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We consider the problem of clutter covariance matrix (CCM) estimation for space-time adaptive processing (STAP) radar in the small
sample. In this paper, a fast efficient algorithm for CCM reconstruction is proposed to overcome this shortcoming for the linear structure.
Particularly, we present a low-rankmatrix recovery (LRMR) question about CCMestimation based on the Toeplitz structure of CCMand
the prior knowledge of the noise. +e closed-form solution is obtained by relaxing the nonconvex LRMR problem that the trace norm
replaces the rank norm.+e target can then be efficiently detected by using the recovered CCM according to the STAP theorem.We also
analyze the algorithm model under the linear structure in the presence of unknown mutual coupling. It is shown that our method can
obtain accurateCCM in the small sample, with even higher accuracy than the traditional algorithms in the samenumber of samples. It also
can reduce the coupling effect and obtain more degrees of freedom (DOF) with limited sensors and pulses by utilizing sparse linear
structure (SLS) and improve angle and Doppler resolutions. Finally, numerical simulations have verified the effectiveness of the proposed
method in comparison with some of the existing methods.

1. Introduction

Space-time adaptive processing (STAP) which has an ex-
cellent performance on clutter suppression and targets de-
tection plays a fundamental role in radar [1–3]. In the
practical application of STAP, the system can calculate the
ideal weight vector and then obtain the optimal filter output
responses based on the clutter covariance matrix (CCM)
estimated with its adjacent distance cell snapshots. +ere-
fore, the training snapshots play an important role in the
adaptive radar system. In practice, the system needs a large
number of uniform training snapshots to obtain the reliable
and accurate CCM. It is difficult for radar to meet the above-
mentioned condition in a heterogeneous environment, es-
pecially in a small sample [4].

+e problem of sample size for STAP radar has received
considerable attention recently.+ese works can be classified
into two categories. +e first category is the failure to take
advantage of the prior knowledge to reduce sample size,
which can be defined as the generalized reduced sample size

method. For the dimension reduction [5–7] and reduced
rank STAP [8], the sample size is twice the reduced di-
mension or clutter rank, but it is still large. +e direct data
domain method only uses test unit data to suppress clutter at
the cost of freedom loss, which is only suitable for uniform
linear array and planar array [9]. Sparse recovery STAP
obtains the high CCM accuracy by solving underdetermined
equation [10]. It can suppress clutter very well with a small
number of samples, but the existing sparse recovery STAP
has some problems such as sparsity, dispersion, and base
mismatch, which will affect the accuracy of the CCM.

+e second category approaches sample size by fully
utilizing various prior knowledge. In [11], the unknown
covariance matrix contained the noise was achieved by the
knowledge-aided Bayesian framework and a set of training
samples. A knowledge-aided model that cared for the
nonhomogeneous characteristics of the disturbance with
distributed MIMO radar considered in [12] solves the
problems of nonhomogeneous environments and insuffi-
cient training samples. In addition to the above methods
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applying the prior statistical distribution, there are also
algorithms employing the prior environmental data [13, 14].
However, if the prior knowledge is inaccurate, the system
will create inaccurate estimates for the CCM in target
detecting, leading to poor performance. To avoid this, we
reduce sampling size by means of the structure of CCM,
including power spectral density [13, 15], symmetry [16],
and eigenstructure [17]. Notably, the CCM of stationary
random signals is Hermitian and Toeplitz; the various es-
timation and approximation techniques of the Toeplitz
matrix have been studied in the last ten years. However,
many Toeplitz matrix estimation techniques are based on the
assumption of large sample sizes [18].

In this paper, we investigate the STAP radar CCM re-
construction (TCMR-STAP) in uniform linear structure
(ULS) and sparse linear structure (SLS), by taking into
account the small sample constraint as well as mutual
coupling effect. More specifically, the CCM restoration of
ULS and SLS is proposed based on the Toeplitz structure. In
particular, we first propose a low-rank matrix recovery
(LRMR) problem based on Toeplitz structure CCM re-
construction which is then relaxed by replacing the rank
norm with the trace norm and calculate the reconstructed
CCM by a fast and feasible method. Afterwards, the CCM is
used to detect the target effectively according to the STAP
theory. Moreover, we reduce the influence of mutual cou-
pling by utilizing the SLS and increase system of degrees of
freedom (DOF) under the limited sensors and pulses by
difference operation. Simulations demonstrate the theoret-
ical derivations and advantages of the proposed TCMR-
STAP algorithm.

