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The behavior identification of the target trajectory is one of the important issues in space behavior analysis. Since the target
trajectory model obtained from a fixed view cannot be adapted to the change of the observation perspective, it needs to be
retrained when being faced with a new view, which leads to a great amount of increment in application cost. This study proposes a
hidden Markov model (HMM) based on the cross-view transfer learning and the recognition method that firstly constructs a
linear mapping relationship between the observation matrices of the source and target view utilizing the domain trajectory of the
HMMs and obtains the observation matrix parameters of the target domain through the mapping system. Secondly, the transfer
probability of the source domain is further optimized to obtain the target domain of the HMM and to identify the behavior of the
target domain trajectory utilizing a small number of samples from the view of the target domain. The experimental results denote
that the proposed method could effectively realize the identification of the trajectory behavior utilizing a small sample size in the
target domain and would greatly reduce the application cost of the identification of the cross-view target trajectory.

1. Introduction

Target trajectories reveal important information on target
behavior, and the identification of the trajectory is an
important part pertinent to understanding an event and
behavior analysis. In real applications, a video surveillance
system often composes of multiple cameras located at
different angles. The motion trajectory of the same target is
displayed differently from diverse perspectives. The
training of the trajectory model relies on samples from a
fixed perspective. When the perspective alters, new samples
need to be collected and retrained, leading to the exces-
sively high training cost for the trajectory model, which
would greatly raise the application cost of the identification
of the trajectory behavior. This is not conducive to its
promotion. Pointing out that it has a high application value
and practical importance to research on the behavior
identification method of the low-cost cross-view target
trajectory.

Hidden Markov model (HMM) [1-8] could effectively
model time-series signals and is a powerful tool to model the

target tracking. Qiming and Cheng propose that trajectory
modeling is executed according to the trajectory coordinate
sequence [1]. In this method, the trajectory sequence is firstly
clustered, and then, the corresponding HMM trajectory
model is attained utilizing the training of the diverse cate-
gories. Dapeng et al. suggest that the HMM is utilized to
model the trajectory of the enemy submarine and to predict
the trajectory of the target to provide operational infor-
mation support for warship operations [2]. Hervieu et al.
propose that the curvature and velocity of the coordinate
points are utilized for the HMM trajectory modeling, and the
trajectory characteristics are invariant to translation, rota-
tion, and scaling [3]. Qian and Lau suggest that a layered
HMM is proposed to model the continuous target trajectory
in a multilayer scene that leads to both a low-level HMM to
model the single-layer trajectory and a high-level HMM
connecting the multilayer trajectory to form the target
trajectory model [4].

On the other hand, transfer learning has gradually
become an important research area in machine learning in
recent years since it mainly has resolved the problem
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related to the learning of the cross-domain knowledge and
could realize the model migration when the data of the
target domain is unlabeled and the data of the source
domain is called a multisource. Moreover, it has a high
theoretical value in many practical problems. Transfer
learning, which relaxes two basic assumptions in tradi-
tional machine learning, is a new method in the field of
machine learning. Its main characteristics could be
summarized as follows: (1) there must be enough samples
to learn for a good classification model. (2) Both the
training samples were utilized for learning, and the new
test samples meet the conditions of independence and
identical distribution properties. Some scholars have
proposed various HMM transfer methods for some cross-
domain applications. For instance, Van Kasteren et al.
propose that a parameter transfer learning method utilizes
the HMM that constructs the sensor mapping relationship
according to the location information of the spatial
structure and then finds out the parameters of the HMM
utilizing the EM algorithm [9]. Zheng et al. propose that, it
takes the received real-time signal intensity of mobile
devices as the observed value to construct the HMM
positioning model and realizes the transfer of it at dif-
ferent times in the same position [10]. Bingtao et al.
suggest that giving weight to the sample data of the source
domain by calculating the similarity between the source
domain and the target domain sample data, then finds out
the HMM parameters in the weighted data set, and im-
proves the learning algorithm to realize the instance-
based HMM transfer learning [11]. Similar research
studies conducted by Kim et al. propose that an HMM
transfer method utilizing the maximum a posterior
(MAP) and maximum likelihood linear regression
(MLLR) is applied to speech and text recognition [12-15].
Some empirical research studies related to HMM are Fei
et al. in [16, 17].

