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-is paper constructs a reliable reactive power optimization (RPO) model of power grid with the controlled participation of high-
penetration wind and solar energies and provides a novel fast atom search optimization (FASO) algorithm to reach a set of
solutions to the RPO problem.-e developed FASO algorithm owns prominent merits of high searching efficiency and premature
convergence avoidance compared with the original atom search optimization (ASO) algorithm, which is applied to determine the
optimal dispatch scheme including terminal voltage of generators, the capacity of static VAR compensator (SVC), reactive power
output of wind and solar energies, and the tap ratio of transformers. -ere are two objective functions to be minimized for
maintaining the safe and reliable operation of power grid, i.e., total power loss of transmission lines and total voltage deviation of
nodes. Meanwhile, the regulation capacities of wind farms and photovoltaic (PV) stations are evaluated based on different weather
conditions, i.e., wind speed and solar irradiation. Particularly, the reactive power outputs of wind and solar energies can be
globally controlled to coordinate with other controllable units instead of a local self-control. Eventually, the extended IEEE 9-bus
and IEEE 39-bus systems are introduced to test the performance of the FASO algorithm for RPO problem. It has been verified that
FASO can not only meet the optimal regulation requirements of RPO but also obtain high-quality regulation schemes with the
fastest convergence speed and highest convergence stability in contrast with else algorithms.

1. Introduction

Currently, the share of renewable energy sources (RESs) in
the power grid is ever-increasing due to their relatively low-
cost and sustainability features [1–3]. However, RESs such as
wind energy [4–8] and solar energy [9–13] are intermittent
and stochastic in their nature, of which the high-proportion
integration into the power grid poses a great challenge on the
stable operation of the whole power grid while brings new
opportunities for reactive power optimization (RPO)
[14–16]. Actually, RESs not only satisfy active power demand
on the power grid but also have definite potential in reactive
power regulation [17, 18]. In recent years, RPO has in-
creasingly been a highlighted research focus in power system
programming issues for practical engineering applications
[19–21]. Generally, RPO is devoted to improve the voltage
quality of nodes and reduce the total power loss of

transmission lines to enhance the safe and economic op-
eration of the power grid [19–21]. In general, the objectives
are reached by determining optimal control variables in the
power system, including generator voltages, tap ratio of the
transformers, and reactive power output of reactive power
compensation device [22, 23]. For the sake of developing the
full potential in reactive power regulation of RESs, the
appropriate reactive power outputs of RESs should be
globally controlled to coordinate with other control variables
instead of local self-control [16, 24].

RPO is mathematically defined as a renowned nonlinear
and nonconvex optimization problem involving discrete and
continuous control variables, meanwhile, constrained by a
series of equality and inequality constraints [25]. Note that
all restrictions should be satisfied in the whole optimization
process affirmatively. By far, remarkable research efforts
have been done in RPO solution, among which the
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overwhelming majority employ conservative optimization
methods such as linear programming [26], Newton method
[27], dynamic programming [28], interior point method
[29], and quadratic programming [30]. However, these
conventional techniques always suffer several serious
drawbacks in handling nondifferentiable functions and in-
equality constraints, as well as discrete variables, which are
computationally intractable and may lead to loss of accuracy
[31].

-us far, numerous amounts of metaheuristic algo-
rithms and their variant have been developed to solve such
obstacles. Such intelligence optimization algorithms display
tremendous potential in power system optimization thanks
to their prominent merits of high flexibility, relatively simple
structure, and rapid response, as well as the ability of
handling nonlinear, large-scale, and multivariable optimi-
zation problems [32]. In particular, some groups are more
popular to solve the RPO problem such as genetic algorithm
(GA) [33, 34], particle swarm optimization (PSO) algorithm
[33, 35], and moth-flame optimization (MFO) algorithm
[36]. Particularly, literature [34] presents an improved GA
for RPO, in which real and binary codes are employed,
respectively, to address continuous and discrete variables.
However, the computation time is not substantially lower
than that of the original GA. Besides, the optimal reactive
power dispatch is achieved by grey wolf optimizer (GWO)
[37], where the best combination of control variables is
found such that total power loss and total voltage deviation
issues can be effectively solved [38]. Moreover, work [39]
proposes a discrete binary PSO algorithm to address the
overriding risk of voltage caused by wind power fluctuation.
In general, most of them really lack unified control and
planning for the reactive power output of RESs such that the
potential in reactive power regulation of RESs has not been
maximized. Moreover, most of the metaheuristic algorithms
suffer from low searching efficiency and premature con-
vergence drawbacks [40].

