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We study a Bertrand duopoly game in which firms adopt a gradient-based mechanism to update their prices. In this competition,
one of the firms knows somehow the price adopted by the other firm next time step. Such asymmetric information of the market
price possessed by one firm gives interesting results about its stability in the market. Under such information, we use the bounded
rationality mechanism to build the model describing the game at hand. We calculate the equilibrium points of the game and study
their stabilities. Using different sets of parameter values, we show that the interior equilibrium point can be destabilized through
flip and Neimark–Sacker bifurcations. We compare the region of stability of the proposed model with a classical Bertrand model
without asymmetric information. %e results show that the proposed game’s map is noninvertible with type Z0 − Z2 or Z1 − Z3,
while the classical model is of type Z0 − Z2 only. %is explains the quite complicated basins of attraction given for the
proposed map.

1. Introduction

%e Bertrand competition was introduced as a model de-
scribing an economic game by the famous scientist Joseph
Louis François Bertrand [1]. Such game was used in the
literature to simulate interactions among firms (players)
who set prices as their strategies. Bertrand claimed but not
formalized that firms set prices than quantities as their
outputs in the competition would take place with prices and
marginal costs that are equal. Comparing Cournot games
(on where players set quantities as their strategies) with
Bertrand, we report few studies on Bertrand games in the
literature. For instance, the minimal differentiation principle
was tested in a Bertrand competition in [2], and it was found
that it was applied to spatial competition. %e capacity
precommitment as an entry-deterring device was reex-
amined in [3] on the price competition of Ber-
trand–Edgeworth model. In [4], a repeated game of price
was studied to detect that when the number of competing
firms increased above two competitive players, the outcomes
become less likely. For the case of spatial discrimination, a

comparison between Bertrand and Cournot in the context of
spatial duopoly was analyzed in [5]. In [6], a Bertrand game
with an uncertain number of active firms was analyzed. In
the case of differentiated quantities, a price setting game has
been analyzed in a continuous time scale with random
demands [7].

All the above reported studies handled the price setting
game statically. %ere are few studies of Bertrand games
about the complex dynamic characteristics of their equi-
librium points. We report some of them from the literature
as follows. In [8], a Bertrand game whose players adopted the
bounded rationality mechanism to update their prices in-
vestigated that bifurcation and chaos may occur when the
speed of adjustment of players also increases. Ma andWu [9]
introduced the game of Bertrand triopoly with bounded
rational players and investigated that the time delay may not
improve the stability region of the game.Ma and Sun studied
the multiteam Bertrand game in [10]. In [11], a Bertrand
game with delayed bounded rational players was considered.
In that study, it was pointed out that lagged structure may
affect the stable region of the stable state. For substitutable

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 6620570, 12 pages
https://doi.org/10.1155/2020/6620570

mailto:s.e.a.askar@hotmail.co.uk
https://orcid.org/0000-0002-1167-2430
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6620570


products in a supply chain [12], the game of price setting
analyzed the influences of different competitive strategies
on optimum decisions of prices. In [13], an advertising
cost-dependent demand for a two-echelon supply chain
was investigated, and the obtained results showed that it
was beneficial for the firms to use different wholesale
pricing strategies. With differentiated products, the
complex dynamic characteristics of a Bertrand game were
discussed by Fanti et al. in [14]. %ey have deduced that
the interior fixed point can be destabilized when dif-
ferentiation between firms increased, and therefore,
chaotic attractors with complicated structure may arise.
Other studies on Bertrand and Cournot–Bertrand games
and more information on their complex dynamic be-
haviors have been reported in the literature [15, 16]. We
should also highlight some recent studies on the Bertrand
game. For instance, in [17], the bounded rationality and
naive expectation mechanisms were used to study a
dynamic model of the quantum Bertrand game with
differentiated products. In [18], a Bertrand game in the
downstream market was investigated. A triopoly Ber-
trand game based on differentiated products was inves-
tigated in [19]. A Cournot–Bertrand game was
introduced and studied in [20]. In [21], necessary and
sufficient conditions for a unique Nash equilibrium in a
standard Bertrand duopoly game based on homogeneous
products were analyzed.