+e remainder of this paper is organized as follows: in
Section 2, we introduce the signal model with the ULS and
SLS system. Section 3 gives the signal model under the
mutual coupling and a fast closed CCM reconstruction
method. In Section 4, simulation results and discussions
prove its superiority. Finally, Section 5 gains the conclusions.

Notations: (·)T, (·)H are transpose and complex con-
jugate transpose operators, respectively. ⊗ , E(·), and
| · | stand for the Kronecker product, the expected
value, and the absolute value, respectively. IM is the
M × M identity matrix, and diag(a) represents a di-
agonal matrix whose diagonal elements are the column
vector a. Toeplitz(t) is the symmetric Toeplitz matrix
consisting of the vector t. vec(·) represents the vec-
torization operator. tr[·] and rank[·] stand for the
matrix trace and rank, respectively. ‖ · ‖2 denotes the l2
norm. (·)∗ denotes the adjoint operator.R(·) andI(·)

are the real and imaginary operators, respectively.
†denotes the pseudoinversion operator.

2. Signal Model

2.1. "e ULS System. Consider a phased array radar system
that employs an N sensors uniform linear array (ULA) with
intersensors spacing d and M transmitting pulses with fixed
pulse repetition interval (PRI) Tr during a coherent pro-
cessing interval (CPI), which is called the ULS system. +e

velocity of the radar platform is v, and the radar wavelength
is λ. +e clutter at each range bin can be modeled as the
superposition of Nc independent clutter patches. +e ith
clutter patch spatial and temporal steering vectors are, re-
spectively, given as

v φc,i􏼐 􏼑 � 1, e
2πjφc,i , . . . , e

2πj(N− 1)φc,i􏽨 􏽩
T
,

v fc,i􏼐 􏼑 � 1, e
2πjfc,i , . . . , e

2πj(M− 1)fc,i􏽨 􏽩
T
,

(1)

where φc,i and fc,i are the normalized angle and Doppler
frequency of the ith clutter patch, respectively.+erefore, the
corresponding space-time steering vector can be calculated
by

v φc,i, fc,i􏼐 􏼑 � v φc,i􏼐 􏼑⊗ v fc,i􏼐 􏼑. (2)

+e space-time clutter plus noise snapshot from a range
bin without the ranger ambiguity is denoted as

xu � 􏽘

Nc

i�1
ac,iv φc,i, fc,i􏼐 􏼑 + n, (3)

where ac,i represents the ith clutter patch complex amplitude
and n is the Gaussian white noise vector whose power is σ2n.
+us, the clutter plus noise covariance matrix (CNCM)
based on (3) can be calculated by

Ru � E xux
H
u􏽨 􏽩 � VPVH

+ σ2nINM � Rc + σ2nINM, (4)

where V � [v(φc,1, fc,1), v(φc,2, fc,2), . . . , v(φc,Nc
, fc,Nc

)] de-
notes the clutter space-time steering matrix, and the clutter
power matrix is P � diag[p1, p2, . . . , pNc

]T, pi � E(|ac,i|
2).

+eCCMRc � VPVH is a block Toeplitzmatrix determined by
the vectors u � [u(1)T; . . . ; u(M)T]T and
v � [v(1)T; . . . ; v(M)T]T, where u(n) � [u

(n)
1 ; . . . ; u

(n)
N ]T and

v(n) � [v
(n)
1 ; . . . ; v

(n)
N− 1]

T [2].+us, the CCM Rc becomes block
Toeplitz:

Rc(u, v) �

R(1)

R(− 2)

⋮

R(− M)

R(2)

R(1)

⋮

R(− (M− 1))

· · ·

· · ·

⋱

· · ·

R(M)

R(M− 1)