To address the abovementioned problems, a reliable fast
atom search optimization (FASO) algorithm that derives
from the original atom search optimization (ASO) algorithm
[41] is performed to solve the intractable RPO problem.
Compared to the original ASO algorithm, the effective
searching mechanism that Euclidian distance ratio is self-
adaptively updated according to the optimization results is
introduced by FASO algorithm to realize a better balance
between local exploitation and global exploration [42] and
most importantly can accelerate convergence to high-quality
solutions.

-e rest of this paper is organized as follows: Section 2
establishes the reactive power optimization model of power
grid considering high-penetration wind and solar energies,
in which the total power loss and total voltage deviation are,
respectively, treated as the single objective function to be
minimized; Section 3 elaborates the basic principle of FASO
algorithm and detailed design for RPO, where the control
variables to be optimized are determined; Section 4 un-
dertakes two case studies to validate the superiority and
efficiency of the proposed algorithm for solving the RPO

problem; eventually, several popular metaheuristic algo-
rithms are executed along with the implementation of de-
veloped FASO algorithm to make a fair comparison; at last,
conclusions are drawn in Section 5.

2. ReactivePowerOptimizationModel of Power
Grid with High-Penetration Wind and
Solar Energies

2.1. Reactive Power Regulation of Wind Generators. -e
configuration of doubly-fed induction generator (DFIG)
connected to infinite power grid via two voltage source
converters (VSCs) is illustrated in Figure 1, in which the
mechanical power extracted from wind energy and active
power injected into the power grid are directly related to
wind speed [43].

Assume that the output of active power is accurately
tracked by the maximum power point [44]. Based on the
current wind speed, the active power can be calculated as
follows [45]:
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where vw, vinw , and voutw denote current, cut-in, and cut-out
wind speed, respectively; vbasew means the rated wind speed;
and Pbase

w is the rated output power of wind turbine.
With the help of stator-side VSC and grid-side VSC,

wind turbines can generate active power over a wide range of
rotational speeds around the synchronous speed at constant
voltage and frequency. And the magnitude and direction of
the active power that flows between the rotor and the grid are
controlled. Furthermore, the instantaneous reactive power
of wind generators can be controlled independently by the
reactive power output of stator-side VSC and grid-side VSC,
as follows [46]:

Qg,max � Qs,max + Qc,max,

Qg,min � Qs,min + Qc,min,

⎧⎨

⎩ (2)

where Qg,max and Qg,min stand for the maximum and
minimum reactive power regulation capacity for wind
turbine that injected into power grid, respectively;Qs,max and
Qs,min represent the maximum andminimum reactive power
regulation capacity for stator-side VSC, respectively; and
Qc,max and Qc,min are the maximum and minimum reactive
power regulation capacity for grid-side VSC, respectively.

And then, the limits of the reactive power output of
stator-side VSC are determined by the stator voltage, as well
as maximum current specified on rotor-side and stator-side,
as follows [47]:
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where Qs1,max and Qs1,min represent the lower and upper
limits of reactive power regulation capacity for stator-side
VSC under maximum current constraint on the rotor side,
respectively;Qs2,max andQs2,min mean the lower and upper of
reactive power regulation capacity for stator-side VSC under
maximum current constraint on the stator side, respectively;
Ls and Lm stand for stator inductance and magnetizing
inductance, respectively; Ir,max and Is,max denote the maxi-
mum current specified on the rotor side and stator side,
respectively; Us refers to voltage virtual value of the stator; s
is slip ratio; and ω1 is the synchronous rotational speed.

