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In this paper, we deal with the global behavior of the positive solutions of the system of k-difference equations u
(1)
n+1 �

(α1u
(1)
n−1/β1 + α1(u

(2)
n−2)

r1 ), u
(2)
n+1 � α2u

(2)
n−1/β2 + α2(u

(3)
n−2)

r2 , . . . , u
(k)
n+1 � αku

(k)
n−1/βk + αk(u

(1)
n−2)

rk , n ∈ N0, where the initial conditions
u

(i)
−l (l � 0, 1, 2) are nonnegative real numbers and the parameters αi, βi, ci, and ri are positive real numbers for i � 1, 2, . . . , k, by

extending some results in the literature. By the end of the paper, we give three numerical examples to support our theoretical
results related to the system with some restrictions on the parameters.

1. Introduction

Recently, many works have been published on rational dif-
ference equations, which have an important position in applied
sciences. In this process, many rational difference equations
have been studied by mathematicians. And so, some equations
have frequently been the subject of many articles using gen-
eralizations.Many typical examples of these can be found in the
literature. For example, in [1], El-Owaidy et al. dealt with global
behavior of the difference equation

xn+1 �
αxn−1

β + cx
p
n−2

, n ∈ N0, (1)

with nonnegative parameters and initial conditions. Gumus
and Soykan [2] dealt with the dynamical behavior of the
positive solutions for a system of rational difference equa-
tions of the following form:

− 4pt

un+1 �
αun−1

β + cv
p
n−2

,

vn+1 �
α1vn−1

β1 + c1u
p
n−2

, n ∈ N0,

(2)

where the parameters and initial conditions are positive
real numbers. Tollu and Yalcinkaya [3] dealt with the
dynamical behavior of the positive solutions for the fol-
lowing three-dimensional system of rational difference
equations:

un+1 �
α1un−1

β1 + c1v
p
n−2

,

vn+1 �
α2vn−1

β2 + c2w
q
n−2

,

wn+1 �
α3wn−1

β3 + c3u
r
n−2

, n ∈ N0,

(3)

where the parameters and initial conditions are positive real
numbers. For more papers on this topic, see, for example,
[4–29].

In the present paper, we investigate the global behavior
of the positive solutions of the k-dimensional system of
difference equations:
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u
(1)
n+1 �

α1u
(1)
n−1

β1 + c1 u
(2)
n−2􏼐 􏼑

r1
, u

(2)
n+1 �

α2u
(2)
n−1

β2 + c2 u
(3)
n−2􏼐 􏼑

r2
, . . . , u

(k)
n+1

�
αku

(k)
n−1

βk + ck u
(1)
n−2􏼐 􏼑

rk
, n ∈ N0,

(4)

where the initial conditions u
(i)
−l (l � 0, 1, 2) are nonnegative

real numbers and the parameters αi, βi, ci, and ri are positive
real numbers for i � 1, 2, . . . , k, by extending some recent
results in the literature.

Remark 1. /is paper extends the results of studies in the
references [1–3]. /at is to say, if we take k � 1, then system
(4) reduces equation (1). If we take k � 2, then system (4)
reduces system (2). Finally, if we take k � 3, then system (4)
reduces system (3). So, system (4) is a natural generalization
of equation (1), system (2), and system (3).

Note that system (4) can be written as

x
(1)
n+1 �

a1x
(1)
n−1

1 + x
(2)
n−2􏼐 􏼑

r1
, x

(2)
n+1 �

a2x
(2)
n−1

1 + x
(3)
n−2􏼐 􏼑

r2
, . . . , x

(k)
n+1

�
akx

(k)
n−1

1 + x
(1)
n−2􏼐 􏼑

rk
, n ∈ N0,

(5)

by the change of variables u(1)
n � (βk/ck)1/rk x(1)

n ,
u(2)

n � (β1/c1)
(1/r1)x(2)

n , . . ., u(k)
n � (βk− 1/ck−1)

(1/rk−1)x(k)
n with

ai � (αi/βi) for i � 1, 2, . . . k. So, we will consider system (5)
instead of system (4) from now.

