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To solve the problem that the bearing fault of variable working conditions is challenging to identify and classify in the industrial
field, this paper proposes a new method based on optimization of multidimension fault energy characteristics and integrates with
an improved least-squares support vector machine (LSSVM). First, because the traditional wavelet energy feature is difficult to
effectively reflect the characteristics of rolling bearing under different working conditions, based on analyzing the wavelet energy
feature extraction in detail, a collaborative method of multidimension fault energy feature extraction combined with the method
of Transfer Component Analysis (TCA) is constructed, which improves the discrimination between the different features and the
compactness between the same features of rolling bearing faults. *en, for solving the problem of the local optimal of particle
swarm optimization (PSO) in fault diagnosis and recognition of rolling bearing, an improved LSSVM based on particle swarm
optimization and wavelet mutation optimization is established to realize the collaborative optimization and adjustment of LSSVM
dynamic parameters. Based on the improved LSSVM and optimization of multidimensional energy characteristics, a new method
for fault diagnosis of rolling bearing is designed. Finally, the simulation and analysis of the proposed algorithm are verified by the
experimental data of different working conditions. *e experimental results show that this method can effectively extract the
multidimensional fault characteristics under variable working conditions and has a high fault recognition rate.

1. Introduction

In industrial equipment, the rolling bearing is an essential
part of high-speed ratingmachinery. During actual operation,
once the rolling bearings have failures (such as internal
cracking, abrasion, external cracking, et al.), the safety and
reliability of the entire system will be directly affected. In this
situation, the condition monitoring and fault diagnosis of
rolling bearings have become a hot research topic in prog-
nostic and health management (PHM) of industrial systems.

Over the past decade, the accretion data, which reflect
the running performance of rolling bearings, are usually
used to analyze and test the fault characteristics of the rolling
bearings. However, because the working operation of rolling
bearings is influenced by various kinds of dynamic factors,
the fault characteristics of the acceleration data may be
quickly submerged by the ambient noise. *us, these all

cause a huge difficulty in diagnosing the fault of rolling
bearings. And fortunately, when the fault characteristic of
rolling bearings is located in the blind areas, the energy
waveform of the original signal shows the characteristics of
high efficiency and low amplitude. So, some researchers have
tried to extract the energy feature from the acceleration data
to accomplish the target of fault diagnosis for the rolling
bearings. Unfortunately, because the fault data signal of
rolling is nonlinear and nonstationary vibration response in
the industrial environment, the energy characteristics
extracted by based-wavelet packet and improved methods
cannot effectively distinguish the differences of different
features and the tightness of the similar characteristics for
the complex industrial environment.

To extract useful information of energy features, Wavelet
*eory is a usual method to analyze the vibration data of
rolling bearing in previous work [1]. *e key reason is that
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the wavelet packets can adaptively be selected according to
the characteristics of the signal and may divide a frequency
band into multiple frequency bands. Based on this, some
scholars had presented some improved extracted method
(such as wavelet packet transform (WPT), the fuzzy mutual
information of wavelet packet transform (FMIWPT), dual-
tree complex wavelet packet transform, support vector
machine based- WPT, complex wavelet packet energy
moment entropy and maximal overlap wavelet packet
transform, et al.) of energy feature in [2–7]. *ese methods
may not only implement the initial enhancement of the fault
feature but also extract multiple permutation entropy fea-
tures in the real application.

To address this problem, some scholars have tried to
decompose the fault data signal into different frequency
bands by using the wavelet packet and reconstruct the nodes
in the frequency band in [8]. *e advantage of the method is
that characteristic frequency points may be located as
quickly as possible in an industrial environment. Meanwhile,
to treat the irregular vibration signal, the fault features may
be extracted in time domain by using wavelet transform (see
[9]). Besides, the optimization of structure of the energy
characteristics has been also discussed briefly using Transfer
Component Analysis (TCA) in [10]. By using the algorithm,
the data properties may be preserved and the data distri-
butions in different domains may converge to a stable scale.
However, the running state of rolling bearings is affected by
the endogenous factors; the different decomposition depths
of the energy features are a very key problem in our working
condition. Due to the diversity and variability of the actual
fault diagnosis distribution, some methods (such as opti-
mized transfer learning (TL) algorithm and regularization
terms of multilayer) are aimed at solving the domain ad-
aptation and reducing the distribution discrepancy and the
among-class distance of the learned transferable features in
[11, 12]. *ese methods can optimize the structure of feature
sets better. At the same time, for getting better effectiveness
in fault diagnosis under variable working conditions, some
improved methods based on transfer learning (such as high-
order Kullback–Leibler, parameter transfer, improved joint
distribution adaptation, et al.) were also presented in
[13–16]. So, it is essential to find out a newmethod to further
optimize the structure of energy characteristics of rolling
bearings in the real application. *is problem is the first key
core of this paper.