Besides, the limits of reactive power output for grid-side
VSC are mainly affected by the capacity of grid-side VSC, as
follows [45]:
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where Sc,max represents the capacity of grid-side VSC.

Hence, the limits of reactive power regulation capacity of
each wind turbine at a certain wind speed can be determined
and then the whole wind farm [46].

2.2. Reactive Power Regulation of PV Generators. -e active
power output of photovoltaic (PV) stations depends mainly
upon the solar irradiation and temperature. Assuming that
the output power is regulated via the maximum power point
tracking (MPPT) control; accordingly, the output of active
power can be expressed as follows [47, 48]:

Ppv � P
base
pv 1 + αpv · T − Tref(   ·

Spv

1000
, (5)

where Pbase
pv denotes the rated generated output of PV sta-

tions; αpv means temperature-power conversion factor; T
and Tref represent current ambient temperature and refer-
ence temperature, respectively; and Spv refers to current solar
irradiation.

Here, the limits of reactive power regulation capacity for
PV stations largely rely on the current active power output
and the capacity of PV inverter, as follows:
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where Qpv,max and Qpv,min represent the lower and upper of
reactive power regulation capacity for PV stations, respec-
tively; Spv stands for the capacity of PV inverter.

2.3. Reactive Power Optimization Model. -e RPO model
constructed in this paper aims to minimize the total power
loss in all transmission lines and total voltage deviation of all
nodes, as follows:

minf(x)
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where Ploss means total power loss of the power grid; Vd
denotes total voltage deviation of all nodes, which refers to
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Figure 1: Energy conversion of doubly-fed induction generator.
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per-unit value; Vi, Vj, and θijf represent the voltage ampli-
tude of node i and node j, and the phase angle difference
between them, respectively; gij refers to the admittance
between node i and node j; Ni and NL stand for the set of all
nodes and the set of all branches; and Vj

∗ is the rated voltage
of node j.

In terms of the considered optimization problem, the
objective functions are subjected to several equality and
inequality constraints, in which all constraints to be con-
sidered are described as follows:

(1) Power flow constraints

PGi − PDi − Vi 
j∈Ni

Vj gij cos θij + bij sin θij  � 0, i ∈ N0,

QGi − QDi − Vi 
j∈Ni

Vj gij sin θij − bij cos θij  � 0, i ∈ NPQ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

where PGi and QGi are active and reactive power
generation of node i, respectively; PDi and QDi
represent active and reactive power load, respec-
tively; bij mean the susceptance between node i and
node j; N0 denotes the set of nodes except for slack
bus; and NPQ is the set of PQ buses.

(2) Generator constraints

P
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where PGb denotes active power generation of slack
bus; PGbmin and PGbmax represent the maximum and
minimum active power generation regulation at
slack bus, respectively; QGi

min and QGi
max denote the

maximum and minimum reactive power regulation
of generator; VGi

min and VGi
max stand for the

maximum and minimum output voltage of gener-
ators; and NG is the number of all generators.

(3) Constraints of reactive power compensation device
and transformer tap

Q
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T
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h , h ∈ NT,
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where QCi
min and QCi

max stand for the maximum
and minimum capacity of the i-th reactive power
compensation device, respectively; Th

min and Th
max

represent the lower and upper limits of the h-th
transformer tap; NC is the number of reactive power
compensation devices; and NT is the number of
transformer taps.

(4) Security constraints

V
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where Vi
min and Vi

max mean the lower and upper limits
of voltage of node i, respectively; Sl and Slmax are ap-
parent power and transmission power limit of line l,
respectively; and NL is the number of lines.

3. Design of Fast Atom Search
Optimization Algorithm

-e proposed FASO algorithm is developed from the original
ASO algorithm, which is also inspired by the molecular dy-
namics in nature, where each atom in the populations will
interact with others by means of the interaction forces resulting
from Lennard–Jones (L-J) potential and the geometric con-
straints between them [40]. -e interactions among atoms
contain two options, i.e., repulsion and attraction.-e farmer is
used to avoid overcrowding of atoms while the latter is to bind
atoms together. In particular, the repulsion brings a wider global
exploration capability while the attraction ensures a deeper local
exploitation ability. Note that the repulsion will gradually
weaken and the attraction will increasingly strengthen for
seeking the globally optimal solutions in the iteration process.
Besides, geometric constraint also leads to a deeper local ex-
ploitation due to its ability to propel all atoms; especially, worse
atoms approximate the current optimal solutions.