%ere are different types of adjustment mechanisms that
have been adopted to model the maps describing such
games. For instance, there are the gradient-based mecha-
nisms such as bounded rationality. Bounded rationality has
been intensively used for this purpose in the literature
[22–27]. %is mechanism depends on the estimation of
players’ profits for updating their outputs. If the profits are
increased (or decreased), this will affect the prices whether
they will be increased (or decreased). %ere are also other
mechanisms that have been used to formulate the Bertrand
and Cournot games such as the local monopolistic ap-
proximation (LMA) mechanism [28] and tit-for-tat ap-
proach [29]. In the paper at hand, we recall the bounded
rationality mechanism to formulate our Bertrand game.

%e current paper belongs to the research direction of
the Bertrand game with players adopting the bounded
rationality, and one of the players possesses information
about the price its opponent adopts. We model the game by
introducing a discrete-time dynamical map whose vari-
ables are prices, and it is nonlinear. %e main results in this
paper focus on many things. We concern with the desta-
bilization of the interior equilibrium and the routes re-
sponsible for that. We investigate the flip and
Neimark–Sacker bifurcations under different types of pa-
rameter sets causing chaotic behavior of the game’s map.
Depending on a rich numerical analysis, we show different
types of quite complicated attractive basins of periodic
cycles. Furthermore, the noninvertibility aspect is nu-
merically discussed for the map.

%e paper presents the map describing the game in
Section 2. In Section 3, we discuss the main results which
include investigation of the stability of the equilibrium

points of the map. It also gives local and global analyses
about the interior equilibrium point and the routes by which
it can be destabilized. %is section includes numerical
simulation about the basins of attraction and their com-
plicated structure. We also prove in the same section that the
game’s map is a noninvertible map of type Z0 − Z2 or Z1 −

Z3 depending on the nature of preimages coexisted. Fur-
thermore, in this section, we compare the influences of
asymmetric price information with the classical model
without such information. Finally, the obtained results are
concluded in Section 4.

2. The Model

%emodel in this paper consists of two firms (players) whose
products are differentiated, and their prices are derived from
the utility function introduced by Singh and Vives [30] as
follows:

U q1, q2(  � a q1 + q2(  −
1
2

q
2
1 + q

2
2 + 2bq1q2 , q1, q2 > 0,

(1)

where a is a constant and b is restricted in the interval
(− 1, 1). Both q1 and q2 are the quantities produced by each
firm. %e following characterize this utility:

(1) U is concave which means
(z2U/zq2i ) � − 1< 0; i � 1, 2. Economically, the
marginal utility of each quantity is decreasing.

(2) (z2U/zq1q2) � − b≠ 0. %is means that the marginal
utility of quantity depends on the other.

(3) U(θq1, θq2)≠ θU(q1, q2). %is means it is not
homogeneous.

(4) Using a budget constraint 
2
i�1 piqi ≤m, we get

MaxU q1, q2( ,

s.t. 
2

i�1
piqi ≤m.

(2)

Problem (2) is a maximization problem with a con-
sumer’s budget constraint. pi denotes the price of quantity
qi, and m is a constant. Solving (2) gives the following
demand functions:

q1 �
a

1 + b
−

p1

1 − b
2 +

bp2

1 − b
2,

q2 �
a

1 + b
− +

bp1

1 − b
2 −

p2

1 − b
2.

(3)

We should mention here that b denotes the horizontal
differentiation degree. If b � 0, we have two monopolistic
firms, and b � 1 represents two identical firms. Negative
values for b refer to complementarity between the firms.
Assuming linear costs, Ci(qi) � c1qi, where (zCi/zqi) � ci is
a constant marginal cost. Now, the profit of each firm
becomes
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π1 � p1 − c1( q1 � p1 − c1( 
a

1 + b
−

p1

1 − b
2 +

bp2

1 − b
2 ,

π2 � p2 − c2( q1 � p1 − c1( 
a

1 + b
− +

bp1

1 − b
2 −

p2

1 − b
2 .