Additionally, on the one hand, the purpose of extracting
the energy features is to implement the accurate diagnosis of
fault state in industrial scenes. For this reason, the diagnosis
method needs to be also simultaneously concerned while the
multifeatures of fault signal are extracted. In the light of this,
the support vector machine (SVM), which has the preferable
ability of the classification, is usually used to implement the
classification and recognition of fault in running processing
of rolling bearing. However, the algorithm does not suit the
situation of large amounts of data. *us, some researchers
presented improved algorithms such as binary SVM or
based-HV SVM to identify the multifault types of the rolling
bearing [17]. Further, the least-squares support vector
machine (LSSVM) was constructed to reduce the difficulty of

calculation and improve the recognition speed. *e algo-
rithm and model have solved the inequality constraint in
SVM. But how does equality constraint substitute the in-
equality constraint is very difficult in practice. To overcome
this problem, some optimized methods (such as multiclass
LSSVM, trend analysis based-LSSVM, et al.) have been
presented to diagnose the fault state in [18–22]. *ese
models can better identify the fault state in a complex in-
dustrial scenario. Meanwhile, to get the better classification
performance of fault states, some integrated intelligent di-
agnosis methods and models (such as based-SVM neural
network, based-LSSVM neural network, et al.) were also
established in [23]. *e result showed that the improved
algorithms have the classification performance for the
rolling bearing in industrial systems.

However, although these improved models and algo-
rithms may achieve the desired goal in fault diagnosis of
rolling bearing, there are two crucial parameters of LSSVM
worth noting, i.e., the penalty factor and the kernel function
parameter. Because the penalty factor trades off between
misclassification samples and interface simplicity and the
kernel function defines the size of the impact of the single
training sample, the accuracy of fault diagnosis is decided by
them to a great extent. At present, the optimization of the
two parameters has not yet been resolved. From the point of
practical engineering application, there are few methods to
synergistically adjust the structure of the feature to make it
better for practical fault diagnosis. To overcome the prob-
lem, some optimized algorithms (such as multimode PSO,
the PSO based on the Mahalanobis distance (MD), imple-
ments mutation based on PSO, et al.) was proposed to adjust
significant parameters in [24–26]. So, the second area that
we were focusing on in this paper is considering the in-
teractive impact between the optimization selecting of the
energy feature and the accuracy of fault diagnosis [27–31].

According to the statement, the method in this paper
uses three effective methods to construct a bearing fault
diagnosis model. First, wavelet transform and energy fea-
tures are used to represent the characteristics of the bearing
signal,d while the eight-dimension energy feature set cannot
distinguish the difference between the five bearing states.
*en, TCA is introduced to optimize the distribution of the
energy feature set. Because the TCA can both reduce the
distribution between different bearing states and increase the
distance of the learned transferable features, the optimized
feature set is beneficial to the improvement of diagnostic
accuracy. At last, the improved PSO aims to find the optimal
parameters of LSSVM.

According to these two points, a new fault diagnosis
method of rolling bearing was presented by integration with
cooperative energy feature extraction and improved LSSVM
to extract the multidimensional feature set and enhance the
accuracy of fault diagnosis. *e rest of the paper is arranged
as follows. In Section 2, the cooperative energy feature
extraction rule has been discussed in detail combined with
TCA andWP. In Section 3, we have established an improved
LSSVM algorithm with dynamic parameter adjustment-
based Particle Swarm Optimization (PSO) and Wavelet
Mutation Optimization (WMO). In Section 4, the fault data
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coming from the laboratory of the Guangdong Institute of
Petrochemical Technology was used to verify the effective-
ness of the model algorithm. Finally, some promising ap-
plications of the model have been discussed in detail in
Section 5.

2. CooperativeEnergyFeatureExtractionModel
and Algorithm for Vibration Signal of
Rolling Bearings

In general, the extraction of the reasonable feature from
original signal data is a universal method in an industrial
scenario. But, as we all know, the original signal data of the
bearing is large and complicated in the real industrial scene.
In addition, the original data set is disturbed by complex
noises. *erefore, in this situation, how to extract the energy
features of the original signal data is very important to
exactly represent the running state of the rolling bearing.
Based on this, the Wavelet *eory and Transfer Component
Analysis are introduced to construct the cooperative energy
feature extraction model. *e advantage of this processing
method has the following two points: the first point is that
the primary signal components with different frequency
bands may be in detail depicted by wavelet packet because
the wavelet packet may provide satisfactory localization
properties in both time and frequency domains; the second
point is that the structure of energy feature can be optimized
by the TCA. Also, this cooperative processing method can
get the internal form of the energy feature. Next, the energy
feature extraction model based on wavelet packet shall first
be expounded.