3.1. Inspiration. In FASO, the L-J potential essentially
characterizes the potential energy between two interactive
atoms, which is also seen as the power of atomic motion.-e
potential energy on the ith atom imposed by the jth atom can
be rewritten as follows:
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where ε and σ denote the depth of the potential well and the
length scale, respectively, and rij denotes Euclidian distance
between the jth and the ith atoms, rij � ‖xj − xi‖.

-en, the interaction forces on the ith atom imposed by
the jth atom can be expressed as follows [40]:
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As demonstrated in Figure 2, the potential energy largely
depends on the relative distance among atoms. It is easy to
note that the whole potential energy area is fallen into re-
pulsion region and attraction region, in which the equi-
librium between two regions can be achieved when
(σ/r) � 1.12. Note that the potential energy will dramatically
decrease as the Euclidean distance between two atoms in-
creases when two atoms repel each other. In addition, the
potential energy will slowly decrease to be zero with the
increase of Euclidian distance when two atoms attract each
other. Crucially, more positive attraction and less negative
repulsion are required to be assured as iterations increase.
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Hence, the interaction forces can be calculated by a modified
equation, as follows [41]:

Fij
′ (k) � − η(k) 2( hij(k) )

13
− ( hij(k) )

7
 , (14)

where η(k) denotes the depth function at the kth iteration
and hij(k) means distance ratio between the jth and the ith
atoms, which can be updated by the following equation [41]:
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where α denotes depth weight, hmax and hmin mean the upper
and lower limits of distance ratios, and Xbestrepresents the
subset of the best L atoms.

As illustrated in Figure 3, F′ is directly related to the
input variables η and h. -erefore, the interaction force
could be also controlled by the limits of h, in which the upper
limit of h is set to be 1.24 like the original ASO algorithm.
Moreover, the lower limit of h is determined to be 1.1 or 1.2,
which is one improvement of FASO. In FASO, atoms can
perform a wider global exploration if a better solution that
compared with the previous optimal solution cannot be
found, and consequently, a smaller lower limit of h is re-
quired. On the contrary, a deeper local exploitation is needed
if the best solution has been updated. -e lower limit of h is
expressed as follows:

hmin( k ) �
1.1 + w(k), If Fit xbest(k)( ≤ Fit x

p

best ,

1.2, otherwise,
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π
2

·
k
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 ,

(16)

where Fit refers to the fitness function; xbest(k) and xp

best
mean the best solution obtained at the kth iteration and the
previous best solution, respectively; and w(k) is a function
that can drive the FASO algorithm drift from exploration to
exploitation [43].

Moreover, variable L also has a great impact on the
interaction force. In the ASO algorithm, L atoms with better
fitness value are treated as the neighbors of a certain atom,
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Figure 2: Potential energy of atoms under different input parameters.
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and thus which variable L denotes the number of atoms that
are selected to interact with such atom. In the first stage of
iterations, larger L, i.e., as many atoms as possible, the L
neighbors of such atom are needed to obtain the high ex-
ploration ability in the search space and thus can well avoid
being trapped into the local optimal. On the contrary, each
atom needs to interact with as few atoms with better fitness
value as its L neighbors at the end of iterations are needed to
rapidly obtain high-quality solution. In general, FASO
should implement a wide global exploration when it cannot
find a better solution compared with the previous best so-
lution, while a deep local exploitation is required when it can
find a better solution. Hence, as a function of time, L
gradually decreases with the lapse of iterations. Besides, in
this paper, the number of neighboring atoms is selected as 2
when it finds a better solution compared with the previous
best solution. Hence, the FASO algorithm develops another
improvement compared with the ASO algorithm [41], as
follows:

L( k ) �

n − ( n − 2 ) ×

����
k

kmax



, If Fit xbest( k )( ≤ Fit xp

best ,
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(17)

where n is the population size.