2. Preliminaries

Let I1, I2, . . . , Ik be some intervals of real numbers and
f1: I31 × I32 × · · · × I3k⟶ I1, f2: I31 × I32 × · · · × I3k⟶ I2,

. . . , fk: I31 × I32 × · · · × I3k⟶ Ik be continuously differen-
tiable functions. /en, for initial conditions (u

(1)
0 , u

(1)
−1 ,

u
(1)
−2 , u

(2)
0 , u

(2)
−1 , u

(2)
−2 , . . . , u

(k)
0 , u

(k)
−1 , u

(k)
−2 ) ∈ I31 × I32 × · · · × I3k,

the system of difference equations,

u
(1)
n+1 � f1 u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

u
(2)
n+1 � f2 u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

⋮

u
(k)
n+1 � fk u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n ∈ N0, (6)

has the unique solution (u(1)
n , u(2)

n , . . . , u(k)
n )􏼈 􏼉
∞
n�−2. Also, an

equilibrium point of system (6) is a point
(u(1), u(2), . . . , u(k)) that satisfies the following system:

u
(1)

� f1 u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑,

u
(2)

� f2 u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑,

⋮

u
(k)

� fk u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑.

(7)

We rewrite system (6) in the vector form

Un+1 � F Un( 􏼁, n ∈ N0, (8)

where Un � (u(1)
n , un− 1

(1), u
(1)
n− 2, u(2)

n , u
(2)
n− 1, u

(2)
n− 2, . . . , u(k)

n ,

u
(k)
n− 1, u

(k)
n− 2)

T, F is a vector map such that F: I31 × I32 × · · · ×

I3k⟶ I31 × I32 × · · · × I3k, and

F

v
(1)
0

v
(1)
1

v
(1)
2

v
(2)
0

v
(2)
1

v
(2)
2
⋮
v

(k)
0

v
(k)
1

v
(k)
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

f1 v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(1)
0

v
(1)
1

f2 v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(2)
0

v
(2)
1
⋮

fk v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(k)
0

v
(k)
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· (9)
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It is clear that if an equilibrium point of system (6) is
(u(1), u(2), . . . , u(k)), then the corresponding equilibrium
point of system (8) is the point U � (u(1), u(1), u(1),

u(2), u(2), u(2), . . . , u(k), u(k), u(k))T.
In this study, we denote by ‖ · ‖ any convenient vector

norm and the corresponding matrix norm. Also, we denote
by U0 ∈ I31 × I32 × · · · × I3k a initial condition of system (8).

Definition 1. Let U be an equilibrium point of system (8).
/en,

(i) /e equilibrium point U is called stable if for every
ϵ> 0 there exists δ > 0 such that ‖U0 − U‖< δ implies
‖Un − U‖< ε, for all n≥ 0. Otherwise, the equilib-
rium point U is called unstable.

(ii) /e equilibrium point U is called locally asymp-
totically stable if it is stable and there exists c> 0
such that ‖U0 − U‖< c and Un⟶ U as n⟶∞.

(iii) /e equilibrium point U is called a global attractor if
Un⟶ U as n⟶∞.

(iv) /e equilibrium point U is called globally asymp-
totically stable if it is both locally asymptotically
stable and global attractor.

/e linearized system of (8) evaluated at the equilibrium
U is

Zn+1 � JFZn, n ∈ N0, (10)

where JF is the Jacobian matrix of F at the equilibrium U.
/e characteristic equation of system (10) about the equi-
librium U is

P(λ) � a0λ
3k

+ a1λ
3k− 2

+ · · · + a3k−1λ + a3k � 0, (11)

with real coefficients and a0 > 0.

Theorem 1 (see [30]). Assume that U is a equilibrium point
of system (8). If all eigenvalues of the Jacobian matrix JF

evaluated at U lie in the open unit disk |λ|< 1, then U is locally
asymptotically stable. If one of them has a modulus greater
than one, then U is unstable.