As a contribution to this research area, to solve the low-
cost application problem of the HMM trying to determine
the trajectory behavior in different perspectives, this man-
uscript proposes an HMM-based transfer learning and
recognition method for the behavior of the target trajectory
where the cases consist of the perspective samples of the
sufficient source domain, and the perspective samples of few
marked target domain exist. This method achieves the
purpose of transfer learning and recognition by transferring
the trajectory behavior model in the source perspective
domain and optimizing a small number of samples in the
target domain, which provides an effective way to resolve the
mentioned problem.

2. The Proposed Model: Trajectory Modeling
and Simulation

2.1. Target Trajectory Model Based on the HMM. Hidden
Markov model (HMM) is a probabilistic model describing
the process of time series, which can be described by five
components denoted by a quintuple
A= (N,M, A, B, and ). Moreover, its simplified form is
represented by A = (A, B, and n):
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(1) N indicates the number of hidden states in the
model. All states in the model are interconnected,
and any state can be reached from other states.

(2) M represents the observation symbol of each hidden
state in the model, i.e., the number of observation
states.

(3) A is called the probability distribution of state tran-
sition. A = {ai]-}, where, a;; = p(Q;; = jlQ; =),
0<a;;<1, and P a;;=1,1<i,j<M. Q; is called
the hidden state at time .

(4) Bis called the probability distribution of the observable
state in the hidden state at moment j, B = {b;.}, where,
by =p(Q, =klQ, =i)and 1<i<N,0<k<M. Q, is
called the observable state at time ¢.

(5) mis called the distribution of the initial state 7 = {;},
where 7; = p(Q, =1i),1<i<N.

According to the basic definition of the HMM, this
manuscript firstly conducts the HMM modeling for the
target trajectory. The direction angle of the trajectory of the
target in a unit of time is utilized as the observation char-
acteristic. The sequence of the angle representing the tra-
jectory information is called the observable state vector. The
hidden state is called the transfer characteristic of the angle
change of the target trajectory. The angular direction of the
target trajectory is computed by

¢, = tan—l()/t - yt1>’ (1)

Xt = X

where (x;, y,) and (x,_;, y,_;) are called the target positions
attime tand f — 1, respectively. According to ¢,, the observed
value Q, is attained by discretizing the 24-direction freeman
code depicted in Figure 1. The parameters of the trajectory of
the HMM are obtained by training.

The trajectory presented in Figure 2 is utilized for
modeling. The coordinate sequence of the target trajectory is
presented in Table 1. The angle characteristic is computed by
(1), and its discretization is presented in Table 2. While the
number of the hidden states called N is set to 4, that of
observation called M is set to 24. The probability vector of
the initial state denoted by 7 is defined as uniform distri-
bution. The transfer probability and the probability distri-
butions of the observation are initialized randomly. The
trajectory samples above are trained by the Baum-Welch
algorithm to attain the parameters of the initial distribution
7, transfer probability matrix A, and observation probability
matrix B, respectively, that are presented in Table 3.

2.2. Simulation of the Target Trajectory. There are two im-
portant assumptions in the HMM, which are expressed as
follows: (1) homogeneous Markov Chain hypothesis, that is,
the hidden state at any time only depends on its previous
hidden state. (2) Observation independence hypothesis, that
is, the observed state at any time only depends on the hidden
state at the current time.

As presented in Figure 3, the hidden Markov Chain
based on the above hypothesis is determined by the initial
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FIGURE 2: Target behavior trajectory. (a) The tracked target tra-
jectory is overprinted on the background image. (b) A sequence of
the tracked target trajectories.

TaBLE 1: Centroid coordinate sequence of the target trajectory.

p1 P2 P3 P4 P5 P6 P7 P8 P9 P10

X 280 278 275 272 270 269 266 262 258 252
Y 155 157 160 169 169 170 173 177 182 189

state probability vector and the state transfer probability
matrix A. Hence, the result of which is to generate an un-
observable hidden state sequence. The observation proba-
bility matrix B and the hidden state sequence are combined
to determine the way of generating an observable sequence.