(4)

Now, we consider a Bertrand game whose players adopt
a gradient-based mechanism in order to update their prices
according to the following discrete dynamical map:

p1,t+1 � p1,t + kp1,t

zπ1 p1,t, p2,t 

zp1
,

p2,t+1 � p2,t + kp2,t

zπ2 p1,t+1, p2,t 

zp2
.

(5)

It should be noted that the second equation in (5) differs
from the first because the second player in the game has some
advantages. He knows by someway the price of the first player
next time step. %is kind of asymmetric information gives
with (4) and (5) the following discrete time map:

T p1, p2( :

p1,t+1 � p1,t +
kp1,t

1 − b
2 a(1 − b) + c1 − 2p1,t + bp2,t ,

p2,t+1 � p2,t +
kp2,t

1 − b
2 a(1 − b) + c2 + bp1,t − 2p2,t 

+
k
2
bp1,tp2,t

1 − b
2

 
2 a(1 − b) + c1 − bc2 − 2p1,t + 2bp2,t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Map (6) is nonlinear, and due to the asymmetric in-
formation possessed by the second firm, it becomes more
complex. Without this asymmetric information, we get the
following map:

T1 p1, p2( :

p1,t+1 � p1,t +
kp1,t

1 − b
2 a(1 − b) + c1 − 2p1,t + bp2,t ,

p2,t+1 � p2,t +
kp2,t

1 − b
2 a(1 − b) + c2 + bp1,t − 2p2,t .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

In this paper, we will compare between maps (6) and (7)
in order to see the influences of asymmetric information on
the complex dynamic characteristics of the game’s equi-
librium points.

3. Main Results of Map (6)

3.1. Fixed Points and Stability. Map (6) has four fixed points:

E0 � (0, 0),

E1 � 0,
a(1 − b) + c2

2
 ,

E2 �
a(1 − b) + c1

2
, 0 ,

E3 � p1, p2( ,

(8)

where

p1 �
1

4kb
2 A − B1k +

�������������

B
2
1k

2
+ Dk + A

2


 ,

p2 �
1

4kb
2 A + B2k +

�������������

B
2
1k

2
+ Dk + A

2


 ,

A � 1 − b
2

  4 − b
2

 ,

B1 � b
2

a − c2( b − a − c1 ,

B2 � b
2

a + c2( b − a − c1 ,

D � 2b
2 1 − b

2
  ab

3
− c2b

3
+ 3ab

2
− c1b

2
− 4a − 4c1 .

(9)

%e points E0, E1, and E2 are called corner fixed
points, while E3 is an interior fixed point. It is clear that
E0, E1, and E2 are positive since − 1< b< 1. Due to the
complicated form of the interior point, we will discuss its
positivity and stability by assuming values for the pa-
rameters a, b, c1, c2, and k. %e Jacobian of map (6)
becomes

Jm �
J11 J12

J21 J22
 , (10)

where

J11 � 1 +
k a(1 − b) + c1 − 4p1 + bp2 

1 − b
2 ,

J12 �
bkp1

1 − b
2,

J21 �
kbp2 1 − b

2
  + bk

2
p2 a(1 − b) + c1 − bc2 + 2bp2 − 4bp1 

1 − b
2

 
2 ,

J22 � 1 +
k a(1 − b) + c2 + bp1 − 4p2 

1 − b
2 +

bp1 a(1 − b) + c2 + bp1 − 4p2 k
2

1 − b
2

 
2 .

