0.0036268
􏽢L

(60) 0.3262 0.0000065
􏽢L

(61) 0.3273 0.0028885
􏽢L

(62) 0.3283 0.0000052
􏽢L

(63) 0.3294 0.0641101
􏽢L

(64) 0.3304 0.0001153
􏽢L

(65) 0.3315 0.1469629
􏽢L

(66) 0.3325 0.0002644
􏽢L

(67) 0.3336 0.0001118
􏽢L

(68) 0.3346 0.0000002
􏽢L

(69) 0.3357 0.0024815
􏽢L

(70) 0.3367 0.0000045
􏽢L

(71) 0.3378 0.0056885
􏽢L

(72) 0.3388 0.0000102
􏽢L

(73) 0.3420 0.0000027
􏽢L

(74) 0.3441 0.0000592
􏽢L

(75) 0.3462 0.0001356
􏽢L

(76) 0.3483 0.0001080
􏽢L

(77) 0.3504 0.0023977
􏽢L

(78) 0.3525 0.0054965
􏽢L

(79) 0.3546 0.0000042
􏽢L

(80) 0.3567 0.0000928
􏽢L

(81) 0.3588 0.0002128
􏽢L

(82) 0.5600 0.0000012
􏽢L

(83) 0.5621 0.0000257
􏽢L

(84) 0.5642 0.0000590
􏽢L

(85) 0.5663 0.0000470
􏽢L

(86) 0.5684 0.0010422
􏽢L

(87) 0.5705 0.0023890
􏽢L

(88) 0.5726 0.0000018
􏽢L

(89) 0.5747 0.0000403
􏽢L

(90) 0.5768 0.0000925
􏽢L

(91) 0.5800 0.0000023
􏽢L

(92) 0.5810 0.0000163
􏽢L

(93) 0.5821 0.0000504
􏽢L

(94) 0.5831 0.0003618
􏽢L

(95) 0.5842 0.0001156
􏽢L

(96) 0.5852 0.0008295
􏽢L

(97) 0.5863 0.0000921
􏽢L

(98) 0.5873 0.0006606
􏽢L

(99) 0.5884 0.0020438
􏽢L

(100) 0.5894 0.0146624
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synthetically fused to derive the final evaluation result, which
cannot be decided by a single criterion. In this process, any
criterion cannot decide the evaluation result of MRES. Even
though the information values on monitoring system and
regular inspections (c3) and main biomass index (c4) are
both definitely good, the final evaluation result is still
influenced by three other criteria. +us, the fusion of in-
formation at the criterion level is actually a process of trade-
off, which should follow compensatory strategies. Accord-
ingly, we derive the holistic PLTSs (Table 7) by taking the
criterion weight set W � (0.150, 0.050, 0.100, 0.400, 0.300)

and the normalized and ordered PLTSs as shown in Table 6
into equation (22).

As demonstrated in Table 7, values in the column of 􏽢r(k)

represent the subscripts of 162 virtual linguistic terms in the
holistic PLTS, and values in the column of 􏽢p

(k) are their
associated probabilities. +en, we apply the round function
as in equation (11) to compute the integer score of the
holistic PLTS and obtain α � 0.670. +en, we have
s∗ � round(sα) � s1. +us, the ultimate evaluation result is
that the MRES is evaluated as average.

5. Conclusion

MCGDM is a decision-making theory that has gained wide
attention and applications. As a combination of MCDM and
GDM, MCGDM contains two dimensions of information:
individual and criterion. Distinction between these two
kinds of information is important. Specifically, information
at the individual level is noncompensatory in the process of
fusion and influence brought by information with a lower
degree of reliability cannot offset that brought by infor-
mation with a higher degree of reliability. Information at the
criterion level is compensatory in the process of fusion; the
information offsets one another and jointly forms the fusion
result. Unfortunately, existingMCGDMmethods do not pay
attention to this kind of distinction. +erefore, this paper
proposes a novel MCGDM method with DST and PLTSs
under the consideration of both compensatory and non-
compensatory strategies. To conclude, this paper provides
contributions in terms of the following aspects.

Firstly, this paper proposes that the information in the
two dimensions in MCGDM is distinct, that is, information
at the individual level is noncompensatory in the process of
fusion, and information at the criterion level is compen-
satory. Accordingly, the proposed MCGDM method pro-
vides a comprehensive information fusion procedure that
can fuse information at different levels.

Secondly, the proposed method provides a new orien-
tation for the development of probabilistic preference theory
in MCGDM by distinguishing noncompensatory informa-
tion at the individual level and compensatory information at
the criterion level. With the assistance of DST, PLTSs were
developed to support information fusion and improve the
scientific validity of the MCGDM.