⋮

R(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where the spatial covariancematrixR(n) ∈ CN×N is a Toeplitz
matrix determined by u(n) and v(n), given by

R(n)
�

u
(n)
1

u
(n)
2

⋮

u
(n)
N

v
(n)
1

u
(n)
1

⋮

u
(n)
N− 1

· · ·

· · ·

⋱

· · ·

v
(n)
N− 1

v
(n)
N− 2

⋮

u
(n)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

2.2."e SLS System. For the SLS system, we assume that the
numbers of sensors and pulses are set to Ns and Ms, re-
spectively, and other parameters are the same as those of the
ULS system. +e sensor locations of the sparse linear array
(SLA) are given by
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A � 0, A1, . . . , ANs− 1􏽮 􏽯 ⊂ 0, . . . , N − 1{ }, (7)

and the sparse linear pulse (SLP) locations are

P � 0, P1, . . . , PMs− 1􏽮 􏽯 ⊂ 0, . . . , M − 1{ }. (8)

+us, the spatial and temporal steering vectors of the ith
clutter patch are

vs φc,i􏼐 􏼑 � 1, e
2πjA1φc,i , . . . , e

2πjANS − 1φc,i􏽨 􏽩
T
,

vs fc,i􏼐 􏼑 � 1, e
2πjP1fc,i , . . . , e

2πjPMS − 1fc,i􏽨 􏽩
T
,

(9)

respectively. Meanwhile, the space-time steering vector of
the ith clutter patch can be computed by

vs φc,i, fc,i􏼐 􏼑 � vs φc,i􏼐 􏼑⊗ vs fc,i􏼐 􏼑. (10)

Furthermore, the space-time clutter plus noise snapshot
from a range bin without the ranger ambiguity can be
written as

xus � 􏽘

Nc

i�1
ac,ivs φc,i, fc,i􏼐 􏼑 + n. (11)

Definition 1 (difference coarray). For an array specified by
an integer set A, its difference coarray DA is defined as

DA � Ai − Aj|Ai, Aj ∈ A, Ai ≥Aj􏽮 􏽯. (12)

New set DAO consists of different elements of DA. +e
array is a redundant array if DAO � 0, 1, . . . , N − 1{ }. Gen-
erally, the array can be classified into the ULA and SLA from
the geometry. It is easy to see that the ULA itself is a re-
dundant array, and the SLA is a redundant array only if the
prerequisite mentioned previously is met.

Definition 2 (difference copulse). Similarly, a pulse location
is an integer set P and its difference copulse DP is

DP � Pi − Pj|Pi, Pj ∈ P, Pi ≥Pj􏽮 􏽯. (13)

When DPO � 0, 1, . . . , M − 1{ } which is made up of the
different elements of DP, the pulse is defined as a redundant
pulse. Here, we can divide the pulse into the uniform linear
pulse (ULP) and SLP. Normally the ULP is always a re-
dundant pulse, but the SLP needs to meet
DPO � 0, 1, . . . , M − 1{ }. +is paper only considers the re-
dundancy structure.

According to the above theory, further analysis indicates
that vs(φc,i) and vs(fc,i) can be written as

vs φc,i􏼐 􏼑 � ΓAv φc,i􏼐 􏼑,

vs fc,i􏼐 􏼑 � ΓPv fc,i􏼐 􏼑,
(14)

respectively, where the nth rows of the array selection matrix
ΓA ∈ 0, 1{ }NS×N are all zeros except for a single 1 in the Anth
position, and ΓP ∈ 0, 1{ }MP×M means the pulse selection

matrix where the element of the mth row is 1 at the Pmth
position and the remaining elements are all 0.

+us, the CNCM of the SLS can be estimated by

Rus � E xusx
H
us􏽨 􏽩 � 􏽘

Nc

i�1
E ac,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑vs φc,i, fc,i􏼐 􏼑vH
s φc,i, fc,i􏼐 􏼑

+ σ2nINsMs

� ΓRcΓ
H

+ σ2nΓΓ
H

� Rcs + σ2nΓΓ
H

,

(15)

where Γ � ΓA ⊗ΓP and Rcs � ΓRcΓH. +e previous equation
degenerates into the CNCM of the ULS if Γ � I. In other
words, the ULS is one of the special forms of the SLS.

