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Efficient analytical model directly enhances the reliability evaluation of flexible mechanism under operation. In this paper, genetic
algorithm-based extremum neural network (GA-ENN) is developed as reliability model by introducing the thoughts of extremum
and genetic algorithm (GA) into artificial neural network to address the key problems comprising transient response and
modeling precision in the dynamic reliability analysis of flexible mechanism in a time domain. ,e thought of extremum is
adopted to simplify transient response process as one extremum value to the difficulty of dynamic reliability analysis induced by
transient process response, and the GA is applied to find the optimal model parameters of reliability model. ,e dynamic
reliability analysis of two-link flexible robot manipulator (TFRM) (a typical flexible mechanism) was implemented based on the
GA-ENNmethod, regarding the input random variables of material density, elastic modulus, section sizes of components, and the
output response of components’ deformations. From the analysis, the comprehensive reliability of the TFRM is 0.951 when the
allowable deformation is 1.8×10−2m. Besides, the maximum deformations of the two components follow the normal distri-
butions with the means of 1.45×10−2m and 1.69×10−2m and the standard variances of 6.77×10−4m and 4.08×10−4m, re-
spectively. ,rough the comparison of methods, it is illustrated that the developed GA-ENN improves the simulation efficiency
and modeling accuracy by overcoming the problems of transient response and model parameter optimization in the dynamic
reliability analysis of TFRM.

1. Introduction

As one of the important parts in mechanical system in
robotics, satellite, aircraft, aeroengine, and so forth, flexible
mechanism severely influences the safety and usability of
mechanical system. Currently, the investigation of flexible
mechanism attracts a lot of attention with the emphasis on
the control strategy [1–3] and the modeling and solution of
dynamic equation [4, 5]. ,e reliability evaluation of flexible
mechanism has become one interesting topic in ensuring the
secure operation of mechanical system [6].

Numerous investigations on reliability analysis lead to
the rapid development of reliability approaches. Response
surface method (RSM, also called surrogate model) is widely

applied in reliability analysis. Fei et al. developed decom-
posed-coordinated surrogate modeling strategy for com-
pound function approximation and a turbine-blisk
reliability evaluation [7], and the method was applied aer-
oengine blade-tip clearance and its components [8–10]; Li
et al. employed support vector machine in structural reli-
ability analysis [11]; Kaymaz applied Kriging method to
complete structural reliability problems [12]; Xiong et al.
presented a double weighted stochastic RSM for reliability
analysis [13]; Gavin et al. gave the RSM-based high-order
limit state functions for reliability analysis [14]; Ren et al.
established neural network response surface model for re-
liability analysis based on artificial neural network (ANN)
with high accuracy and nonlinear mapping capability [15];
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Dai et al. applied this ANN-RSM to the regression analysis of
complex structure limit state function to improve the ac-
curacy of reliability analysis [16]. ,e above works mainly
focus on structural reliability and prompt plentiful ap-
proaches on evaluating, analyzing, and designing structural
reliability.

However, few efforts have been done on the reliability
analysis of flexible mechanism. Flexible mechanism analysis
involves nonlinearity, multicomponent coupling, and time
variance (transient), so that it is inevitable that the reliability
analysis of flexible mechanism is a complex simulation with
large computational loads, strong coupling, and difficult
calculation [17]. Due to the transient response and com-
plicated analysis, the simulation efficiency and model pre-
cision of flexible mechanism reliability analysis are
unacceptable if the response surface methods effectively used
in structural reliability analysis are directly employed. To
solve the issues, Song et al. studied the deformation response
reliability analysis of flexible mechanism [6]. Zhang et al.
completed the reliability evaluation and topology optimi-
zation of compliant mechanism by using level set method
and first-order reliability method [18]. To improve the
computational efficiency, Zhang et al. developed extremum
RSM- (ERSM-) based quadratic polynomials for the reli-
ability analysis of flexible manipulator by combining flexible
multibody dynamics with modal comprehensive method
and modal truncation technique [19]. Yang et al. proposed
the backpropagation-ANN- (BP-ANN-) based Monte Carlo
(MC) method for dynamic strength reliability analysis of
flexible mechanism [20]. Reliability analytical model directly
influences the precision and availability of flexible mecha-
nism reliability evaluation under operation. Although the
proposed ERSMs and BP-ANN model improve the effi-
ciency and accuracy of flexible mechanism reliability anal-
ysis to some extent, the improved efficiency and precision
are insufficient yet. ,is is because of the following: (1) as
BP-ANNmodel is established, training algorithms have local
optimization rather global optimization and difficult con-
vergence; (2) the weights and thresholds (model parameters)
in BP-ANNmodel are so imprecise that the BP-ANNmodel
has low approximation accuracy; (3) modeling speed is too
low to implement the reliability analysis of flexible mech-
anism due to noneffective transient processing.