2.1. Energy Feature Extraction Model Based on Wavelet
Packet. To address the above first problem, the vibration
data may be divided into multiple frequency bands by
wavelet packet. In a real application, the internal charac-
teristics of the signal can be adaptively selected. To better
understand the idea, the detailed algorithm shall be in detail
described by using a wavelet packet in the next step.

To further analyze the data resource, let L2(R) � ⊕j∈ZWj

indicate the fact that multiresolution analysis is based on
different scale factors of j. In the multifrequency analysis,
L2(R) is decomposed into a series of subspaces of the or-
thogonal sum of Wj(j ∈ Z), where Wj is the subspace of the
wavelet function. In our work, the wavelet space of Wj is
refined in binary mode to achieve the goal of increasing the
frequency resolution. To ensure the mapped performance
between the scale-space Vj and wavelet subspace of Wj in a
new subspace Un

j , the iteration formula was defined as
follows:

U
0
j � Vj,

U
1
j � Wj,

j � Z,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where the subspace of Un
j is the closure space of the function

ωn(t) and U2n
j is the closure space of function ω2n(t); the

following two-scale equations should be also satisfied:

ω2n(t) �
�
2

√
 h(k)ωn(2t − k),

ω2n+1(t) �
�
2

√
 g(k)ωn(2t − k),

⎧⎪⎨

⎪⎩
(2)

where g(k) � (− 1)kh(1 − k); the sequence of ωn(t), n ∈ Z 

is the basis function. And then the sequence constructed is
determined by the basis function ω0(t) � ϕ(t) and is called
the orthogonal wavelet packet; ω0(t) and ω1(t) are the
scaling function of ϕ(t) and the wavelet basis function ψ(t),
respectively.

In addition, the normalized orthogonal basis of L2(R) is
composed of ωn(t − k),ωn(t − l) � δkl and ωn(t), n ∈ Z .
*e wavelet packet series of h(k) is described as
ωn(t), n ∈ Z .

Further, for an arbitrary cn
j(t) ∈ Un

j , cn
j(t) can be

expressed as follows:

c
n
j(t) � 

t

d
k,n
l ωn 2j

t − l , (3)

where U2n
j ⊥U2n+1

j , Un
j+1 � U2n

j ⊕U2n+1
j . And then, cn

j+1(t) can
be decomposed into c2n

j (t) and c2n+1
j (t) by using wavelet

decomposition.
In addition, di+1,n

l  is used to obtain the equations for
d

j,2n

l and d
j,2n+1
l  according to the following formula:

d
j,2n

l � 
k

hk− 2ld
j+1,n

k ,

d
j,2n+1
l � 

k

gk− 2ld
j+1,n

k .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

In conventional approaches, the three-layer wavelet
packet decomposition structure is shown in Figure 1.

From Figure 1, for an arbitrary signal S at which the
frequency range is in[0, f], it may be decomposed into a
high-frequency part D1 and a low-frequency part A1. After
the first layer in the multiresolution analysis framework, the
frequency range of the high-frequency part is [f/2, f], and the
frequency range of the low-frequency part signal is [0, f/2].
Once the first layer was ended, the decomposition in the
second layer starts to perform; i.e., the low-frequency part
AA2 and the high-frequency part DA2 are obtained from
decomposing the low-frequency part A1. *e high-fre-
quency part D1 is also decomposed to obtain the low-fre-
quency component AD2 and the high-frequency
componentDD2. *is means that the four frequency ranges
may be indicated as [0, f/4], [f/4, f/2], [f/2, 3f/4], and [3f/4, f].
Analogously, the signal data set may be implemented to
decompose layer by layer. *e decomposition relationship
for signal S may be formulated as follows:

S � AAA3 + DAA3 + ADA3 + DDA3 + AAD3

+ DAD3 + ADD3 + DDD3.
(5)

*rough the above algorithm, the different orthogonal
wavelet spaces of Un

j have different time–frequency resolution
spaces, and all Un

j can cover the entire bandwidth of signal S.
Obviously, the time–frequency domain analysis can adaptively
project the spectral components of the signal onto the
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orthogonal wavelet packet space of the corresponding fre-
quency band. In engineering of energy feature extraction of
rolling bearing, because the components of the original signal
at each decomposition level represent the signal information
in the corresponding local time–frequency area, the infor-
mation of the component signal may be always intact. Of
course, the energy of the signal distribution has been calculated
at a certain decomposition level, and the energy in the or-
thogonal wavelet packet space at a certain decomposition level
can be calculated. *en, the frequency indices of energy
wavelet packets are arranged to form the eigenvectors of the
original signals.