3. The Proposed Method

In this section, we describe in detail the design of the
proposed TCMR-STAP algorithm with Toeplitz covariance
matrix reconstruction. Whether the ULS or SLS, we can
reconstruct the CCM quickly and precisely. In order to fully
reflect the value of the TCMR-STAP algorithm, we consider
the influence of the mutual coupling among sensors.

3.1. Mutual Coupling. In the practical radar system, the
received signal has changed owing to the electromagnetic
coupling among the sensors. According to the electro-
magnetic coupling principle, the larger the intersensors
spacing is, the smaller the coupling effect is. If the inter-
sensors spacing is greater than a few wavelengths, the effect
of coupling can be ignored. +erefore, we can describe the
mutual coupling effect utilizing the weight function w(n) of
an array. w(n) of an array A is defined as the number of
element pairs generating the coarray index n, namely, [19]

w(n) � Ai, Aj􏼐 􏼑 ∈ A2
, Ai − Aj � n􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, n ∈ DAO. (16)

+e first three weight functions of the ULA from (16) are
w(1) � N − 1, w(2) � N − 2, and w(3) � N − 3, N≥ 3. It is
clear that the SLA have much smaller weight functions
compared to the ULA. +is means that the mutual coupling
effect of SLA is relatively small.

Supposing that the mutual coupling coefficient is zero
when the distance between two sensors is larger than B d

[20], B is a positive integer. +en, the mutual coupling
matrix (MCM) of the ULA is formulated as

C � Toeplitz cT
, 01×(N− B)􏽨 􏽩􏽮 􏽯, (17)

where c � [c0, c1, c2, . . . , cB]T satisfy |cB|< · · · < |c1|< |c0| �

1 and 01×(N− B)is a 1 × (N − B) zero vector.
+ere are also more sophisticated mutual coupling

models [21]. In theory, all of the abovemodels can be applied
to the SLA to be discussed in this paper and attain excellent
performance. As a matter of fact, the MCM is unknown. If
the coupling effect is ignored completely in the design of the
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STAP filter, the performance of radar detection will degrade
or even be disabled.

3.2. "e ULS System with Mutual Coupling. +e mutual
coupling effect in the STAP radar will distort the
space-time steering vector. We need to give careful
consideration to the mutual coupling effect in actual
radar systems. For the ULS system, the clutter plus noise
data xum in the presence of mutual coupling can be
modified as [20]

xum � 􏽘

Nc

i�1
ac,ivm φc,i, fc,i􏼐 􏼑 + n, (18)

where vm(φc,i, fc,i) � vm(φc,i)⊗ v(fc,i) is the ith clutter
patch space-time steering vector under the mutual coupling
in which vm(φc,i) � Cv(φc,i) indicates the corresponding
spatial steering vector. +erefore, by introducing the MCM
C, (4) can be modified as

Rum � E xumx
H
um􏽨 􏽩 � VmPV

H
m + σ2nINM � Rcm + σ2nINM,

(19)

where Vm � [vm(φc,1, fc,1), vm(φc,2, fc,2), . . . , vm(φc,Nc
,

fc,Nc
)] is the clutter space-time steering matrix considering

the mutual coupling among the physical sensors; the cor-
responding CCM denotes Rcm � VmPVH

m . Here, by com-
paring (4) with (19), we find

Rcm � ZRcZ
H

, (20)

where Z � C⊗ IM.