(11)

%e stability of the above fixed points depends on the
eigenvalues λ1 and λ2 of the Jacobian (10). %ese eigenvalues
have the following properties:

(1) A fixed point is a locally stable attracting node if its
eigenvalues satisfy |λ1,2|< 1

(2) A fixed point is an unstable repelling node if its
eigenvalues satisfy |λ1,2|> 1

(3) A fixed point is a saddle point if its eigenvalues satisfy
|λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1)

(4) A fixed point is a nonhyperbolic point if its eigen-
values satisfy |λ1| � 1 and |λ2|≠ 1 (or |λ1|≠ 1 and
|λ2| � 1)

Proposition 1. -e fixed point E0 is an unstable repelling
point.
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Proof. %e Jacobian at this point becomes

JE0
�

1 +
k a(1 − b) + c1 

1 − b
2 , 0,

0, 1 +
k a(1 − b) + c2 

1 − b
2 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

whose eigenvalues are
λi � 1 + ((k[a(1 − b) + ci])/(1 − b2)), i � 1, 2. Since |b|< 1
and ci > 0, we have |λi|> 1. %is completes the proof.

Proposition 2. -e point E1 is a stable point provided that
0< ((k[a(1 − b) + c2])/(1 − b2))< 2 and
0< ((k[a(1 − b)(2 + b) + 2c1 + bc2])/(1 − b2))< 4.

Proof. %e Jacobian at E1

JE1
�

1 +
k a(1 − b)(2 + b) + 2c1 + bc2 

2 1 − b
2

 
, 0,

bk a(1 − b) + c2  1 − b
2

  + k a + c1(  − ab
2
k 

2 1 − b
2

 
2 , 1 −

k a(1 − b) + c2 

1 − b
2 ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

has two real eigenvalues

λ1 � 1 −
k a(1 − b) + c2 

1 − b
2 ,

λ2 � 1 −
k a(1 − b)(2 + b) + 2c1 + bc2 

2 1 − b
2

 
.

(14)

%e conditions |λ1|< 1 and |λ2|< 1 complete the proof.
%e same proof is for E2.

Proposition 3. At a � 2, b � 0.2, c1 � 1, c2 � 0.3, and
k � 0.5, we have E3 � (1.41028, 1.10282). It is locally as-
ymptotically stable.

Proof. %e Jacobian at those parameters and E3 is

JE3
�

− 0.46904 0.14690

− 0.044276 − 0.11502
 , (15)

and the eigenvalues are λ1 ≈ − 0.4496 and λ2 ≈ − 0.13446
with |λ1,2|< 1, and then E3 is stable. It is easy to see that the
determinant of JE3

equals δ � 0.060454< 1 which means that
map (6) is dissipative.%is numerical proof of the stability of
E3 gives rise to more studies in order to investigate and get
more insights on the regions on where this fixed point can be
destabilized.%is will be discussed in the simulation given in
the next section.

3.2. Dynamic Analysis via Numerical Simulation. Here, we
investigate the influences of parameter k on the dynamics of
map (6). %is makes us to assume different sets of parameter
values as follows.

3.2.1. Set 1. In this set, we assume the following values:
a � 2, b � 0.2, c1 � 1, c2 � 0.3, and k � 0.5. %is set indi-
cates that we have two firms with different marginal costs
(c1 > c2). In this set, we have E3 � (1.41028, 1.10282). %is

requires to investigate the impact of one parameter of those
parameters on the stability of this point. Let us assume that
parameter k will be taken as the bifurcation parameter. %e
first numerical experiment displayed in Figure 1(a) shows
the effect of bifurcation parameter k on the stability of E3.
One can see that it is locally stable for all the values of k

except for k ≈ 0.704 on which the first period-2 cycle is born.
Periodic cycles may possess complicated basins of attraction,
and this makes us to analyze these basins for cycles. At
k � 0.88, a period 2 with its basins is given in Figure 1(b)
with the fixed point E3. From now on, we will fix the colors
as follows. %e grey color denotes the divergent and non-
convergent points, while the other two colors refer to the
basins of the plotted cycle. Increasing k further to 0.915 of a
period-4 cycle rises with quite complicated basins of at-
traction than those of period-2 cycle. Figure 1(d) shows
complicated basins for period-8 cycle at k � 0.924. Further
increase in the parameter gives rise to more complicated
attractive basins of higher periodic cycles, for instance, at
k � 0.95, the dynamic changes into two disconnected cha-
otic areas which gather together to become one chaotic
attractor at k � 0.995. Figures 1(e) and 1(f ) present those
chaotic behaviors of map (6).