Hence, the total interaction force that acted on the ith
atom from the jth atoms can be given by

Fi(k) � 

L(k)

j�1,j≠ i

Fij(k). (18)

3.2. Geometric Constraint. -e geometric constraint [49]
plays a crucial role in atomic searching motion to keep the
polyatomic molecule structure of FASO. Assume that each
atom has a covalent bond with the best atom. Accordingly,
the geometric constraint force of the ith atom from the best
atom can be expressed as follows [37]:

θi(k) � xi(k) − xp

best(k)
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2
i ,
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λ(k) � βe
− 20k/kmax),(

(19)

where θi denotes the geometric constraint of the ith atom; Gi

represents the constraint force of the ith atom; and λ and β
mean the Lagrangian multiplier and multiplier weight,
respectively.

3.3. Atomic Searching Motion. -e interaction forces and
geometric constraints have a joint influence on the atomic
motion. Each atom moves to a new positive following
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Newton’s second law, in which the acceleration of each atom
is given by [37]

Mi(k) � e
( ( Fit( xbest(k) )− Fit xi(k)( ) )/( Fit( xworst(k) )− Fit xbest(k)( ) ) )

,

mi(k) �
Mi(k)


n
j�1 Mj(k)

,

ai(k) �
Fi(k) + Gi(k)

mi(k)
, i � 1, 2, . . . , n,

(20)

where xworst(k) is the worst solution required at the kth
iteration.

It is similar to PSO algorithm [50], and the velocity and
position of each atom can be updated as follows [37]:

vi(k + 1) � c · vi(k) + ai(k),

xi(k + 1) � xi(k) + vi(k + 1),
(21)

where c denotes a random vector with the same dimensions
of xi in the range of [0, 1].

3.4. >e Implementation of FASO Algorithm

(1) Controllable variables
RPO of power grid with the participation of wind
and solar energies is regarded as a multiconstrained
nonlinear and nonconvex optimization problem,
which contains both continuous variables and dis-
crete variables, i.e., terminal voltage of generators,
the capacity of static VAR compensator (SVC), re-
active power output of wind and solar energies, and
the tap ratio of transformers in the substations [14].
Continuous variables can converge to the optimal
value in the iteration process while the optimal value
of discrete variables is needed to be rounded in the
continuous space [51].

(2) Fitness function
-e fitness function of FASO depends largely on the
objectives and constraints of the RPO model, which
can be designed as follows:

Fit( C
→

) � μ1
Ploss

Pbase
+ 1 − μ1( Vd + ηq, (22)

where η denotes penalty coefficient, which is gen-
erally set to be a biggish positive constant and q
represents the number of constraints that are not
satisfied.

(3) Overall optimizing process
In the end, the overall optimizing process of FASO-
based RPO is elaborated in Figure 4.

4. Case Studies

-e extended IEEE 9-bus and extended IEEE 39-bus test
systems integrated with PV and wind generators are utilized
in the simulation analysis of RPO for verifying the feasibility

of the proposed algorithm. Meanwhile, the effects of weather
conditions on RPO results also are discussed. All simulations
are programmed in the personal computer on the Matlab
2017b and Matpower 7.0b1. Optimization performance of
FASO algorithm is compared to that of GA [34], PSO al-
gorithm [39], GWO algorithm [37], and ASO [41]. Assume
that the wind speed of wind farms and the solar irradiation
of PV stations are maintained constant, respectively which
are set to be 10m/s and 800W/m2. -e control variables of
RPO contain terminal voltages of conventional coal-fired
units, SVC capacity, reactive power output of wind and solar
energies, and the tap ratio of the transformers in the sub-
stations, of which the first three are continuous, while the
last one is discrete. -e ranges of these control variables are
tabulated in Table 1. Meanwhile, the number of control
variables applied in the extended IEEE 9 and IEEE 39-bus
systems is given in Table 2.