3.3. "e SLS System with Mutual Coupling. In this section,
we extend the coupling effect to the SLS, which can be
regarded as a subset of ULS. +e magnitudes of coupling
coefficients are inversely proportional to intersensors
spacing. As a result, the SLS has been less affected by
the mutual coupling due to its relatively sparse array.
By considering the mutual coupling, (11) can be changed
as

xusm � 􏽘

Nc

i�1
ac,ivsm φc,i, fc,i􏼐 􏼑 + n � 􏽘

Nc

i�1
ac,i CΓAv φc,i􏼐 􏼑􏽨 􏽩

⊗ ΓPv fc,i􏼐 􏼑􏽨 􏽩 + n,

(21)

where vsm(φc,i, fc,i) � vsm(φc,i)⊗ vs(fc,i) is the space-time
steering vector of the ith clutter patch with mutual
coupling. vsm(φc,i) � Cvs(φc,i) denotes the corresponding
of the spatial steering vector. Furthermore, the
CNCM of the SLS with mutual coupling has the form as
follows:

Rusm � E xusmx
H
usm􏽨 􏽩 � RcΩ + σ2nINsMs

� RcΩ + IΓ, (22)

where

IΓ � σ2nΓΓ
H

,

RcΩ � 􏽘

Nc

i�1
E ac,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑 CΓAv φc,i􏼐 􏼑􏽨 􏽩⊗ ΓPv fc,i􏼐 􏼑􏽨 􏽩􏼐 􏼑

× CΓAv φc,i􏼐 􏼑􏽨 􏽩⊗ ΓPv fc,i􏼐 􏼑􏽨 􏽩􏼐 􏼑
H

� CΓA( 􏼁⊗ ΓP􏼂 􏼃 × 􏽘

Nc

i�1
E ac,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑v φc,i, fc,i􏼐 􏼑

vH φc,i, fc,i􏼐 􏼑 CΓA( 􏼁⊗ ΓP􏼂 􏼃
H

� (C⊗ I) ΓA ⊗ΓP( 􏼁Ru ΓA ⊗ ΓP( 􏼁
H

(C⊗ I)H

� ZΓRc(ZΓ)
H

� ΩRcΩ
H

,

(23)

with Γ � ΓA ⊗ΓP, Ω � ZΓ. In the light of the minimum
variance distortionless response criterion, the optimal STAP
weight vector can be estimated by

wsm �
R− 1

usmvsm

vH
smR

− 1
usmvsm

, (24)

where vsm � Zvs(φt, ft) � Ωv(φt, ft) is the target space-
time steering vector in the presence of mutual coupling.
Typically, Rusm is estimated from the training samples by

Rusm �
1
L

􏽘

L

i�1
xu,ix

H
u,i, (25)

where xu,i, i � 1, . . . , L, presents training samples matrix
with mutual coupling and L is the number of training
samples.

Nevertheless, Rusm estimated by (25) is subject to the
error within the limited snapshots. In order to analyze the
estimation error of the training samples in (25), first, note
that the vectorization form of estimation error E � Rusm −

Rusm obeys an asymptotic zero-mean normal distribution,
that is,

vec(E) ∼ N(0,W), (26)

and therefore

W− (1/2)vec(E)
�����

�����
2

2
∼ χ2 N

2
SM

2
S􏼐 􏼑, (27)

where W � (1/L)RT
usm ⊗Rusm and χ2(N2

SM2
S) represents the

asymptotic Chi-square distribution with N2M2 DOF.
It is remarkable that Rusm in the above derivation can be

approximately estimated by (25), and the matrix W should
be determined based on Rusm by

W �
1
L

R
T

usm ⊗Rusm. (28)

Hence, the matrixW in (26) and (27) is replaced by W in
real calculations.

Note that

W
− (1/2)vec(E)

�����

�����
2

2
≤ η, (29)

4 Mathematical Problems in Engineering



can be established with probability 1 − p (approaching 1) on
the basis of the properties of the squared distribution, where
η can be counted by NSMS and p. According to the theory of
the low-rankmatrix recovery, Rc can be estimated by solving
the following minimization problem:

min rank Rc􏼂 􏼃

s.t. W
− (1/2)vec(E)

�����

�����
2

2
≤ η.

(30)

However, the previous equation is a NP-hard problem.
We can use trace norm instead of rank norm to avoid the
nonconvex and obtain

min tr Rc􏼂 􏼃

s.t. W
− (1/2)vec(E)

�����

�����
2

2
≤ η.