Given the HMM model in the form of
A= (N,M,A B, andm), the observation sequence
0=0,,0,,...,0; could be generated by the algorithm
steps presented in Table 4. According to the initial coor-
dinates of the trajectory and the sequence of the observed
values, the coordinates of the trajectory sequence could be
uniquely determined.

The trajectory of the HMM is trained and simulated
under four different circumstances, and the results are
presented in Figure 4.

2.3. Statistical Analysis of the Trajectory Characteristics from
Different Perspectives. To further analyze the relationship
between the characteristics of the target trajectory from
diverse perspectives, this manuscript utilizes both a straight
line and curve trajectories as illustrative examples to ex-
amine their statistical characteristics of the observation
characteristics from diverse perspectives. When the target
linear trajectory is a concern, Figure 5 denotes the obser-
vation of the linear motion of the same target from two
different perspectives. The statistical features of the char-
acteristics of the target trajectory observation from two
different perspectives are presented in Figure 6 suggesting
that the statistical envelope of the trajectory characteristics
between the two perspectives is very similar, while the center
of gravity is different.

The trajectory of the curve motion is presented in Fig-
ure 7. Statistical analysis is conducted on the observation
characteristics from different perspectives, and the charac-
teristic of the statistical curve is presented in Figure 8
suggesting that the statistical characteristic of the curved
trajectory from different perspectives have a certain
similarity.

To sum up, although there exist differences in the per-
spective, a certain correlation exists in the performance of
the feature sequence of the target trajectory. If there were
more tracks along a certain direction, they would accu-
mulate near the characteristic coding of that direction.
Hence, it can be considered that the characteristic frequency
curves of the target trajectory from different perspectives
denote a certain linear translation.

3. Transfer Learning Based on the Trajectory of
the HMM

For the recognition of the cross-view target trajectory, small
sample data are employed in this research utilizing the
transfer learning strategy to obtain the trajectory of the
HMM model for the target view and to realize the low-cost
modeling of the behavior model of the cross-view trajectory.
The basic idea of the HMM model based on the transfer
learning in this manuscript is presented as follows: firstly,
according to the statistical translation of the trajectory
characteristics in the different perspectives in Section 2.3, the
linear regression model is constructed to attain the mapping
between the source domain and the target domain con-
cerning the HMM observation probability matrices of the
characteristics, which leads to obtaining the observation
probability. Secondly, the transfer probability matrix is
randomly initialized, and the simulation data are generated.
The objective optimization function is constructed
according to the similarity between the simulation and the
domain data of the target. Finally, the parameters of the
transfer probability matrix for the trajectory HMM utilizing
the target domain are obtained through the iterative opti-
mization, and the transfer learning process of the cross-view
HMM is realized.
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TaBLE 2: Direction freeman code of the target trajectory.

i 2 3 4 5 6 7 8 9 10
@; 0 135° 135.6° 161.6° 90.0° 135.0° 135.0° 135.0° 141.3° 139.4°
Code 10 10 11 7 10 10 10 10 10

TaBLE 3: The parameters of the HMM trajectory.

. 41 0.0000 0.0000 1.0000 0.0000
Al, 1:4 0.0024 0.9976 0.0000 0.0000
A2,1:4 0.0000 0.0000 0.0536 0.9464
A3, 1:4 1.0000 0.0000 0.0000 0.0000
A4, 1:4 0.9044 0.0000 0.0956 0.0000
B1,7:12 0.0000 0.0000 0.0000 0.9261 0.0000 0.0739
B2, 7:12 0.0000 0.0000 0.0000 0.7153 0.2831 0.0000
B3, 7:12 0.0000 0.0000 0.0000 0.7169 0.2831 0.0000
B4, 7:12 0.0835 0.1670 0.4174 0.0015 0.3306 0.0000
Observation
Markov chain | State sequence | paydom sequence sequence
(m, A) (B)
9 92» -+ 91 01, 09, ... OT

FIGURE 3: The simulation process of the HMM.

TaBLE 4: Algorithm of the simulation of the HMM to generate data.

Algorithm steps of the simulation of the HMM to generate data.