Bayesian regularization algorithm (BRA) holds strong
generalization ability and global optimization ability in
searching for themodel parameters by gradual approximation
in training process [16]. Genetic algorithm (GA) effectively
avoids premature convergence and local optimization in
modeling process [21, 22]. ,erefore, it is important to adopt
GA to improve the accuracy of BP-ANN model for flexible
mechanism reliability analysis. ,e extremum thought in
ERSM offers a measure to process the transient response
problem in flexible mechanism reliability analysis.

,e objective of this paper is to absorb the extremum
thought and GA into ANN to develop a new approach, that is,
GA-based extremum neural network (GA-ENN) method. ,is
proposedmethod is adopted to improve themodeling precision
and simulation efficiency in the reliability analysis of flexible
mechanism by simplifying the response process as a response

extremum value and employing GA to find the optimal pa-
rameters of ANNmodel, respectively. In what follows, Section 2
studies the GA-ENN method for the reliability analysis of
flexible mechanism, including basic principle and GA-ENN
model and GA. ,e basic thought of the reliability analysis of
flexible mechanism based on the proposed GA-ENN is dis-
cussed in Section 3.,e reliability analysis of TFRM is applied to
validate the modeling accuracy and simulation efficiency of the
proposed GA-ENN method in Section 4. In Section 5, the
conclusions of this study are summarized.

2. Theory and Method

2.1. Artificial Neural Network. For the reliability analysis of
flexible mechanism with quadratic polynomial-based
response surface method, the quadratic polynomial is
generally adopted as the fitted function to approximate to
the limit state function of mechanism system. Due to the
limitation of quadratic polynomials in approximating to
the nonlinearity and function coupling, however, it is
difficult to acquire the acceptable fitting accuracy when
quadratic polynomials are directly applied to fit the limit
state function of flexible mechanism [23]. To avoid the
deficiency, this paper employs ANN instead of quadratic
polynomials to fit the limit state function of flexible
mechanism, because the ANN holds strong fitting ability
and high fitting accuracy. ,e BP-ANN as a typical ANN
holds the advantages of strong adaptability and the ac-
curate fit ability to complex function [24]. When y and
x � (x1, x1, ..., xm) are output response and input variable,
respectively, in respect of ANN model, the function re-
lationship between output response y and input variables
xi is expressed as

y � f2 􏽘

n

j�1
ωjkf1 􏽘

m

i�1
ωijxi + bj

⎛⎝ ⎞⎠ + bk
⎛⎝ ⎞⎠, (1)

where ωjk is the connection weight between the jth node of
input layer and the kth node of hidden layer; bj is the jth
threshold value of hidden layer; ωij is the connection weight
between the ith node of hidden layer and the jth node of
output layer; bk is the kth threshold value of output layer;
f1(·) is the transfer function between input layer and hidden
layer; f2(·) is the transfer function between hidden layer and
output layer; m and n are the numbers of nodes in input
layer and hidden layer, respectively.

Training algorithm is one of the key techniques of
establishing the BP-ANNmodel. ,is paper adopts Bayesian
regularization algorithm (BRA) as the training algorithm of
ANN because the algorithm holds strong generalization
ability, global optimization capacity, and rapid convergence
ability. ,e BRA is promising to improve the generalization
capacity of ANNmodel by avoiding overfitting problem and
finding the optimized weights and threshold values in
training process [16]. ,e BRA-based training performance
function E of is

e � α1ee + α2eω. (2)

We have
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where e is the BRA function; ee and eω are the mean sum of
squares of the network error and the sum of squares of network
weights; α1 and α2 are the proportional coefficients of ee and eω,
respectively; wj is the weight of ANN; ε is the expected error
function of output response; ν is the vector of weight and
threshold values for network layers; k is the kth iteration; Z is
the Jacobian matrix of ε; λ is the iteration variable.