To better characterize the energy feature, suppose that
the calculation formula of the wavelet packet energy is as
follows:

E(j, n) � 
k∈Z

ωn(2t − k) 
2
, (6)

where ωn(2t − k) is the wavelet packet transform coefficient.
To further understand and analyze the distribution of

energy features, the statistical distribution of the energy is
calculated according to the decomposed signals at different
frequency bands.

Unfortunately, when the energy feature with different
working conditions is input into the classifier, the result of
training accuracy is 97.5%, and the test accuracy is only
87.2%. *e energy characteristics cannot fully depict the
differences among different states of the bearing, which
results in low accuracy for bearing fault diagnosis. *us, to
find a method to make up for the shortage of wavelet packet
is necessary. To reduce the data dimension and optimize the
data distribution, the TCA theory was used to further op-
timize the feature sets in our research. Next, an improved
cooperative energy feature extraction shall be established to
solve the problem of combining with wavelet packet and
TCA.

3. An Improved Cooperative Energy Feature
Extraction Method Based on the Transfer
Component Analysis Algorithm

In the real operation of extracted energy feature for signal
data of rolling bearing, how to accurately distinguish the
differences among the states in variable working conditions
is very crucial. To ensure that the energy feature set of rolling
bearing has the characteristics such as stronger class and

compact inner class, the TCA was introduced to reduce the
distribution discrepancy and among-class distance of the
learned transferable features. *e main role of TCA is to
optimize the structure of energy characteristics gotten in the
above section. To accommodate more flexible modeling,
based on introducing the basic concept and approach of
transfer feature, this section would design and implement a
cooperative energy feature extraction method by using the
TCA algorithm.

3.1. Basic Concepts of Transfer Feature. Notice that the TCA
algorithm can adjust the edge distribution probability of the
data set, and the edge distribution probability represents the
probability distribution of the data set. *e distribution of
the bearing feature set is insufficient to meet the accuracy
requirements of fault diagnosis. To reduce the distance in the
same feature set and expand the gap of different feature sets,
the method can reduce the distribution between the source
domain and target domain data. *e transfer feature
mapping process is designed in Figure 2.

*e circle and triangle represent source domain and
target domain, respectively. A and B mean different data.
Before the common mapping process is implemented, the
edge probability distribution between the feature set of the
source domain differs from the feature set of the target
domain. *e mapping relationship from the source domain
to the target domain should be depicted.

For simplicity of further analysis, assume that the source
domain is DS � XS, XT , the target domain is DT � XT ,
XT is the feature set of the source domain, YS is the label set,
and XT is the feature set of the target domain. And then,
P(XS)≠P(XT).

In fact, after feature mapping by using the TCA algo-
rithm, the edge probabilities of M(XS) and M(XT) are as
similar as possible, and the following relationship should be
satisfied:

P M XS(   ≈ P M XT(  . (7)

Once the above formula is correct, the source domain
feature sample set and the target domain feature sample set
are mapped to the shared subspace, and the knowledge of the
feature sample transfer process can be fully utilized to
improve the cross-domain learning ability.

4. Energy Feature Extraction Method Based on
the Transfer Component Analysis Algorithm

To ensure that the difference between the source domain and
the target domain should be reduced by finding the common
points, the distance between the transfer method and
retaining the original features of the two data sets is defined
as follows:

DS � XS, XT  � xSi
, ySi

 
ns

i�1, (8)

where nS is the number of labeled source domain training
samples data and nt is the number of unlabeled data in the
target domain forXT � xTi

 
nt

j�1.

S

A1 D1

AA2 DA2 AD2 DD2

AAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3DAA3

Figure 1: Schematic diagram of the wavelet packet decomposition
structure.
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In this situation, the goal is to predict the sample label of
yTi

. At the same time, the data mapping function ϕ between
the source domain and the target domain is defined as
follows:

XS⟶ ϕ XS(  � X
∗
S ,

XT⟶ ϕ XT(  � X
∗
T.

(9)

*e objective of this process is to reduce the difference
between the edge probability distributions P(XS) and
P(XT) so that P(X∗S ) ≈ P(X∗T).

Similarly, for a given source domain data set XS and
associate target domain data set XT, the distance function
MMD between the two data sets can be expressed as follows:

MMD XS, XT(  �
1
ns



ns

i�1
ϕ xSi

  −
1
nt



n

j�1
ϕ xTj

 
2

H
, (10)

where ϕ(xTj
)2
H
is the squared standard operation performed

in the regenerative kernel Hilbert space. *e source and
target domain data are mapped into a shared low-dimen-
sional potential space through the nonlinear mapping, and
then the kernel functions can be solved as follows:

K �
KS,S KS,T

KT,S KT,T

  ∈ R ns+nt( )× ns+nt( ). (11)

In equation (11), KS,S, KS,T, KT,S, and KT,T are the
corresponding kernel functions obtained from the source
domain, the target domain, and the hybrid domain,
respectively.