Using the parameter values in set 1, it is observed
through numerical experiments that when the marginal
costs are equal (c1 � c2), another dynamic behavior is
emerged. At c1 � c2 � 1, the fixed point E3 can be desta-
bilized via Neimark–Sacker bifurcation. %e Jacobian (10) at
these parameter values becomes

JE3
�

− 0.80659 0.18066

− 0.13619 − 0.75027
 , (16)

with complex eigenvalues λ1,2 � − 0.77843 ± 0.15431i and
|λ1,2| � 0.79358 < 1, and then E3 is locally stable. It is easy to
see that the determinant of JE3

equals δ � 0.62976 < 1 which
means that map (6) is also dissipative. Now, we analyze the
influence of k on the stability of this point. When we in-
crease k further, dynamic behaviors arise such as spiral and
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Figure 1: (a) Flip bifurcation diagram on varying k. (b) Basins of attraction of the period-2 cycle at k � 0.88. (c) Basins of attraction of the
period-4 cycle at k � 0.915. (d) Basins of attraction of the period-8 cycle at k � 0.924. (e) %e phase plane of the two chaotic attractors at
k � 0.95. (f ) %e phase plane of the chaotic attractor at k � 0.995. Other parameter values are a � 2, b � 0.2, c1 � 1, and c2 � 0.3.
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closed curves around the fixed point. Figure 2(b) gives
those behaviors for different values of k. When k reaches
0.774, a period-17 cycle appears with quite complicated
basins of attraction as given in Figure 2(c). As k increases
further, high-periodic cycles coexist with complicated
basins until the dynamic turns into a closed chaotic
attractor. %is chaotic attractor is born at k � 0.79, and its
phase plane is displayed in Figure 2(d). %is chaotic
attractor becomes very complicated as k increases to 0.818,
and its phase plane is shown in Figure 3(a).%is unexpected
dynamic gives no predictions about the evolution of map
(6) and makes the price game with asymmetric information
more complicated. %e asymmetry and nonlinearity of this
map give more complicated behaviors that we should re-
port here. At k � 0.827, a six-piece chaotic attractor is
emerged. %e phase plane of this dynamic behavior around
the fixed point is given in Figure 3(b). In this figure, we
enlarge one piece of this chaotic behavior. %ese six pieces
are gathered together as k increases further to form one
chaotic and complicated attractor in Figure 3(c). At
k � 0.877, a period-7 cycle coexists. As given in Figure 3(d),
it has very complicated attractive basins. Increasing k to
0.88, another period cycle is raised. %is period is of cycle
14, and its basins are plotted in Figure 3(e). Finally, for any
other increase for k, the dynamic behavior of map (6) turns
to one chaotic attractor. Figure 3(f ) displays the phase
plane of this chaotic attractor.

3.2.2. Set 2. In this set, we assume the following values: a �

b � c1 � c2 � 0.5 and k � 1.6. %e fixed point at set 2 be-
comes E3 � (0.5, 0.5), and its Jacobian is

JE3
�

− 1.1333 0.53333

− 0.60444 − 0.56444
 , (17)

with complex eigenvalues λ1,2 � − 0.84889 ± 0.49139i and
|λ1,2| � 0.98086< 1, and then E3 is locally stable. It is easy to
see that the determinant of JE3