4.1. Simulation Analysis of IEEE 9-Bus Test System. In the
first case, the RPO is conducted in the extended IEEE 9-bus
system, where the topology of the distribution network is
demonstrated in Figure 5. Obviously, bus 1 represents the
slack bus whose voltage magnitude is assumed to be con-
stant, wind farm is connected to bus 7 and PV station is
connected to bus 9, as well as SVC is connected to bus 4. As
for the extended IEEE 9-bus test system, the base capacity of
the system is 100MW, the installed capacities of PV stations
and wind farm are, respectively, 20MW and 10MW. For the
sake of a relatively fair comparison, the population size of the
proposed algorithm and other algorithms all are set to be 20,
and the maximum iteration is set to be 100. Some specific
parameters of all comparison algorithms are set to the de-
fault values. If the parameters are not chosen properly, the
convergence time will be too long or the local optimum will
be trapped. It is worthmentioning that the key parameters in
the FASO algorithm, i.e., the depth weight α, the multiplier
weight λ, and the limits of distance ratios h, are determined
to be 80, 1, and 1.1(1.2)/1.24 by four different benchmark
functions, namely, the Sphere, Rosenbrock, Ackley, and
Griewank functions, respectively [11, 41].

-is paper performs the single objective optimization, in
which total power loss of all transmission lines and total
voltage deviation of all nodes are, respectively, regarded as
the objective functions to determine the optimal scheme of
RPO. Figures 6(a) and 6(b), respectively, provide the con-
vergence curves of total power loss and total voltage devi-
ation obtained by different algorithms in the extended IEEE
9-bus test system. Simulation results explicitly validate that
FASO algorithm can acquire the high-quality solution most
effectively and efficiently among all the algorithms. In
contrast, PSO reveals the slowest convergence rate compared
to that of other algorithms. Moreover, Figures 7(a) and 7(b),
respectively, give the box-and-whisker diagrams of RPO
results acquired by different algorithms, which indicate that
FASO algorithm can distribute within the smallest range
withminimal lower and upper bounds among all algorithms.
It verifies that FASO algorithm owns the highest conver-
gence stability and searching ability.
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For the sake of analyzing the impact of wind speed and
solar irradiance on the RPO in the extended IEEE 9-bus
system, the distributions of RPO results acquired by the

FASO algorithm under different weather conditions are
shown in Figure 8. It can be easily found that power loss
gradually increases with the increase of wind speed while
gradually decreases as solar irradiance increases. Such results
manifest that the increase of power loss does not entirely
depend on the active power output of wind and solar en-
ergies, of which other effects include the locations of wind
and PV generators installed and operating condition of
power grid as well [31]. In addition, the total voltage de-
viation gradually decreases owing to the reduction of the
active power output of wind and solar energies and ac-
cordingly the increase of reactive power regulation capacity
when the wind speed or solar irradiance is significantly
reduced.

4.2. Simulation Analysis of IEEE 39-Bus Test System. In the
second case, the RPO is conducted in the extended IEEE 39-
bus system, where the topology of the distribution network is
demonstrated in Figure 9. Note that the slack bus is located
in bus 1, five PV generators are, respectively, installed buses

1: Initialize parameters, population, and maximum iteration kmax for FASO algorithm;
2: Set k = 0;
3: FOR1 i = 1 to n
4: Implement the controllable variables of reactive power optimization for the ith atom

to the IEEE test system;
5: 
6: 

Carry out the power flow calculation and gather the real-time grid data;
Calculate the fitness value of the ith atom;

7: END FOR1
8: Determine the best solution obtained by FASO at the kth iteration;
9: FOR2 i = 1 to n
10: 
11: 
12: 
13: 

Calculate the total interaction force of the ith atom by Eqs. 18-25;
Calculate the constraint force of the ith atom by Eqs. 26-28;
Update the acceleration of the ith atom by Eqs. 29-31;
Update the position of the ith atom by Eqs. 32 and 33;

14: END FOR2
15: Update the current best solution;
16: Set k = k + 1;
17: If k < kmax, then output the best controllable variables of reactive power optimization 

 otherwise, return to Step 4.model;

Figure 4: Overall optimizing process of FASO for RPO problem.