Further, the formula can be rewritten as

MMD XS, XT(  � Tr(KL), (12)

where Tr represents the trace of a matrix

For simplicity, Li,j maybe expressed as follows:

Li,j �

1
n
2
s

, xi, xj ∈ XS,

1
n
2
t

, xi, xj ∈ XT,

−
1

nxnt( 
, others.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

*rough the above analysis, the distribution among
different data may be reduced, and shared feature repre-
sentation of the two domains is realized. *e representation
may also maintain the data feature attributes of the two
domains. Also, the method may achieve this goal and extract
the data components for the transfer of data from different
but related fields. *e main purpose of the algorithm is
twofold. First, the distance between ϕ(XS) and ϕ(XT) is
minimized; second, the main feature attributes of the raw
data sets Xs and XT are preserved.

For the whole mapped samples, we can find an em-
bedded matrix W ∈ R(nx+nt)×m（m≪ nx + nt）, s.t.

K � KK− 1/2 K KWWT
K. (14)

Based on equation (14), equation (11) may be rewritten
as follows:

MMD X
∗
S , X
∗
T(  � Tr KWWT

K L  � Tr W
TKLKW .

(15)

Once the covariance matrixWmay be found, the largest
variance of the energy feature can be maintained into the
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Figure 2: Transfer learning feature mapping diagram.
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newly created subspace. *e concrete kernel matrix formula
can be indicated as  , i.e.,





� W

TKHKW, (16)

where H � I − (1/(ns + nt)1T) ∈ R(ns+nt)×(ns+nt) indicates the
center matrix.

*erefore, the problem may be transformed into the
optimal problem of 


� Im, and Im ∈ Rm×m is a unit matrix.

*e final core learning problem can be established as follows:

min
W

Tr W
TKLKW  + μTr W

T
W ,

s.t. W
TKHKW � Im,

(17)

where μ is the trade-off parameters and μ> 0.
Next, the optimization problem can be transformed into

a maximum mapping matrix W, which can be obtained by
matrix decomposition. First, we need to calculate the matrix
(KLK + μI)− 1 KHK to obtain W.

So far in this discussion, the core energy features can be
selected by integration with the above model. On the other
hand, because the distance between the same-state features
becomes increasingly similar, the separability of energy
feature becomes increasingly clear for different states. All in
all, the compactness of features has been greatly improved
after integrating with TCA. It is convenient to use classifiers
to improve the fault diagnosis accuracy of bearings.

4.1. Design and Analysis of a Cooperative Energy Feature
Extraction Algorithm. According to the above theoretical
analysis, an improved cooperative energy feature extraction
algorithm may be designed as follows.

(i) Step 1. Original signals in different working con-
ditions of the bearing are input to the wavelet
packets for three-layer decomposition.

(ii) Step 2. According to the signal component, the
energy of every component is calculated, and the
bearing feature set is constructed.

(iii) Step 3. *e training sample set of the source domain
is built based on the energy characteristics with
explicit working conditions. Moreover, feature sets
under unknown working conditions are con-
structed to collect test samples in the target field.

(iv) Step 4. *e source domain feature set and the target
domain feature set are mapped into the kernel space
together. *e maximum mean distance between the
source domain feature samples and the target fea-
ture samples is measured in space. *e calculated
maximum mean distance is used as a criterion for
judging the source domain data.

(v) Step 5. *e data are input into the optimized
LSSVM, training is performed with the source
domain data, and the target domain data are used to
test the training result. Finally, the classification
results are obtained and accuracy is assessed. *e
detailed flowchart is shown in Figure 3.

Whether the extraction mechanism of the energy feature
is improved, the final goal of the energy feature is to improve
the accuracy of the fault recognition of rolling bearing. Of
course, good differentiation among different states and a
high correlation among the same states will bring some gains
in diagnostic accuracy. *at is to say, it is also convenient to
use classifiers to improve the fault diagnosis accuracy of
rolling bearings. In the next step, the fault diagnosis method
of rolling bearing shall be established to solve the goal.

5. Classification Process of Improved
LSSVMwithDynamic Parameter Adjustment

According to the above analysis, an improved fault diagnosis
method combining with improved LSSVM with dynamic
parameter adjustment is listed in Figure 4.

(i) Step 1. Input the extracted data features into the
improved LSSVM model and train the two pa-
rameters that need to be optimized.