2.2. Genetic Algorithm. Relative to quadratic polynomial-
based response surface method, ANN model has the po-
tential of reducing computational loads and enhancing
simulating efficiency. However, the traditional ANN model
has local optimization and low approximation accuracy so
that the network generalization ability is deficient. Intelli-
gent operator may effectively avoid the problems of pre-
mature convergence and local optimization in training ANN
by searching for the optimal initial weight and threshold.
,erefore, it is important to design the intelligent operator to
improve the accuracy of ANN model.

As one typical intelligent operator, genetic algorithm (GA)
can automatically determine searching space and adaptively
adjust searching direction without the restriction of differen-
tiable or continuous objective function.Meanwhile, the GA has
the abilities of parallel processing and strong robustness [21]
and effectively approximates to optimal weight and threshold.
In this paper, theGA is adopted to find the optimal weights and
threshold to improve the modeling accuracy of ANN [21, 25].
In the GA, the initial population includes network weights and
thresholds, and each individual in the population contains all
genetic information. Because the network training error is the
adaptive value of the individual, the smaller the individual
adaptive value is, the better the individual is. Genetic operator
includes three operators: selection, cross, and mutation. ,e
design details of the three operators are summarized as follows.

Based on the adaptive proportional roulette wheel
method [26], the selected probability of each individual is

Pi �
1

􏽐
N
j�1 fi/fj􏼐 􏼑

, (4)

where Pi represents the probability of the ith individual; fi is
the adaptive value of the ith individual; fj is the fitness value
of the jth individual; N is the number of individuals in
population.

Cross operation is commonly finished by the real
number cross method [27]. ,e cross operation of the kth
chromosome ak and lth chromosome al on jth point is

a
(k+1)
ij � a

(k)
ij (1 − r) + a

(k)
lj r,

a
(k+1)
lj � a

(k)
lj (1 − r) + a

(k)
ij r.

⎧⎪⎨

⎪⎩
(5)

where k is the kth iteration; aij is the jth bit of the ith
chromosome; alj is the jth bit of the lth chromosome; r is the
random number in [0, 1].

,e mutation of the jth gene of the ith individual is
denoted by

a
(k+1)
ij �

a
(k)
ij + a

(k)
ij − amax􏼐 􏼑 × t 1 −

k

K
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􏼠 􏼡, r≤ 0.5,
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(6)

where amax and amin indicate the upper bound and bottom
bound of gene aij, respectively; K is the maximum number of
iterations.

2.3. Genetic Algorithm-Based Extremum Neural Network
(GA-ENN). In this section, we develop theGA-ENNmethod in
the foundation of GA and ANN introduced from the extremum
thought. ,e architecture of GA-ENN is shown in Figure 1.

As shown in Figure 1, the basic thought of GA-ENN
method is summarized as follows:

(i) ,e limit state equation of flexible mechanism sys-
tem is fitted by fitting extremum response surface
models (i.e., GA-ENNmodel) to the input parameter
xj and extremum output Yj(t, xj).

(ii) ,e established GA-ENN model of this system is
analyzed in the time domain [0, T] replacing the
nonlinear dynamic differential equations to gain
dynamic extremum output response Yjmax(xj).

From the above analysis, the GA-ENN transforms the
stochastic response process in the dynamic reliability analysis
of flexible mechanism into one random extremum response in
the time domain in each calculation. Corresponding to the
sample set x of random variables, all extremum responses are
employed to fit the GA-ENNmodel. In the dynamic reliability
analysis with the GA-ENN method, only the extremum of
output response in time domain is calculated rather than all
output responses in the time domain. ,erefore, the proposed
approach (GA-ENN) can potentially reduce simulation time
and improve analytical efficiency.