(31)

By introducing a Lagrangian multiplier, the previous
equation can be reconstructed as

min tr Rc􏼂 􏼃 +
λ
2

W
− (1/2)vec Rusm − RcΩ − IΓ( 􏼁

�����

�����
2

2
, (32)

which simplifies to

min tr Rc􏼂 􏼃 +
λ
2

W
− (1/2)vec Rusm − RcΩ − IΓ( 􏼁

�����

�����
2

2

� min tr Rc􏼂 􏼃 +
λ
2

vecH
Rusm − IΓ − RcΩ( 􏼁􏽨

× vec Rusm − IΓ( 􏼁
− 1

Rusm − IΓ − RcΩ( 􏼁 Rusm − IΓ( 􏼁
− 1

􏼐 􏼑􏼕

� min tr Rc􏼂 􏼃 +
λ
2

tr RcΩ Rusm − IΓ( 􏼁
− 1RcΩ Rusm − IΓ( 􏼁

− 1
􏼐 􏼑􏼔

− 2tr RcΩ Rusm − IΓ( 􏼁
− 1

􏼐 􏼑􏼕

� min tr (I − λH)Rc􏼂 􏼃 +
λ
2
tr RcHRcH( 􏼁,

(33)

where H � ΩH(Rusm − IΓ)
− 1Ω.

It is worth noting that the CVX [22] can seek the solution
of the above convex optimization problem. However, it
needs high computational complexity when the system
dimension is relatively large. Here, we try to find a fast and
effective closed-form solution. According to the Kar-
ush–Kuhn–Tucker (KKT) conditions [23], (33) is equivalent
to the following equation:

R∗c HRcH( 􏼁 � R∗c (λH − I), (34)

where R∗c (V) � [vNM− 1, . . . , v− (NM− 1)]
T and vn can be

obtained as

vn �

􏽘

NM− 1− n

i�0
V1+i,n+1+i, n � 0, . . . , NM − 1,

􏽘

NM− 1− n

i�0
V1− n+i,1+i, n � − ( NM − 1 ), . . . , − 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

+en, we can change the left-hand side of (34) to

R∗c HRcH( 􏼁 �

Z(1)

Z(2)

⋮

Z(M)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽼√√√􏽻􏽺√√√􏽽
Z

h(M)

⋮

h(2)

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(36)

in which

Z(n)
�

R∗T
c G: ψ1

G NM+1− ψ1{ }:􏼔 􏼕

⋮

R∗T
c G: ψM

G NM+1− ψM{ }:􏼔 􏼕

R∗T
c G: ζ1G NM+1− ζ1{ }:􏼔 􏼕

⋮

R∗T
c G: ζM− 1

G NM+1− ζM− 1{ }:􏼔 􏼕

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

h �

h(1)

h(2)

⋮

h(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(37)

with

ψq � ∪ M− n+1
m�1 (m − 1)N + 1, · · · , mN + 1 − q􏼈 􏼉, q � 1, . . . , N,

ζp � ∪ M− n

m�1 (m − 1)N + 3 − p, · · · , mN􏼈 􏼉, p � 1, . . . , N − 1,

h(n)
� u

(n)
1 , . . . , u

(n)
N , v

(n)
1 , . . . , v

(n)
N− 1􏽨 􏽩

T
.

(38)

According to (34) and (36), we obtain

R∗c (H) � Z1,Z2􏼂 􏼃
h

h
􏼢 􏼣 � Z1h + Z2h, (39)

where Z1 and Z2 obtained by evenly dividing Z have the
same dimension and h stands for the conjugate of h.
Nevertheless, (39) can be represented in the following form:

R R∗c (H)( 􏼁

I R∗c (H)( 􏼁

⎡⎢⎢⎣ ⎤⎥⎥⎦ �
R Z1 + Z2( 􏼁 I Z2 − Z1( 􏼁

I Z1 + Z2( 􏼁 R Z1 − Z2( 􏼁

⎡⎢⎣ ⎤⎥⎦
R(h)

I(h)

⎡⎢⎣ ⎤⎥⎦,

(40)

which results in

R(h)

I(h)