(ii) Step 2. Initialize the parameter in particle swarm,
such as evolutionary algebra, the learning factor, the

Start

MMDE metric

Train Test

End

Decompose the original
signal with a wavelet

packet

Calculate the energy
characteristics of the
decomposed signal

Build a flagged source
domain feature

sample set

Build an unlabeled target
domain feature

sample set

Mapping to the
regenerative kernel

Hilbert space

Mapped source domain
feature set after mapping

Target domain feature set
after mapping

Optimized LSSVM
classification model

Figure 3: Flowchart of the bearing fault diagnosis method.

6 Mathematical Problems in Engineering



initial position xid of each particle, the initial ve-
locity vid, et al.

(iii) Step 3. *e best position is set as the initial position
of each particle. *e optimal fitness equals the best
position of each particle. *e speed and position of
each particle are calculated according to the
formula.

(iv) Step 4. Calculate the scale parameter and wavelet
function value from the wavelet variogram. *e
mutation operation is performed on the current
optimal particle according to the wavelet function
formula.

(v) Step 5. Update pbest and gbest according to the fitness
value of the particle. *en, update the velocity and
position information of the particle at the same
time.

(vi) Step 6. Determine whether the results of the algo-
rithm reach the optimal condition. *e training
classification accuracy of the classification model is
defined as the fitness degree of the PSO. If the fitness
value calculated in the current cycle is the best, the
current particle is saved as the best particle. If the
fitness is not the best, the optimal parameters from
the end of the previous cycle are used. *e optimal
particle search continues until the end of the cycle.
*e punishment coefficient C and Gaussian radial
kernel function R are saved to construct the LSSVM
classification model.

*rough this algorithm, the cooperative energy feature
extraction model and algorithm for the vibration signal of a
rolling bearing are used to build a multidimensional feature
set. And the fault diagnosis may also be implemented. *e
special flowchart of fault diagnosis is designed in Figure 4.

6. Experiments and Discussions

To verify the effectiveness of the proposed fault diagnosis
method, the experimental acceleration data of bearings are
used for fault diagnosis. *e experimental data were ob-
tained from the multifault diagnosis equipment of the rotary
unit in the State Key Laboratory of Bearings, Guangdong
University of Petrochemical Technology. Figure 5 shows the
single-stage centrifugal fan fault diagnosis unit. Figure 6
shows the schematic diagram of the inner and outer cracks
of bearings.

With this experimental platform, the data for each fault
can be acquired under five states: normal, external cracking,
internal cracking, missing bearings, and wearing bearings.

6.1. Signal Processing and Feature Set Construction. In our
testing rig, the acceleration signals of five different condi-
tions in the normal, external cracking, internal cracking,
wearing, and missing states of the bearing during operation
are used as the original signals for fault diagnosis.

*e five different working conditions are in A of length
1150mm, speed 2870 r/min; in B of length 1730mm, speed
2980 r/min; in C of length 1800mm, speed 2970 r/min; in D
of length 2450mm, speed 2980 r/min; and in E of length
2200mm, speed 4800 r/min. *e 300 characteristics of the
first three working conditions are used as the source domain
set; the 200 characteristics of the latter two working con-
ditions are used as the target domain set. *e original signals
for the original states of the bearing are shown in Figure 7.

To verify the effectiveness of our algorithm, a sample
data set containing 10240 sampling points in a sample period
is used to extract the energy feature. To facilitate signal
processing and extraction, the original signals are divided
into 1024∗10 groups. Figure 7 shows the acceleration signal
of the bearing under normal conditions. From Figure 7, the
original data set has been divided into 1024∗10 groups. And

Start

Extract the energy characteristics of the raw data and
enter the classification model

Initialize the parameters of the particle swarm
algorithm

Calculate the velocity and position information of the
particles and determine the optimal particles based on

fitness

Calculate relevant parameters based on wavelet
variogram and select optimal particles for mutation

operation

Update particle information to calculate fitness

Meet the requirements of the classification
model parameters

Bring the optimized parameters into the classification
model to get the classification results

Yes

No

End

Figure 4: Schematic diagram of the optimized LSSVM classifi-
cation model.
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the signal in each group is decomposed into 8 frequency
bands by wavelet packet algorithms as shown in Figure 8.

*e signal has a large volume due to high sampling
frequency, and it is difficult to distinguish faults from these
signals. First, the original signal is decomposed into three
layers of wavelet packets to obtain signal components with
eight different frequency bands. Figure 8 is a diagram
showing the signal components obtained by decomposing
the original signals for the original states of the bearing. *e
frequency band of the original signal is divided into multiple
bands. According to the characteristics of the signal, the
corresponding frequency band is adaptively selected to
match the signal frequency, thereby improving the resolu-
tion of the signal frequency. Figure 7 only shows that the
signal is decomposed into signal components of different
frequency bands, and it does not reflect obvious fault
characteristics. *erefore, the next step is to further extract
the energy characteristics of the signal components.