3. Global Stability

In this section, we investigate the stability of the two
equilibrium points of system (5). When ai ∈ (0, 1) for
i � 1, 2, . . . , k, the point X0 � (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) �

(0, 0, . . . , 0) is the unique nonnegative equilibrium point of
system (5). When ai ∈ (1,∞) for i � 1, 2, . . . , k, the unique
positive equilibrium point of system (5) is

Xai
� x

(1)
2 , x

(2)
2 , . . . , x

(k)
2􏼐 􏼑 � ak − 1( 􏼁

1/rk( ), a1 − 1( 􏼁
1/r1( ), . . . , ak− 1 − 1( 􏼁

1/rk−1( )􏼒 􏼓. (12)

Theorem 2. :e following statements hold:

(i) If ai ∈ (0, 1) for i � 1, 2, . . . , k, then the equilibrium
point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is locally

asymptotically stable
(ii) If ai ∈ (1,∞) for i � 1, 2, . . . , k, then the equilibrium

point (x
(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is unstable

(iii) If ai ∈ (1,∞) for i � 1, 2, . . . , k, then the positive
equilibrium point (x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) of system (5)

is unstable

Proof

(i) /e characteristic equation of JF(X0) is given by

P(λ) � λk λ2 − a1􏼐 􏼑 λ2 − a2􏼐 􏼑, . . . , λ2 − ak􏼐 􏼑 � 0. (13)

It is easy to see that if ai ∈ (0, 1) for i � 1, 2, . . . , k,
then all the roots of the characteristic equation (13)
lie in the open unit disk |λ|< 1. So, the equilibrium
point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of (5) is locally asymp-

totically stable.
(ii) It is clearly seen that if ai ∈ (1,∞) for i � 1, 2, . . . , k,

then some roots of characteristic equation (13) have
absolute value greater than one. In this case, the
equilibrium point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of (5) is

unstable.

(iii) /e characteristic polynomial of JF(Xai
) is given by

P(λ) � 􏽘
k

j�0
(−1)

j
k

j

⎛⎝ ⎞⎠λ3k− 2j
+(−1)

k+1
􏽙

k

i�1

ri ai − 1( 􏼁

ai

,

(14)

where k

j
􏼠 􏼡 is the binomial coefficient. It is clear that if

k is an odd number, then P(λ) has a root in interval
(−∞, −1) since

P(−1) � 􏽙
k

i�1

ri ai − 1( 􏼁

ai

> 0,

lim
λ⟶−∞

P(λ) � −∞·

(15)

Also, if k is an even number, then P(λ) has a root in
interval (1,∞) since

P(1) � − 􏽙
k

i�1

ri ai − 1( 􏼁

ai

< 0,

lim
λ⟶∞

P(λ) �∞·

(16)

So, from /eorem 1, we can say that if ai ∈ (1,∞) for
i � 1, 2, . . . , k, then the positive equilibrium point
(x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) of system (5) is unstable. □
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Theorem 3. If ai ∈ (0, 1) for i � 1, 2, . . . , k, then the equi-
librium point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is globally

asymptotically stable.

Proof. From /eorem 2, we know that if ai ∈ (0, 1) for
i � 1, 2, . . . , k, then the equilibrium point (x

(1)
1 , x

(2)
1 ,

. . . , x
(k)
1 ) of system (5) is locally asymptotically stable.

Hence, it suffices to show that

lim
n⟶∞

x
(1)
n , x

(2)
n , . . . , x

(k)
n􏼐 􏼑 � (0, 0, . . . , 0). (17)

From system (5), we have that

0≤x
(1)
n+1 �

a1x
(1)
n−1

1 + x
(2)
n− 2􏼐 􏼑

r1
≤ a1x

(1)
n−1,

0≤x
(2)
n+1 �

a2x
(2)
n−1

1 + x
(3)
n− 2􏼐 􏼑

r2
≤ a2x

(2)
n−1,

⋮

0≤ x
(k)
n+1 �

akx
(k)
n−1

1 + x
(1)
n− 2􏼐 􏼑

rk
≤ akx

(k)
n−1,

(18)

for n ∈ N0. From (18), we have by induction

0≤ x
(i)
2n−l ≤ a

n
i x

(i)
−l , (19)

where x
(i)
−l (l � 0, 1) for i � 1, 2, . . . , k are the initial condi-

tions. Consequently, by taking limits of inequalities in (19)
when ai ∈ (0, 1) for i � 1, 2, . . . , k, we have the limit in (17)
which completes the proof. □