+irdly, this paper provides a method of building links
between group BPA functions and PLTSs. Consequently, a
framework based on belief and plausibility for transforming
the certain point-valued probabilities assigned on power set

Table 7: Continued.
􏽢L

(101) 0.5905 0.0046850
􏽢L

(102) 0.5915 0.0336114
􏽢L

(103) 0.5926 0.0000036
􏽢L

(104) 0.5936 0.0000256
􏽢L

(105) 0.5947 0.0000791
􏽢L

(106) 0.5957 0.0005675
􏽢L

(107) 0.5968 0.0001813
􏽢L

(108) 0.5978 0.0013010
􏽢L

(109) 0.6010 0.0000320
􏽢L

(110) 0.6020 0.0000006
􏽢L

(111) 0.6031 0.0007096
􏽢L

(112) 0.6041 0.0000135
􏽢L

(113) 0.6052 0.0016267
􏽢L

(114) 0.6062 0.0000310
􏽢L

(115) 0.6073 0.0012955
􏽢L

(116) 0.6083 0.0000247
􏽢L

(117) 0.6094 0.0287542
􏽢L

(118) 0.6104 0.0005484
􏽢L

(119) 0.6115 0.0659149
􏽢L

(120) 0.6125 0.0012571
􏽢L

(121) 0.6136 0.0000501
􏽢L

(122) 0.6146 0.0000010
􏽢L

(123) 0.6157 0.0011130
􏽢L

(124) 0.6167 0.0000212
􏽢L

(125) 0.6178 0.0025514
􏽢L

(126) 0.6188 0.0000487
􏽢L

(127) 0.6220 0.0000012
􏽢L

(128) 0.6241 0.0000265
􏽢L

(129) 0.6262 0.0000608
􏽢L

(130) 0.6283 0.0000485
􏽢L

(131) 0.6304 0.0010754
􏽢L

(132) 0.6325 0.0024652
􏽢L

(133) 0.6346 0.0000019
􏽢L

(134) 0.6367 0.0000416
􏽢L

(135) 0.6388 0.0000954
􏽢L

(136) 0.8600 0.0000108
􏽢L

(137) 0.8621 0.0002398
􏽢L

(138) 0.8642 0.0005497
􏽢L

(139) 0.8663 0.0004378
􏽢L

(140) 0.8684 0.0097171
􏽢L

(141) 0.8705 0.0222749
􏽢L

(142) 0.8726 0.0000169
􏽢L

(143) 0.8747 0.0003761
􏽢L

(144) 0.8768 0.0008622
􏽢L

(145) 0.8810 0.0001520
􏽢L

(146) 0.8831 0.0033738
􏽢L

(147) 0.8852 0.0077340
􏽢L

(148) 0.8873 0.0061597
􏽢L

(149) 0.8894 0.1367123
􏽢L

(150) 0.8915 0.3133927
􏽢L

(151) 0.8936 0.0002384
􏽢L

(152) 0.8957 0.0052917
􏽢L

(153) 0.8978 0.0121304
􏽢L

(154) 0.9020 0.0000057
􏽢L

(155) 0.9041 0.0001262
􏽢L

(156) 0.9062 0.0002893
􏽢L

(157) 0.9083 0.0002304
􏽢L

(158) 0.9104 0.0051131
􏽢L

(159) 0.9125 0.0117210
􏽢L

(160) 0.9146 0.0000089
􏽢L

(161) 0.9167 0.0001979
􏽢L

(162) 0.9188 0.0004537
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of the frame of discernment into interval-valued probabil-
ities associated with single linguistic terms is proposed,
which also provides way of correlating BPA functions with
PLTSs.

Finally, this paper contributes to improving the appli-
cation of probabilistic preference theory for evaluating
MRES. +is paper provides a relative algorithm for the
proposed method, which can be easily converted into a core
algorithm of a decision system to promote its application. A
case simulation study is also presented by applying the
proposed method to evaluate the MRES.

It is worth noting that this paper just uses DST and
PLTSs for reference to support noncompensatory and
compensatory fusion, respectively. Other effective non-
compensatory and compensatory modes could also be ap-
plied following the framework in this paper according to
different problem characteristics. In the process of fusing
compensatory information at the criterion level, the weights
of the criteria are assumed to be known in advance. +is
paper does not address the way of determining the criteria
weights. However, as the weights of the criteria influence the
value of the virtual linguistic terms in the holistic PLTS a lot
during the application of the weighted addition operation,
they may lead to distortion of the fusion result. +erefore,
the criteria weights should be determined carefully and an
appropriate determination principle of criteria weights that
suits the weighted addition operation of PLTSs in MCGDM
is a worthy future research direction.
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