⎡⎢⎣ ⎤⎥⎦ �
R Z1 + Z2( 􏼁 I Z2 − Z1( 􏼁

I Z1 + Z2( 􏼁 R Z1 − Z2( 􏼁

⎡⎢⎣ ⎤⎥⎦

†
R R∗c (H)( 􏼁

I R∗c (H)( 􏼁

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(41)

In this way, it is easy to calculate h from (41), which
obtains the Rc(u, tv) estimation. Finally, the optimal STAP
filter weight vector can be described byRc(u, tv). It is worthy
of note that we acquire the CCM of ULS if ΓA � ΓP � I.
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Moreover, when C � I, the mutual coupling is not con-
sidered in the proposed algorithm model.

4. Simulation Results and Discussion

In this section, we present numerical simulation results to verify
the theoretical derivationmade above and compare the TCMR-
STAP with the existing methods including the RCML-STAP
[24], mDT-STAP [5], JDL-STAP [6], and SMI-STAP [2]. +e
parameters of the radar system are assumed as λ � 0.05m,
d � λ/2, Tr � 0.25ms, v � 50m/s, σ2n � 1, Nc � 361, and
clutter to noise ratioCNR � 30dB. In these examples, one target
whose normalized angle and Doppler, respectively, are set to 0.1
and − 0.2 is present. All simulation results are average over 100
Monte Carlo experiments.

4.1. Performance of TCMR-STAP with ULS. We begin by
analyzing the presented approach feasibility and efficiency in
small samples, set M � N � 10 in the ULS. As a comparison,
the output SINR versus the number of training samples and the
normalized Doppler frequency are shown for performance
evaluation. Figure 1 reveals the output SINR of five methods by
varying samples size from 2 to 200 in the target normalized
Doppler frequency − 0.2. As intuitively expected, the steady
SINR performance increases with sample number except for the
SMI-STAP [2]. SMI have a dip due to numerical instabilities in
the L � 100 training regime. It is seen that the mDT-STAP,
JDL-STAP, and SMI-STAP are able to achieve poor perfor-
mance when very small snapshots are collected, and the RCML-
STAP enjoys higher precision among the above three methods.
However, the performance of TCMR-STAP is the least affected
by the number of training samples among the compared
methods, which can exhibit remarkably good performance even
when there are only several training samples and also converge
much fastest than other schemes. In particular, the TCMR-
STAP is able to work in limited samples scenario and solves the
radar performance degradation caused by the lack of samples.

Moreover, we compare the SINR performance against the
normalized Doppler frequency of the TCMR-STAP with others
in L � 100, as shown in Figure 2. +e plot shows that the
TCMR-STAP outperforms other algorithms in the Doppler
bins, and forms a deep null to cancel the main clutter field.

4.2. Performance of TCMR-STAP with SLS. Here, we com-
pare the SINR and space-time beampatterns in order to
reflect the advantages of our method in SLS with A � P �

0, 1, 4, 7, 9{ } and L � 100. First, we evaluate the SINR per-
formance against the normalized Doppler frequency for the
proposed TCMR-STAP with SLS (SLS-TCMR-STAP) under
N � M � 5, which is shown in Figure 3. +e plot shows that
our method outperforms other algorithms in the Doppler
domain and has a deep null in the main clutter field. +e
SLS-TCMR-STAP, on the other hand, has approximately the
same performance as the TCMR-STAP with ULS (ULS-
TCMR-STAP) with N � M � 10.

To further illustrate the superiorities of TCMR-STAP, we
compare the space-time beampatterns of the SMI-STAP and
TCMR-STAP and get satisfactory results. Specifically,

Figures 4(a)–4(c) are corresponding to the SMI-STAP with
ULS (N � M � 5), SMI-STAP with ULS (N � M � 10), and
SLS-TCMR-STAP (N � M � 5), respectively. It is seen that
all of the three methods can fully suppress the clutter and
make a maximum peak at the target position. Nevertheless,
the angle and Doppler resolutions of the SLS-TCMR-STAP
are better than those of the SMI-STAP with ULS under the
same N and M owing to the increased DOF. Moreover, the
SLS-TCMR-STAP is notably better than the SMI-STAP with
ULS (N � M � 10), as shown in Figure 5.