4. Oscillation Behavior and Existence of
Unbounded Solutions

In the following result, we are concerned with the oscillation
of positive solutions of system (5) about the equilibrium
point (x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ).

Theorem 4. Assume that ai ∈ (1,∞), and let (x(1)
n , x(2)

n ,􏼈

. . . , x(k)
n )}∞n�−2 be a positive solution of system (5) such that

x
(i)
−2 , x

(i)
0 ≥ x

(i)
2 ,

x
(i)
−1 < x

(i)
2 ,

(20)

or

x
(i)
−2 , x

(i)
0 < x

(i)
2 ,

x
(i)
−1 ≥ x

(i)
2 ,

(21)

for i � 1, 2, . . . , k. :en, (x(1)
n , x(2)

n , . . . , x(k)
n )􏼈 􏼉
∞
n�−2 oscillates

about the equilibrium point (x
(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) with

semicycles of length one.

Proof. Assume that (20) holds. (/e case where (21) holds is
similar and will be omitted.) From (5), we have

x
(1)
1 �

a1x
(1)
−1

1 + x
(2)
− 2􏼐 􏼑

r1
<

a1x
(1)
2

1 + x
(2)
2􏼐 􏼑

r1
� x

(1)
2 , x

(2)
1 �

a2x
(2)
−1

1 + x
(3)
− 2􏼐 􏼑

r2
<

a2x
(2)
2

1 + x
(3)
2􏼐 􏼑

r2
� x

(2)
2 ,⋮x

(k)
1 �

akx
(k)
−1

1 + x
(1)
− 2􏼐 􏼑

rk
<

akx
(k)
2

1 + x
(1)
2􏼐 􏼑

rk
� x

(k)
2 , x

(1)
2

�
a1x

(1)
0

1 + x
(2)
− 1􏼐 􏼑

r1
≥

a1x
(1)
2

1 + x
(2)
2􏼐 􏼑

r1
� x

(1)
2 , x

(2)
2 �

a2x
(2)
0

1 + x
(3)
− 1􏼐 􏼑

r2
≥

a2x
(2)
2

1 + x
(3)
2􏼐 􏼑

r2
� x

(2)
2 ,⋮x

(k)
2 �

akx
(k)
0

1 + x
(1)
− 1􏼐 􏼑

rk
≥

akx
(k)
2

1 + x
(1)
2􏼐 􏼑

rk
� x

(k)
2 .

(22)

/en, the proof follows by induction.
In the following theorem, we show the existence of

unbounded solutions for system (5). □
Theorem 5. Assume that ai ∈ (1,∞) for i � 1, 2, . . . , k, then
system (5) possesses an unbounded solution.

Proof. From/eorem 4, we can assume that, without loss of
generality, the solution (x(1)

n , x(2)
n , . . . , x(k)

n )􏼈 􏼉
∞
n�−2 of system

(5) is such that x
(i)
2n−1 < x

(i)
2 and x

(i)
2n >x

(i)
2 for i � 1, 2, . . . , k

and n ∈ N0. /en, we have
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x
(1)
2n+2 �

a1x
(1)
2n

1 + x
(2)
2n− 1􏼐 􏼑

r1
>

a1x
(1)
2n

1 + x
(2)
2􏼐 􏼑

r1
�

a1x
(1)
2n

1 + a1 − 1( 􏼁
� x

(1)
2n ,

x
(2)
2n+2 �

a2x
(2)
2n

1 + x
(3)
2n− 1􏼐 􏼑

r2
>

a2x
(2)
2n

1 + x
(3)
2􏼐 􏼑

r2
�

a2x
(2)
2n

1 + a2 − 1( 􏼁
� x

(2)
2n ,

⋮

x
(k)
2n+2 �

akx
(k)
2n

1 + x
(1)
2n− 1􏼐 􏼑

rk
>

akx
(k)
2n

1 + x
(1)
2􏼐 􏼑

rk
�

akx
(k)
2n

1 + ak − 1( 􏼁
� x

(k)
2n ,

x
(1)
2n+3 �

a1x
(1)
2n+1

1 + x
(2)
2n􏼐 􏼑

r1
<

a1x
(1)
2n+1

1 + x
(2)
2􏼐 􏼑

r1
�

a1x
(1)
2n+1

1 + a1 − 1( 􏼁
� x

(1)
2n+1,

x
(2)
2n+3 �

a2x
(2)
2n+1

1 + x
(3)
2n􏼐 􏼑

r2
<

a2x
(2)
2n+1

1 + x
(3)
2􏼐 􏼑

r2
�

a2x
(2)
2n+1

1 + a2 − 1( 􏼁
� x

(2)
2n+1,

⋮

x
(k)
2n+3 �

akx
(k)
2n+1

1 + x
(1)
2n􏼐 􏼑

rk
<

akx
(k)
2n+1

1 + x
(1)
2􏼐 􏼑

rk
�

akx
(k)
2n+1

1 + ak − 1( 􏼁
� x

(k)
2n+1,

(23)

from which it follows that

lim
n⟶∞

x
(1)
2n , x

(2)
2n , . . . , x

(k)
2n􏼐 􏼑 � (∞,∞, . . . ,∞),

lim
n⟶∞

x
(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1􏼐 􏼑 � (0, 0, . . . , 0),

(24)

which completes the proof. □

5. Periodicity

In this section, we investigate the existence of period-two
solution of system (5).

Theorem 6. If ai � 1 for i � 1, 2, . . . , k, then system (5)
possesses the prime period-two solution

. . . , (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), . . . ,

(25)

with φ,ψ > 0. Furthermore, every solution of system (5)
converges to a period-two solution.

Proof. Assume that ai � 1 for i � 1, 2, . . . , k, and let
(x(1)

n , x(2)
n , . . . , x(k)

n )􏼈 􏼉
∞
n�−2 be a solution of system (5). /en,

from system (5), we have

x
(1)
2n+1 �

x
(1)
2n−1

1 + x
(2)
2n− 2􏼐 􏼑

r1
,

x
(1)
2n+2 �

x
(1)
2n

1 + x
(2)
2n− 1􏼐 􏼑

r1
,

x
(2)
2n+1 �

x
(2)
2n−1

1 + x
(3)
2n− 2􏼐 􏼑

r2
,

x
(2)
2n+2 �

x
(2)
2n

1 + x
(3)
2n− 1􏼐 􏼑

r2
,

⋮

x
(k)
2n+1 �

x
(k)
2n−1

1 + x
(1)
2n− 2􏼐 􏼑

rk
,

x
(k)
2n+2 �

x
(k)
2n

1 + x
(1)
2n− 1􏼐 􏼑

rk
,

(26)

for n ∈ N0. From (26), we obtain

x
(1)
2n−1 � x

(1)
−1 􏽙

n−1

i�0

1
1 + x

(2)
2i−2􏼐 􏼑

r1
⎛⎝ ⎞⎠,

x
(1)
2n � x

(1)
0 􏽙

n−1

i�0

1
1 + x

(2)
2i−1􏼐 􏼑

r1
⎛⎝ ⎞⎠,

x
(2)
2n−1 � x

(2)
−1 􏽙

n−1

i�0

1
1 + x

(3)
2i−2􏼐 􏼑

r2
⎛⎝ ⎞⎠,

x
(2)
2n � x

(2)
0 􏽙

n−1

i�0

1
1 + x

(3)
2i−1􏼐 􏼑

r2
⎛⎝ ⎞⎠,

⋮

x
(k)
2n−1 � x

(k)
−1 􏽙

n−1

i�0

1
1 + x

(1)
2i−2􏼐 􏼑

rk

⎛⎝ ⎞⎠,

x
(k)
2n � x

(k)
0 􏽙

n−1

i�0

1
1 + x

(1)
2i−1􏼐 􏼑

rk

⎛⎝ ⎞⎠,

(27)