(1) According to the initial state probability distribution 7 =, select an initial state Q, =i
(2) Fort=1,2,3,K,and T

According to the output probability distribution b, of state i, output Q, = k;

END For
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FiGure 4: Continued.
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FIGURE 4: Simulation data generated by the training model of the target trajectory from different views (from top to bottom are different
views, from left to right are the target trajectory samples, and the results of the simulation generated by the training model).

FIGURE 5: The position change of the linear trajectory of the same target in different perspectives (from top to bottom are the perspectives 1

and 2 and from left to right are the frames 22, 33, 44, 55, and 66).

3.1. Transfer of the Observation Probability Matrix B. The key
to the transfer of the observation probability matrix is to
determine the mapping relationship between the feature spaces
of the target domain and the source domain. By utilizing this
mapping relationship to transfer the HMM parameters of the
source domain, a parameter model is formed that can reflect
the target trajectory characteristics of the target domain.

In this manuscript, the least square method is adopted to
construct the mapping model, and the trajectory

characteristic of the mapping model under two different
perspectives is assumed to be represented by

O, = wO, +b, (2)
where w and b are called the coefficients of a curve equation
fitting by feature mapping, O is called a coding sample of the

source domain, and O; is called the coding data of the target
domain after the mapping. The objective function is defined by
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FIGURE 6: The statistical frequency curves of the characteristics of the linear trajectory from different perspectives.
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FIGURE 7: Position change of the curved trajectory of the same target under different perspectives (from top to bottom are called the
perspectives 1 and 2, from left to right are called the positioning of the target under different perspectives, and the trajectory of the target
under different perspectives).
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FIGURE 8: Statistical frequency curves of the characteristics of the curve trajectory from different perspectives.
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Y (0,-0,)" =Y (0, - (w0, + b)), (3)

where O, is called the encoding data of the real target
domain.

According to the statistical analysis of the trajectory
characteristics in Section 2.3, the transfer of the parameter of
the observation probability mainly includes three steps.
First, both perspective trajectory samples of the source
domain and target domain are collected. Each group of
samples contains the source domain that is labeled as the
samples of the same behavior and as a small number of target
domains that are labeled as the samples. The source domain
of the HMM trajectory model denoted by Ay = (Ag, Bg, 7g) is
obtained according to the method of the training model in
Section 2.1. Then, the linear regression mapping model
about source domain and target domain features is con-
structed. Finally, the observation probability denoted by By
of the target domain is attained utilizing the relation transfer
matrix By of the linear regression.

3.2. Transfer Learning Algorithm of the Transfer Probability
Matrix A. Ignoring the effect of the initial distribution, the
initial distribution 75 of the source domain is directly mi-
grated to the target domain to form 77, and the transition
probability of the source domain acts as the transition
probability of the initial value Ay of the target domain. Then,
the transferred initial HMM is denoted by A = (A, By, ).
In this study, the optimization algorithm is utilized to
adaptively optimize the transfer of the model parameters to
attain better performance of the target domain model. The
parameters of the optimized target source model are more
suitable for the target domain data, that is, the more similar
the simulation data of the optimized model to the target
domain data would be, the better it would converge. The
objective function is defined by

HAl,iqn sim [O_T, tOT] = sim[g(AT + AA, B, nT),OT], (4)

where g(-) is the mean value of the data generated by the
simulation A (A + AA, By, ;) and AA is called a variable
in the optimization problem. The trajectory data is simu-
lated according to the algorithm steps in Section 2.2. The
inherent characteristics of the HMM require that the
transition matrix is non-negative and the sum of row el-
ements is equal to 1, so the constraint conditions of this
optimization problem are that the elements of the tran-
sition probability matrix A; and A, + AA are non-negative
and the sum of row elements is equal to 1. The measure-
ment of similarity is determined by the Euclidean distance,
which is defined by

d(07.10;) = (. (Or - 101)°), (5)

where O and Orare the mean values of the feature sequence
set of the simulated trajectory model represented by A; =
(Ar, By, mp) and target domain, respectively. Hence, both of
which belong to the same trajectory category. The similarity
computation is defined by

1

sim(Or.0r) = 2500
YT

(6)

Utilizing the constraints and objective function pre-
sented above, the interior point method is undoubtedly one
of the most suitable methods to resolve the optimal value
AA. Table 5 presents the steps of this solution procedure
leading to the optimality of AA employing the interior point
method. The similarity between the simulated data of the
target domain model and Oy is calculated. If the similarity is
greater than or equal to the similarity threshold denoted by
§, the obtained AA from the previous optimization step is re-
entered into the iteration of the interior point method as the
initial value until the computed similarity is less than the
threshold 8, and then, the HMM Ay = (A} + AA, By, ;) =
(Ap, By, p) of the target domain is attained.