We then give the beampatterns in spatial and Doppler
domains. Figure 6(a) shows the beampatterns in the spatial
domain at the target normalized Doppler frequency while
Figure 6(b) plots the beampatterns in the Doppler domain at
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Figure 1: SINR versus the number of training samples.
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Figure 4: Beampatterns (L � 100). (a) +e SMI-STAP with ULS and N � M � 5. (b) +e SMI-STAP with ULS and N � M � 10. (c) +e
SLS-TCMR-STAP with N � M � 5.
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Figure 3: SINR versus the normalized Doppler frequency (L � 100).
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the target spatial frequency. It is observed that the SLS-TCMR-
STAP (N � M � 5) can obtain the same angle-Doppler res-
olution as the SMI-STAPwithULS (N � M � 10), but its side-
lobe level is relatively better. It means that the SLS system can
provide larger DOF in the virtual domain and improve the
space-time resolution with fewer hardware resources and
power consumption. On the other hand, it is shown the
TCMR-STAP has a stronger capability of clutter suppression
by means of analyzing the plots.

4.3. Performance of TCMR-STAP with Mutual Coupling.
In the experiment, we evaluate the mutual coupling of the
SLS-TCMR-STAP with M � N � 5. +en, we also show the

mutual coupling effect on the beampatterns in Figure 7,
where the mutual coupling model is based on (18) with
c1 � 0.5e(jπ/4), c2 � 0.25ej0.7π , c3 � 0.5ej0.7π/3, and B � 3.+e
number of samples is L � 200. +e SMI-STAP with ULS
possess no deep notch in the main clutter region, implying it
suffers from the severe mutual coupling effect, as shown in
Figure 7(a). For the SLS-TCMR-STAP, since the inter-
sensors spacing is increased, the mutual coupling can be
further reduced; as a result, its weight functions can be lower
than those of the ULS shown in Figure 7(b). +erefore, the
SLS is emphasized on the importance of the comprehensive
balance between the DOF and the mutual coupling. Figure 8
shows the beampatterns in spatial and Doppler domain in
the presence of mutual coupling. As shown in Figure 8, the
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Figure 5: SINR versus the normalized Doppler frequency (L � 100).
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Figure 6: Beampatterns (L � 100). (a) Spatial domain. (b) Doppler domain.
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SMI-STAP with ULS does not have a deep notch in the main
clutter region; it means that it cannot appropriately work in
the presence of mutual coupling.

5. Conclusion

+e traditional training samples mean the method is ef-
fective in estimating the CNCM, but it is difficult to obtain
the CNCM accurately with limited training samples. +is
paper has proposed a robust STAP algorithm for airborne
radar against unknown mutual coupling considering the
Toeplitz covariance matrix reconstruction, which can be
applied to the ULS and SLS system to solve the problem of
insufficient training samples and reduce the mutual coupling

effect. In particular, we first adopt the structure for CCM
recovery based on the prior knowledge of noise and then
relax it by using the trace norm instead of the rank norm.
+e closed-form solution of the problem is derived, and a
feasible implementation algorithm’s fast solution is pro-
vided. Moreover, under the conditions fixed in the number
of sensors and pulses, the system can obtain higher DOF by
applying the difference operation in the SLS and reduce the
mutual coupling effect. +e simulation and experiment
results show that the proposed method has high estimation
precision, even in small samples. Compared with the existing
algorithms, the TCMR-STAP possesses much better per-
formance of clutter suppression, especially a very small
number of training samples. Compared with the existing
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Figure 7: Beampatterns (L � 200). (a) +e SMI-STAP with ULS and N � M � 5. (b) +e SLS-TCMR-STAP with N � M � 5.
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Figure 8: Beampatterns (L � 200). (a) Spatial domain. (b) Doppler domain.
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algorithms for the ULS in the fixed number of sensors and
pulses, the TCMR-STAP shows a greater DOF and decreases
the mutual coupling. In future research, we will consider the
target-like interference and assess the performance of the
TCMR-STAP with the measured data.
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