for n ∈ N0. If x
(i)
−l � 0 for l � 0, 1 and i � 1, 2, . . . , k − 1, then

x(i)
n � 0 for i � 1, 2, . . . , k − 1 and (x

(k)
2n−1, x

(k)
2n ) � ( x

(k)
−1 , x

(k)
0 )

for n ∈ N0. /erefore,

. . . , (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), . . .

(28)
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is a period-two solution of system (5) with x
(k)
−2 � x

(k)
0 �

φ> 0 and x
(k)
−1 � ψ > 0. Furthermore, from (26), we have

x
(1)
2n+1 − x

(1)
2n−1 � −

x
(1)
2n−1 x

(2)
2n−2􏼐 􏼑

r1

1 + x
(2)
2n− 2􏼐 􏼑

r1
≤ 0,

x
(2)
2n+1 − x

(2)
2n−1 � −

x
(2)
2n−1 x

(3)
2n−2􏼐 􏼑

r2

1 + x
(3)
2n− 2􏼐 􏼑

r2
≤ 0,

⋮

x
(k)
2n+1 − x

(k)
2n−1 � −

x
(k)
2n−1 x

(1)
2n−2􏼐 􏼑

rk

1 + x
(1)
2n− 2􏼐 􏼑

rk
≤ 0,

(29)

x
(1)
2n+2 − x

(1)
2n � −

x
(1)
2n x

(2)
2n−1􏼐 􏼑

r1

1 + x
(2)
2n− 1􏼐 􏼑

r1
≤ 0,

x
(2)
2n+2 − x

(2)
2n � −

x
(2)
2n x

(3)
2n−1􏼐 􏼑

r2

1 + x
(3)
2n− 1􏼐 􏼑

r2
≤ 0,

⋮

x
(k)
2n+2 − x

(k)
2n � −

x
(k)
2n x

(1)
2n−1􏼐 􏼑

rk

1 + x
(1)
2n− 1􏼐 􏼑

rk
≤ 0.

(30)

From (29) and (30), we obtain x
(i)
2n+1 ≤x

(i)
2n−1 and

x
(i)
2n+2 ≤x

(i)
2n for i � 1, 2, . . . , k. /at is, the sequences (x

(i)
2n−1)

and (x
(i)
2n ) for i � 1, 2, . . . , k are nonincreasing. On the other

hand, from (26), we have the inequalities

x
(1)
2n−1 � x

(1)
−1 􏽙

n−1

i�0

1
1 + x

(2)
2i−2􏼐 􏼑

r1
⎛⎝ ⎞⎠≤x

(1)
−1 ,

x
(1)
2n � x

(1)
0 􏽙

n−1

i�0

1
1 + x

(2)
2i−1􏼐 􏼑

r1
⎛⎝ ⎞⎠≤x

(1)
0 ,

x
(2)
2n−1 � x

(2)
−1 􏽙

n−1

i�0

1
1 + x

(3)
2i−2􏼐 􏼑

r2
⎛⎝ ⎞⎠≤x

(2)
−1 ,

x
(2)
2n � x

(2)
0 􏽙

n−1

i�0

1
1 + x

(3)
2i−1􏼐 􏼑

r2
⎛⎝ ⎞⎠≤x

(2)
0 ,

⋮

x
(k)
2n−1 � x

(k)
−1 􏽙

n−1

i�0

1
1 + x

(1)
2i−2􏼐 􏼑

rk

⎛⎝ ⎞⎠≤ x
(k)
−1 ,

x
(k)
2n � x

(k)
0 􏽙

n−1

i�0

1
1 + x

(1)
2i−1􏼐 􏼑

rk

⎛⎝ ⎞⎠≤ x
(k)
0 ,

(31)

which show the boundedness of the solutions. Hence, the
odd-index terms tend to one periodic point and the even-
index terms tend to another periodic point. /is completes
the proof. □

6. Numerical Examples

In this section, we give some numerical examples to support
our theoretical results related to system (5) with some re-
strictions on the parameters ai and ri for i � 1, 2, . . . k.