equals δ � 0.96207< 1 which
means that map (6) is again dissipative. As previously stated,
we study the effects of k on the stability of the fixed point. It
is not a repeated analysis for the above simulation; it gives
other interesting and hidden dynamics of map (6). In-
creasing k makes the fixed point unstable due to Nei-
mark–Sacker bifurcation. For instance, at different values of
k, we give in Figure 4(a) different closed curves around the
fixed point. %ose closed invariant curves are changed to a
period-5 cycle as parameter k increases to 1.83. It is plotted
in Figure 4(b) with its attractive basins. Another interesting
observation is the coexistence of period-5 and period-10
cycles together at k � 1.9. %ey have quite complicated
basins of attraction which are given in Figure 4(c). In-
creasing k further makes those cycles convert into five
unconnected and complicated chaotic areas.%e phase plane
of these chaotic areas is given in Figure 4(d) with the fixed
point. %ese chaotic areas become larger and more com-
plicated as k increases to 1.95. %ey are displayed in

Figure 4(e). After that, the dynamic behavior of map (6)
becomes chaotic as k increases to 1.97, as given in
Figure 4(f ).

We should highlight here that the role of parameter k is
affected by parameter b. Figure 5(a) shows that the fixed
point can be destabilized due to flip bifurcation on varying
parameter k and for the same set of parameter values except
for b � − 0.55. We give some numerical simulations of the
dynamic behavior of k at negative values for b. At k � 1.51,
Figure 5(b) shows the coexistence of unconnected period-3
cycles. It has an attractive basins given in Figure 5(b) which
are more complicated than those obtained previously. At
b � − 0.5, the effect of k on the fixed point makes it unstable
due to flip bifurcation. Figure 5(c) shows a stable fixed point
for all k until the coexistence of the unconnected period-6
cycle. %is cycle has basins of attraction which are given in
Figure 5(d).

3.3. Map (6) versus Map (7). Here, we compare the two
models in order to investigate the influences of asymmetric
information in their dynamics. Assuming that
a � 2, b � 0.2, c1 � 1, and c2 � 0.3, Figure 6(a) shows the
impact of k on map (7). Comparing Figure 1(a) with
Figure 6(a), we see that the asymmetric information pos-
sessed by the second firm broadens the stability region for
both players simultaneously. Numerical experiments show
that the basins of attraction detected for map (6) are quite
complicated than those of map (7). Furthermore, we show
by experiments that, at sets 1 and 2, the stability region of the
fixed point for map (5) is bigger than that detected for the
fixed point of map (7). For more details about the properties
of classic model (7), refer [31]. In Figure 6(b), we present the
attractive basins of the period-4 cycle for map (7). Com-
paring these basins with others given in Figure 1(c), we get
that the dynamics of map (6) are more complex than those of
map (7). %erefore, the future prediction for map (6) be-
comes more complicated.

%e previous analysis shows that the structure of basins
is quite complicated, and this requires to study extra
characteristics of these maps. Setting p1,t+1 � p

�

1 and p2,t+1 �

p
�

2 in (6), where ′ refers to the time evolution, we get

T p1, p2( :