3.3. HMM Transfer Learning and Recognition Framework.
To resolve the problem of the recognition of the cross-view
target trajectory, this manuscript proposes a cross-view
HMM transfer method. The algorithm framework is pre-
sented in Figure 9. Utilizing the objective function analysis,
the statistics of the characteristics of the target trajectory
under the two perspectives suggest a linear relationship.
Therefore, the mapping function between the characteristic
spaces of the source domain and the target domain is first
obtained by resolving an optimization problem based on the
linear regression model. Utilizing the mapping function, the
parameters of the observation probability of the source
domain are transferred. Then, the similarity between the
generated data of the simulated HMM and the labeled data
obtained from the target domain perspective is computed to
further optimize the transition probability of the source
domain. Hence, the target domain HMM is obtained. Fi-
nally, the forward algorithm is utilized to assess the match,
classification, and identification of the cross-view target
trajectory.

4. Experimental Results and Analysis

4.1. Experimental Evaluation. The data sets employed in this
experiment are all self-collected data, which come from the
simultaneous shooting of two cameras installed in the
10x12m?* room. The 100 samples of three kinds of tra-
jectories (300 in total) from view A of the first camera can
better reflect the real movement behavior of the moving
target. The 300 samples are taken as the source domain data
set, while the corresponding 300 samples of the view B of the
second camera are taken as the target domain sample. All
collected samples are manually marked. In this manuscript,
the performance of the model is assessed by the accuracy
measurement defined by

naccu ( 7)

Accu = )
Num

where #,.., is called the number of the correct trajectory
classification and Num is called the total number of the test
data.
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TaBLE 5: Steps of the algorithm of the transition probability optimization.

Steps of the algorithm of the transition probability optimization.
(1) Simulate the trajectory samples by model A (A, By, and )

(2) Calculate the similarity between simulation set and target domain label sample set: sim

(3) While sim>d

Solve AA according to the interior point method, update Arto Ay + AA

Simulate trajectory samples via the model A (A, By, and ;)

Calculate the similarity between simulation set and target domain label sample set: sim

END While

Source trajectory
model
As= (Ag B, 1)

Initial target model
parameters

Least square
method

|
}
I
I
|
|
|
I
I
|
|
|
|
I
: Simulation
|
|
I
I
I
|
|
|
I
]
1
|
|
|

Optimization
algorithm

Target domain
data lable sample set
Similarity
calculation
—

Target trajectory model
Ap= (A, By 77)

Interior point
method

Target trajectory model
Ar=(Ap By, mp)

P(O[Ay)

Maximum

= =

Recognition

Target domain
unlable sample set

FiGUure 9: The HMM transfer method framework. Ag = (Ag, Bg, and 71g) represents the source domain of the HMM; A = (A, By, 7p)
represents the target domain of the HMM; P (O|A;) is called the probability of the occurrence of the observation value sequence O in the

model Ap.

4.2. Analysis of Experimental Results. The first experiment
aims to qualitatively compare the performance of the HMM
transfer method described in this manuscript with the one
that existed in the literature [9]. In this experiment, k is set to
some sample values such as (k= 10, 15, 20, 25, 30, 40, and 50)
representing each type of the trajectory in the sample set of
the target domain that is randomly selected and combined
with the sample set of the source domain as the training data.
In addition to k number of the selected samples, all other
data in the sample set of the target domain are employed as
the test data. Figures 10-12 are the comparisons of the
accuracies of the test data between the source and the target
domains when the number k of each type of trajectory
sample changes with the angle of the view 6=30", =45,
and 0=60", respectively. The experimental results suggest
that the accuracy of the method in the experiment is