Example 1. If k � 3, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn, r1 � 2,

r2 � 3, and r3 � 4 in system (5), we obtain the following
system:

xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + xn−2( 􏼁
4.

(32)

We visualize the solutions of system (32) in Figures 1–3
for the initial conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1,
y−2 � 0.17, y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76, and
z0 � 3.12.

Example 2. If k � 4, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn,

x(4)
n � pn, r1 � 2, r2 � 3, r3 � 4, and r4 � 5 in system (5), we

obtain the following system:

xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + pn−2( 􏼁
4,

pn+1 �
a4pn−1

1 + xn−2( 􏼁
5.

(33)

We visualize the solutions of system (33) in Figures 4–6
for the initial conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1,
y−2 � 0.17, y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76,
z0 � 3.12, p−2 � 3.27, p−1 � 1.33, and p0 � 2.78.

Example 3. If k � 5, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn,

x(4)
n � pn, and x(5)

n � qn in system (5), we obtain the fol-
lowing system:
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y (

n)
, z

 (n
)}
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0
0 20 40

x (n)
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y (n)
z (n)

60 80 100

Figure 1: /e solutions of system (32) when a1 � 1.12, a2 � 1.13, and a3 � 1.14.
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3

2
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 (n

), 
y (

n)
, z

 (n
)}

1

0 20 40

x (n)

n

y (n)
z (n)

60 80 100

Figure 2: /e solutions of system (32) when a1 � 1, a2 � 1, and a3 � 1.
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 (n

), 
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n)
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 (n
)}
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0
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n

y (n)
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Figure 3: /e solutions of system (32) when a1 � 0.91, a2 � 0.92, and a3 � 0.93.
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Figure 5: /e solutions of system (33) when a1 � 1, a2 � 1, a3 � 14, and a4 � 1.
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Figure 6: /e solutions of system (33) when a1 � 0.91, a2 � 0.92, a3 � 0.93, and a4 � 0.94.
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Figure 4: /e solutions of system (33) when a1 � 1.12, a2 � 1.13, a3 � 1.14, and a4 � 1.15.
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Figure 7: /e solutions of system (34) when a1 � 1.12, a2 � 1.13, a3 � 1.14, a4 � 1.15, and a5 � 1.16.
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Figure 8: /e solutions of system (34) when a1 � 1, a2 � 1, a3 � 14, a4 � 1, and a5 � 1.
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Figure 9: /e solutions of system (34) when a1 � 0.91, a2 � 0.92, a3 � 0.93, a4 � 0.94, and a1 � 0.95.
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xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + pn−2( 􏼁
4,

pn+1 �
a4pn−1

1 + qn−2( 􏼁
5,

qn+1 �
a5qn−1

1 + xn−2( 􏼁
6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

with r1 � 2, r2 � 3, r3 � 4, r4 � 5, and r5 � 6. We visualize
the solutions of system (34) in Figures 7–9 for the initial
conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1, y−2 � 0.17,
y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76, z0 � 3.12,
p−2 � 3.27, p−1 � 1.33, p0 � 2.78, q−2 � 0.32, q−1 � 2.16, and
q0 � 3.91.

7. Conclusion

In this study, we have generalized some of the results in the
literature. As shown in Section 1, equation (1) was developed
systematically. By this study, we ended this development.
More concretely, we investigated the local asymptotic sta-
bility, global asymptotic stability, periodicity, and oscillation
behavior of system (5) which is the k-dimensional gener-
alization of equation (1). According to our findings, our
results are consistent with the results of the paper [1] in the
case of k � 1. Similarly, our results are in line with the results
of the papers [2, 3] in the case of k � 2 and k � 3,
respectively.
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