Table 1: -e ranges of control variables applied in the extended IEEE 9 and IEEE 39-bus systems.

Test
systems

Terminal voltage of
generators (p.u.)

Capacity of SVC
(Mvar)

Reactive power output of
wind energy (Mvar)

Reactive power output of
solar energy (Mvar)

Tap ratio of the
transformers

IEEE 9-
bus [1, 1.05] [1, 5] [− 7.62, 9.09] [− 7.55, 7.55] —

IEEE 39-
bus [1, 1.07] — [− 7.62, 9.09] [− 7.55, 7.55] [0.96, 0.97,

0.98, . . ., 1.07]

Table 2: -e number of control variables applied in the extended IEEE 9 and IEEE 39-bus systems.

Test
systems

Terminal voltage of
generators

Capacity of
SVC

Reactive power output of
wind energy

Reactive power output of
solar energy

Tap ratio of the
transformers Total

IEEE 9-
bus 3 1 1 1 — 6

IEEE 39-
bus 10 — 5 5 12 32

1

5

4

9

G1

G2 G3

G : Thermal power plant

: Wind farm

: Photovoltaic plant

: Transformer

: Static VAR compensator

Figure 5: Network topology for IEEE 9-bus system.
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1, 4, 6, 7, and 20, and five wind generators are, respectively,
installed buses 21, 23, 25, 27, and 28.-e base capacity of the
system is 100MW, and the installed capacities of PV stations
and wind farms are, respectively, 30MW and 20MW. In
addition, the population size of all algorithms is set to be 40,
and the maximum iteration is set to be 100.

In the extended IEEE 39-bus test system, the conver-
gence curves and the box-and-whisker diagrams of RPO
results produced by different algorithms are illustrated in
Figures 10 and 11, respectively. Obviously, optimization
performances of the FASO algorithm such as convergence

stability, convergence speed, and searching ability noticeably
improve with the increase of system scale and the number of
control variables. It indicates that FASO algorithm is also
applicable to large-scale networks for RPO solution.

To investigate further, the distributions of total power
loss and total voltage deviation under different weather
conditions acquired by the FASO algorithm in the extended
IEEE 39-bus system are illustrated in Figure 12. It can be
concluded that power loss and voltage deviation are subject
to some other factors rather than only the power output of
renewable energies. For optimal operation in security and
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Figure 6: Convergence curves of RPO results obtained by different algorithms in the extended IEEE 9-bus system. (a) Power loss; (b) voltage
deviation.
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Figure 7: Box-and-whisker plots of RPO results obtained by different algorithms in 20 runs in the extended IEEE 9-bus system. (a) Power
loss; (b) voltage deviation.
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Figure 8: Distributions of RPO results obtained by FASO under different weather conditions of IEEE 9-bus system. (a) Power loss; (b)
voltage deviation.
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economy of the power grid with high-penetration wind and
solar energies, the install locations of wind and PV gener-
ators are worth further investigating in the future.

4.3. Comparative Analysis. Table 3 provides the statistical
results from five algorithms with regard to total power loss
and total voltage deviation (bold indicates the best results).
Note that all algorithms are executed in 20 independent runs
to acquire statistical results and convergence graphs, where

the best solutions are used as the optimal RPO scheme. As a
result, FASO algorithm effectively avoids local optimum
trapping thanks to its dynamic searching mechanism, which
can maintain an appropriate tradeoff between local ex-
ploitation global exploration. Moreover, the convergence
speed of the FASO algorithm can be significantly improved.
Particularly, voltage deviation of FASO algorithm is merely
51.16%, 24.44%, 59.45%, and 75.86% of that of GA, PSO,
GWO, and ASO algorithms in the IEEE 39-bus test system,
respectively.
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Figure 10: Convergence curves of RPO results obtained by different algorithms in the extended IEEE 39-bus system. (a) Power loss; (b)
voltage deviation.

38.5

39

39.5

40

40.5

41

41.5

Po
w

er
 lo

ss
 (M

W
)

PSO GWO ASO FASOGA

(a)

×10–3

PSO GWO ASO FASOGA

2

4

6

8

10

12

14

16

Vo
lta

ge
 d

ev
ia

tio
n 

(p
.u

.)