improved with the increment of the number of the target
domain samples, k. As the number of the target domain
samples increases, the learning algorithm could extract more
knowledge from the target domain. When only 6 =60°, the
accuracy of trajectory 2 does not improve, or even decreases,
indicating that overfitting occurs in this case. It is worth
noting that the accuracy of this algorithm increases faster
than other algorithms with the increment of samples. When
the included angle varies from 30° to 45" and 60°, and k is
kept constant, the corresponding accuracy of most trajec-
tories decreases, indicating that the increment of the angle of
the view leads to more obvious deformation of the trajectory
at different included angles (Figure 12). The experimental
results also suggest that when compared with the method
researched in [9], this method could achieve a higher rec-
ognition rate of the behavior trajectory of the cross-view
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F1GURE 10: The comparison between the proposed method and the method in [9] on the change of the accuracy in testing data utilizing the
number of the target domain markers (8=30°). (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3. (d) Trajectory 4.

target utilizing only a small amount of the marked data from
the target domain perspective, which would greatly reduce
the annotation work of the target domain perspective.

In the second experiment, according to the results of
the previous experiment, the number of training data of
the target domain perspective is fixed to 50. To verify the
effectiveness of this method, the proposed method is
compared with both Method 1 and Method 2, and the
results are recorded. In Method 1, the marked training
data from view B are utilized to find out the parameters of
the model. The marked data in the number of view B are
small, so the leave-one-out cross-validation technique is
implemented. In this technique, a group of 20 samples is
taken from the target domain data set as the test set, the
rest are left as the training data until all samples have been

tested. A total of M times (the size of the data set) are
conducted and calculated, and finally, the accuracy is
averaged. In Method 2, only the marked training data in
view A are utilized to conduct the Baum-Welch algorithm
to attain the HMM, and the determined parameters of the
model are utilized to attain the accuracy of the test data set
of view B.

Tables 6-8 present the accuracy rates of the different
methods at the different 6 values. The purpose of the
comparison with Method 1 is to decide whether a trained
model of the source domain could be utilized directly
across visual angles. The results imply that the effect is poor,
especially from different views since the knowledge
extracted from the source domain cannot be directly ap-
plied to the target domain, especially when the two
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FIGURE 11: The comparison between the proposed method and the method in [9] on the change of the accuracy in testing data utilizing the
number of the target domain markers (8=45°). (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3. (d) Trajectory 4.

domains differ much. Compared with Method 1, the
method in this manuscript greatly improves the outcomes
of the recognition. This indicates that although the HMM
trajectory modeling is very successful when implemented
from a single perspective, its performance would signifi-
cantly decrease when both cross views and crossing view
have a great impact on trajectory recognition. Compared
with Method 2, the recognition effect is similar, indicating
that when a small data set of the target domain are pro-
vided, the performance of the HMM transfer model is
almost the same as that of the training model with a large
data set of the target domain. In conclusion, the transfer
learning method in this manuscript makes use of the prior
knowledge that has been already extracted in the source
domain model and hence, could effectively identify the

cross-view target trajectory. Besides, it does not require a
high number of target domain samples. Since there are
enough samples in the source domain, which contains a
large amount of characteristic information, the transfer
learning could utilize only a small target data set to
combine with these prior pieces of knowledge to attain
better outcomes.

In the third experiment, according to the outcomes of
the first experiment, the training data of the target domain
perspective are fixed to 50, and the performance of the
proposed method is compared with the HMM transfer
method described in the literature [10, 11].

Seen from Tables 9-11 that the HMM transfer method
in this manuscript is more effective than other HMM
transfer methods under the same experimental settings.
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F1GURE 12: The comparison between the proposed method and the method in [9] on the change of the accuracy in testing data utilizing the
number of the target domain markers (68 =60°). (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3. (d) Trajectory 4.

TaBLE 6: The accuracies of Method 1, Method 2, and the proposed method (6 =30°).