After the original signal in five different states is
decomposed by the wavelet packet, the characteristic his-
togram is obtained by calculating the energy of the node in
the component signal. *e energies described the multidi-
mensional feature set of the bearing and the energy features
extracted from one group of the normal signal. From the
using point of view, constructing the feature set of signals is
reasonable by using them in a sample period. As shown in
Figure 9, the distribution of energy is different under dif-
ferent bearing states. *e energy characteristics can initially
show the difference, and then the energy feature values are
extracted to construct the energy feature table. So, these
features may be used to constitute a complete feature set for
structure processing and fault diagnosis. Based on this, the
energy feature values extracted from the 1024∗10 group of
the normal signal are listed in Table 1.

In our experiment, the data sets for the five bearing states
include 10∗10240 groups, and each group of signals is di-
vided into ten groups for signal decomposition. We can
obtain 8 different frequency bands from the original signal.
*e energy characteristics of the nodes are used to construct
a multidimensional energy feature set for the bearing. Ta-
ble 1 shows the multidimensional energy feature data sets for
the original states; it is obvious that different bearing state
has different energy features. *en, the table of energy
features is input into the classifier.

*e energy features extracted from the bearing fault
vibration signal constitute a feature set that has been nor-
malized. *e labeled source domain data sample set and the

unlabeled target domain data sample set are mapped to the
regenerative Hilbert kernel space. Between the source do-
main and target domain, the difference in the total maxi-
mum mean value reflects the difference in the distribution.
*e smaller the maximum mean difference is between the
source domain and target domain, the stronger the source
domain to target domain mobility. It is beneficial to select
source domain data with high similarity to the target domain
data.

Unfortunately, when the energy feature with different
working conditions is input into the classifier, the result of
training accuracy is 97.5%, and the test accuracy is only
87.2%. *e energy characteristics cannot fully depict the
differences among different states of the bearing, which
results in low accuracy for bearing fault diagnosis. *us, to
find a method to make up for the shortage of wavelet packet
is necessary. To reduce the data dimension and optimize the
data distribution, the TCA theory was used to further op-
timize the feature sets in our research. Next, an improved
cooperative energy feature extraction shall be established to
solve the problem of combining with wavelet packet and
TCA.

Energy feature is recalculated from each component by
the improved cooperative energy feature extraction algo-
rithm. In our simulation experiment, the feature set in A is
inputted into TCAwhich is used to optimize the distribution
of the feature set. In this hidden subspace, a classifier can be
trained using the tagged samples from the mapped source
domain, and the classifier is used to test the target domain
data in the hidden space.*e simulation results are shown in
Figures 10 and 11.

Figure 10 shows the original energy distributions of the
bearing. *e five state characteristics of the bearing (normal,
outer crack, inner crack, wear, and missing steel ball in
bearing) are not distinct, and a poor energy distribution
leads to low classification accuracy. Obviously, after in-
putting the energy characteristics into the TCA algorithm,
the energy distribution of the bearing is shown in Figure 11.
For indeed, the distance between same-state features be-
comes increasingly similar and the energy features possessed
the advantage of the time–space concentricity. *at has
shown that our model and algorithm are effective.

Whether the extraction mechanism of the energy fea-
ture is improved, the final goal of the energy feature is to
improve the accuracy of the fault recognition of rolling
bearing. Of course, good differentiation among different
states and a high correlation among the same states will
bring some gains in diagnostic accuracy. *at is to say, it is
also convenient to use classifiers to improve the fault di-
agnosis accuracy of rolling bearings. In the next step, the
fault diagnosis method of rolling bearing shall be estab-
lished to solve the goal.

6.2. Comparative Experimental Analysis. As a classifier, the
optimized LSSVM is used for random cross-validation ex-
periments. *e data set of the source domain is used as a
training set, and the data set of the target domain is used as a
test set.

Figure 5: Single-stage centrifugal fan fault diagnosis unit.
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Figure 6: (a) Bearing outer crack. (b) Bearing inner crack.
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Figure 7: (a) Normal original signal diagram. (b) Outer crack original signal diagram.
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In the TCA algorithm, the kernel function maps the data
from the source domain and the target domain to the high-
dimensional space. *erefore, the choice of the kernel
function is related to the data mapping process of the source
domain and the target domain. Four different kernel
functions, namely, primal, RBF, linear, and SAM, are used to
conduct comparative experiments. Under different kernel
functions in TCA, the ability to analyze the corresponding

energy characteristics is tested. *e training accuracy and
test accuracy are calculated. Because TCA is a data di-
mensionality reduction algorithm, the dimension of data
reduction is related to the classification accuracy. In this
paper, the original data dimension of the energy feature data
set is 8, and the dimensionality reduction is varied from 1 to
8 to test the diagnostic accuracy of the fault diagnosis
method. Combining the results from Table 2 and Figure 12,
the diagnostic accuracy of the RBF kernel function is rel-
atively high and stable. *erefore, the RBF kernel function is
used for bearing fault diagnosis analysis.