p
�

1 � p1 +
kp1

1 − b
2 a(1 − b) + c1 − 2p1 + bp2 ,

p
�

2 � p2 +
kp2

1 − b
2 a(1 − b) + c2 + bp1 − 2p2 

+
k
2
bp1p2

1 − b
2

 
2 a(1 − b) + c1 − bc2 − 2p1 + 2bp2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Complicated nonlinear map (18) makes us to study its
noninvertibility characteristic by substituting
a � 2, b � 0.2, c1 � 1, c2 � 0.3, and k � 0.88 in (18) as
follows:
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Figure 2: (a) Neimark–Sacker bifurcation diagram on varying k. (b) %e phase plane of spiral and closed curves around the fixed point for
different values of k. (c) Basins of attraction of the period-17 cycle at k � 0.774. (d) %e phase plane of the chaotic attractor at k � 0.79.
(e) Basins of attraction of the period-19 cycle at k � 0.795. (f )%e phase plane of the chaotic attractor at k � 0.8. Other parameter values are
a � 2, b � 0.2, c1 � 1, and c2 � 1.
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Figure 3: (a) %e phase plane of the chaotic attractor at k � 0.818. (b) %e phase plane of six-piece chaotic attractors at k � 0.827. (c) %e
phase plane of the chaotic attractor at k � 0.835. (d) Basins of attraction of the period-7 cycle at k � 0.877. (e) Basins of attraction of the
period-14 cycle at k � 0.88. (f ) %e phase plane of the chaotic attractor at k � 0.89. Other parameter values are
a � 2, b � 0.2, c1 � 1, and c2 � 1.
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Figure 4: (a) %e phase plane of closed invariant curves at different values of k � 0.818. (b) Basins of attraction of the period-5 cycle at
k � 1.83. (c) Basins of attraction of period-5 and period-10 cycles at k � 1.9. (d) %e phase plane of five-piece chaotic attractors at k � 1.92.
(e) %e phase plane of five-piece chaotic attractors at k � 1.95. (f ) %e phase plane of the chaotic attractor at k � 1.97. Other parameter
values are a � 0.5, b � 0.5, c1 � 0.5, and c2 � 0.5.
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Figure 5: (a) %e flip bifurcation on varying k at b � − 0.55. (b) %e basins of attraction of the period-3 cycle at k � 1.51 and b � − 0.55.
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T p1, p2( :

p
�

1 � p1 2.2833 − 1.8333p1 + 0.18333p2( ,

p
�

2 � p2 1.6417 + 0.40853p1 + 0.067222p1p2(

− 1.8333p2 − 0.33611p
2
1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

%is means that a point (p1, p2) can be characterized by
many rank-1 preimages. %ose preimages are mapped in
(p1, p2) in one iteration. Still, map (19) is in a complicated
form to solve it algebraically with respect to the variables p1
and p2. Here, we follow the same procedure carried out in
[28] by calculating the number of preimages of points be-
longing to the vertical axis (p1 � 0). %erefore, substituting
the point (0, p

�

2) in (13), we get

p1 � 0 orp1 � 1.245459 + 0.1p2. (20)

%is means if we substitute p1 � 0 in the second part of
(13), we get two real preimages for the point (0, p

�

2) provided
that p

�

2 ∈ (− ∞, 0.36753); otherwise, we have no preimages.
%is concludes that T is a noninvertible map of type Z0 − Z2,
and hence, the phase plane is divided into two regions that
are Z0 and Z2. On the contrary, substituting
p1 � 1.245459 + 0.1p2 in the second part gives that the point
(0, p

�

2) has three real preimages provided that
p
�

2 ∈ (0.37050,∞); otherwise, we have only one real pre-
image. %is means the preimages of the point in this case
divide the phase plane into two regions Z1 and Z3, and
hence, the map T is of type Z1 − Z3.%e same procedure can
be used for the points belonging to the horizontal axis
(p2 � 0) and take the form (p

�

1, 0). It is worth to mention
here that both critical lines LC and LC− 1 are obtained at
those parameter values, but they have long forms to be
written here or even to be plotted. We have performed the
same procedure formapT1 for the points (0, p

�

2) and (p
�

1, 0).
%e results show that map T1 is of type Z0 − Z2 only.

4. Conclusion

%e current paper has introduced and studied a Bertrand
duopoly game with asymmetric price information. A gra-
dient-based mechanism that is the bounded rationality has
been adopted by game’s players to update their prices in the
next time step. %e interior equilibrium point of the pro-
posed game has been calculated, and its stability conditions
have been discussed. We have compared our model with the
classical Bertrand model without asymmetric information as
both players in the two models use the same gradient-based
mechanism. Our contributions have shown that the
asymmetric price information has broadened the stability
region of the interior point. Furthermore, the structure of
basins of attraction for periodic cycles due to this infor-
mation has shown quite complicated structure for those
basins in comparison with those obtained for classical
Bertrand. Moreover, the local and global analysis performed
have shown that the proposed game’s map is noninvertible
and belongs to the type of Z0 − Z2 or Z1 − Z3 depending on

the parameter value sets, while the model of classical Ber-
trand belongs to the type Z0 − Z2 only.
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