Methods Method 1 Method 2 The proposed method
Trajectory 1 0.95 0.63 0.92
Trajectory 2 0.85 0.61 0.90
Trajectory 3 0.90 0.37 0.88
Trajectory 4 1.00 0.41 0.91
Average 0.93 0.48 0.90
TaBLE 7: The accuracies of Method 1, Method 2, and the proposed method (8 =45°).
Methods Method 1 Method 2 The proposed method
Trajectory 1 0.95 0.59 0.90
Trajectory 2 0.90 0.54 0.87
Trajectory 3 0.95 0.39 0.87
Trajectory 4 0.85 0.34 0.90
Average 0.91 0.47 0.89
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TaBLE 8: The accuracies of Method 1, Method 2, and the proposed method (6= 60).
Methods Method 1 Method 2 The proposed method
Trajectory 1 1.00 0.39 0.90
Trajectory 2 0.90 0.50 0.87
Trajectory 3 0.85 0.59 0.87
Trajectory 4 0.90 0.37 0.88
Average 0.91 0.46 0.88
TaBLE 9: The accuracies of the methods in the [10, 11] and the proposed method (6=30").
Methods The method in [10] The method in [11] The proposed method
Trajectory 1 0.81 0.75 0.92
Trajectory 2 0.79 0.86 0.90
Trajectory 3 0.84 0.88 0.88
Trajectory 4 0.91 0.78 0.91
Average 0.84 0.82 0.90
TaBLE 10: The accuracies of the methods in [10, 11] and the proposed method (6=45).
Method s The method in [10] The method in [11] The proposed method
Trajectory 1 0.90 0.68 0.90
Trajectory 2 0.74 0.80 0.87
Trajectory 3 0.82 0.88 0.87
Trajectory 4 0.87 0.79 0.90
Average 0.83 0.79 0.89
TaBLE 11: The accuracies of the methods in [10, 11] and the proposed method (6=60°).
Methods The method in [10] The method in [11] The proposed method
Trajectory 1 0.93 0.77 0.90
Trajectory 2 0.81 0.85 0.87
Trajectory 3 0.71 0.84 0.87
Trajectory 4 0.92 0.81 0.88
Average 0.84 0.82 0.88

In the transfer recognition of the cross-view HMM tra-
jectory model, the accuracy rate of the proposed method
reaches over 85% in most cases, and the half could be over
90%.

The experiments present that the linear regression
model based on the least square method can be suc-
cessfully applied to the transfer learning method of target
behavior recognition. The characteristic representation of
both the source domain and target domain differs due to
the variation of a visual point. To overcome this issue, we
need to find statistical patterns between the characteristics
of the source domain and the target domain. Then, the
curve needs to be fitted. By doing so, transferring the
probability distribution of the emission of the source
domain adaptively is transferred to the target domain.
Hence, it leads to transferring the correlation knowledge
between different perspectives and behaviors from one
domain to another. The existence of a small number of the
labeled samples in the target domain provides a reference
for the optimization of the state transition probability of
the source domain. The improved and optimized HMM

performs well on the data set with higher accuracy and
better robustness.

5. Conclusion

This manuscript mainly deals with identifying the behavior
categories of the trajectory data of the target behavior when
the cross perspective is a concern. In the case of having
insufficient labeling data of the target domain, having dif-
ficulty in labeling data and dealing with a higher cost, the
problem is transformed into the identification problem of
the feature sequence of the trajectory utilizing the HMM
transfer learning. Through knowledge transfer of relevant
data from different perspectives, the classification model is
constructed, and then, the behavior trajectory category of the
data to be classified in the target domain is identified. In this
manuscript, first, according to the data that is labeled from
the perspective of the source domain, an HMM is con-
structed to train the parameters of the triples; second, the
frequency of the coding sequence features utilizing the same
type of data that is labeled from the perspectives of the
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source domain and target domain is computed. Then, the
mapping curves of the two perspectives are fitted by the least
square. Hence, the observed probability matrix is adaptively
transferred by mapping relationships. Afterward, the tran-
sition probability based on a small labeled data of the target
domain is transferred to the target domain through an
optimization algorithm. Therefore, the target domain clas-
sification model is constructed. The experimental results on
the data set denote that the transfer learning method based
on the HMM could construct the classification model, and it
has a better performance in the recognition of the cross-view
target trajectory when there exist a small number of labeled
data in the target domain perspective.
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