Based on the above fault diagnosis classification model,
each group uses 100 sets of data features for fault identifi-
cation. *e simulation results for the training phase and the
test phase are shown in Figure 12(a).

As shown in Figure 13(a), there are 210 training values for
the 5 states ((1) normal, (2) internal cracking, (3) outer cracking,
(4) wear, and (5) missing). *e training accuracy is 100%.

According to the test data in Figure 13(b), there are 120
groups of test data for the 5 states ((1) normal, (2) internal
cracking, (3) outer cracking, (4) wear, and (5) missing).
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Figure 9: (a) Normal signal energy characteristics. (b) Outer crack signal energy characteristics.

Table 1: Normal signal energy characteristics.

E1 E2 E3 E4 E5 E6 E7 E8
1 0.61 0.30 0.00 0.08 0.00 0.00 0.00 0.00
2 0.46 0.47 0.00 0.06 0.00 0.00 0.00 0.00
3 0.48 0.46 0.01 0.05 0.00 0.00 0.00 0.00
4 0.57 0.37 0.00 0.05 0.00 0.00 0.00 0.00
5 0.51 0.43 0.01 0.05 0.00 0.00 0.00 0.00
6 0.59 0.35 0.00 0.05 0.00 0.00 0.00 0.00
7 0.65 0.28 0.01 0.04 0.01 0.01 0.01 0.00
8 0.64 0.32 0.00 0.04 0.00 0.00 0.00 0.00
9 0.62 0.33 0.01 0.04 0.00 0.00 0.00 0.00
10 0.55 0.39 0.00 0.05 0.00 0.00 0.00 0.00
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Among them, two values are incorrectly classified, so the test
accuracy is 98.3%.

To verify the validity and superiority of the algorithm
presented in this paper, we compare different unoptimized
algorithms with the optimized classification algorithm
proposed.

Four different methods are compared under the same
experimental environment and the same experimental data.
Table 3 shows that the correct rate can reach 100% during the
training process using the method developed in this paper.

Additionally, the correct rate can reach 99.8% during
the test process. *e fault diagnosis accuracy is better

Table 2: Fault diagnosis accuracy under different kernel functions.

Different kernel functions Training accuracy Test accuracy Statistical accuracy (%)
Primal 100 98.4 98.7
Linear 99.8 97.6 98
RBF 100 99.6 99
SAM 99.6 96.8 97.6
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Figure 12: (a) Relationship between the feature dimension and training accuracy after mapping. (b) Relationship between the feature
dimension and test accuracy after mapping.
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Figure 13: (a) Training accuracy. (b) Test accuracy.
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than that of the other three methods. *e comparison
shows that the TCA algorithm is effective in analyzing
the energy characteristics of wavelet packets. Moreover,
the optimized classification algorithm is superior to the
traditional single classification algorithm and has a better
diagnostic ability.

7. Conclusions

In this paper, to improve the accuracy of identifying and
classifying fault in variable working conditions, a new
method based on optimization of multidimension fault
energy characteristics and integrate with an improved least-
squares support vector machine (LSSVM). *e main con-
tributions of this paper are as follows.

(1) *e method of wavelet packet is used to reduce the
surrounding noise and decompose the original signal
with eight different frequency bands. *e energy of
every component is calculated to construct a feature
set for bearing.

(2) Because the TCA can amend the distribution of the
energy feature, the *e distribution of the feature
set is optimized, and the data dimension is much
closer than before. *e optimized feature structure
could improve the accuracy of bearing fault
diagnosis.

(3) Particle swarm and the wavelet mutation were in-
tegrated to optimize two parameters of LSSVM.
*rough the real data of bearing, the training ac-
curacy of the proposed method is 100%, and the test
accuracy 99.8%. *e experiment result shows that
the proposed method is effective in the low-precision
problem of fault diagnosis for complex bearings in
the equipment.

(4) Unfortunately, there are still two problems to be
solved in the next research. First, the complex noise
of the original signal brings interference to the fault
diagnosis of bearing. Second, the kernel function
selected in the TCA algorithm is very single.
*erefore, the next step is to focus on signal
denoising and TCA construction of multicore
kernel functions to further improve the fault
accuracy.
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