(b)

Figure 11: Box-and-whisker plots of RPO results obtained by different algorithms in 20 runs in the extended IEEE 39-bus system. (a) Power
loss; (b) voltage deviation.
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5. Conclusions

-is paper designs a FASO algorithm for RPO of power grid
integrated with wind and solar energies, which owns the
following three contributions/novelties:

(1) A new RPO model considering high-penetration
wind and solar energies is established, in which the
reactive power regulation ability of PV and wind
generators themselves is completely developed so as
to compensate reactive power for the power grid.

(2) In contrast with the original ASO algorithm, FASO
can successfully realize better balance between local
exploitation and global exploration via controlling
the repulsion and attraction intensities among atoms
based on current optimization results. -erefore,
FASO can remarkably improve optimization effi-
ciency and acquire high-quality optimum the fastest.

(3) A series of case studies are undertaken to validate the
competency of the FASO algorithm for RPO, such
that the total power loss and voltage deviation can be
minimized in two distribution networks. Particu-
larly, statistical results clearly showcase that FASO
algorithm can find the best quality solutions with the
fastest convergence speed and highest convergence
stability in contrast with else algorithms.

Variables
Ploss: Total power loss of all transmission lines
Vd: Total voltage deviation of all nodes
PGi, QGi: Active and reactive power generation of node i
PDi, QDi: Active and reactive power load
PGb: Active power generation of slack bus
QGi

min,
QGi

max:
-e maximum and minimum reactive power
regulation of generator

VGi
min,

VGi
max:

-e maximum and minimum output voltage
of generator

QCi
min,

QCi
max:

-e maximum and minimum capacity of the
i-th reactive power compensation device

Th
min,

Th
max:

-e lower and upper limits of the h-th
transformer tap

NC, NT: -e number of reactive power compensation
devices and transformer taps

Sl, Slmax: Apparent power and transmission power limit
of line

Th
min,

Th
max:

-e lower and upper limits of the h-th
transformer tap

NC, NT: -e number of reactive power compensation
devices and transformer taps

Vi
min, Vi

max: -e lower and upper limits of voltage of node i
Sl, Slmax: Apparent power and transmission power limit

of line l
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Figure 12: Distributions of RPO results obtained by FASO under different weather conditions of IEEE 39-bus system. (a) Power loss; (b)
voltage deviation.

Table 3: Statistical results of convergence performance acquired by five algorithms in 20 runs.

Test systems IEEE 9-bus IEEE 39-bus
Algorithms Total power loss (MW) Total voltage deviation (p.u.) Total power loss (MW) Total voltage deviation (p.u.)
GA 3.9092 7.5853E − 04 39.8906 0.0043
PSO 3.9352 8.8918E − 04 41.2976 0.0090
GWO 3.9248 8.5823E − 04 40.0164 0.0037
ASO 3.8982 6.7407E − 04 39.2954 0.0029
FASO 3.8909 6.5070E− 04 38.5866 0.0022
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FASO parameters
hmax, hmin: Maximum and minimum distance ratios
n: Population size
β: Multiplier weight
λ: Lagrangian multiplier

Wind generator parameters
Ls, Lm: Stator inductance and magnetizing inductance
ω1: Synchronous rotational speed
Qg,max,
Qg,min:

-e lower and upper limits of reactive power
regulation capacity for wind turbine

Sc,max: Capacity of the grid-side VSC

PV generator parameters
Pbase
pv : -e rated generated output of PV stations

αpv: Temperature-power conversion factor
Spv: Current solar irradiation
Qpv,max,
Qpv,min:

-e maximum and minimum reactive power
regulation capacity for PV stations

Spv: the capacity of PV inverter

Abbreviations

RESs: Renewable energy sources
RPO: Reactive power optimization
FASO: Fast atom search optimization
SVC: Static VAR compensator
L-J: Lennard–Jones
GA: Genetic algorithm
PSO: Particle swarm optimization
MFO: Moth-flame optimization
GWO: Grey wolf optimizer.
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