3. Procedure of Flexible Mechanism Reliability
Analysis with GA-ENN

To solve the limitations of the traditional response surface
method in the reliability analysis of flexible mechanism, the
developed GA-ENN is to enhance the nonlinear searching
ability of intelligent operator and the nonlinear mapping
ability of ANN, reduce the computational load, and improve
computational efficiency and computational accuracy in the
reliability analysis of flexible mechanism. ,e reliability
analysis procedure of flexible mechanism with GA-ENN is
shown in Figure 2.
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Figure 2: Reliability analysis procedure of flexible mechanism based on BRA/GA-ENN.
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As shown in Figure 2, the reliability analysis procedure of
flexible mechanism based on GA-ENN can be illustrated as
follows:

(i) Step 1: Establish the limit state function of
flexible mechanism by combining the compre-
hensive modal theory and multibody dynamics
theory.

(ii) Step 2: Build ANN model in respect of the node
number of each layer of ANN and enough
training samples by extracting limit state func-
tion using Latin hypercube sampling method
[28].

(iii) Step 3: Initialize search space and calculate indi-
vidual adaptive values and find the optimal solution
of intelligent search according to individual
adaptive values.

(iv) Step 4: Judge whether the optimal individual in the
updated population satisfies the requirement of
design. If no, return to intelligent operator (GA) to
continually execute until meeting the requirement
of design. If yes, continue to Step 5.

(v) Step 5: Return to main program after gaining the
optimal weight and threshold values.

(vi) Step 6: Apply BRA to establish ANNmodel, that is,
GA-ENN model.

(vii) Step 7: Complete the reliability analysis of flexible
mechanism based on the established GA-ENN
model and output the results.

4. The Reliability Analysis of
Flexible Mechanism

4.1. Formulation of Problems. In this paper, a TFRM is
regarded as the object of study on the reliability analysis of
flexible mechanism based on GA-ENN. ,e simplified
model of TFRM is shown in Figure 3. In this TFRM, the
components (or subcomponents) of the manipulator are
considered as a homogeneous Euler beam. Mass loads
enforce at the joint between component-1 and compo-
nent-2. ,e end of arm is assumed to be concentrated
masses with ignoring rotational inertia and damping of
rotor motor. For two manipulators, the lengths are l1 and
l2; the masses are m1 and m2; the driving torques are τ1(t)
and τ2(t), respectively. To analyze the motion condition of
the two manipulators (components), x1−y1 local coordi-
nate is built for component-1, and x2−y2 local coordinate
is established for component-2. y1 and y2 represent the
elastic deformations of component-1 and component-2,
respectively. t is movement time. ,e movements of two
moving local coordinates are described by the azimuths
θ1(t) and θ2(t), respectively.

Based on the integrated mode method [19], the elastic
deformations of the two components in the corresponding
local coordinate systems are analyzed. ,e shape functions
(φ1 for number-1 and φ2 for number-2) of the two com-
ponents are

φ1(x) � sin
πx

l
􏼒 􏼓,

φ2(x) � sin
2πx

l
􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

,e elastic deformations of components change with
time. ,e elastic deformations y1(t, x1) and y2(t, x2) for
component-1 and component-2 on y direction are indicated,
respectively, by

y1 t, x1( 􏼁 � 􏽘
n

i�1
gi(t)φi x1( 􏼁,

y2 t, x2( 􏼁 � 􏽘
n

i�1
ui(t)φi x2( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

,e generalized coordinate q(t) is

q(t) � q1, q2, q3, q4, q5, q6􏼂 􏼃
T

� θ1(t), g1(t), g2(t), θ2(t), u1(t), u2(t)􏼂 􏼃
T
,

(9)

where gi(t) is the ith-order elastic coordinate of component-
1; ui(t) is the ith-order elastic coordinate of component-2.

According to Lagrange equations, the dynamics equa-
tion of the TFRM is

Qk � M€q + _M _q −
z

zq

1
2

_q
T
M _q􏼒 􏼓 + Kq +

zUg

zq
. (10)

where Ug is gravitational potential energy;M is mass matrix;
K is stiffness matrix; Qk(t) is total force corresponding to the
moment of rotation computed by the virtual work method
[19].

,e main failure mode of TFRM is deformation failure,
so that the deformation reliability analysis is concerned in
this study [19].

4.2. Selection of Random Variables. ,e basic parameters of
TFRM are massM, length L, and driving torque τ, which are
shown in Table 1. ,e density ρ, elastic modulus E, and
section size h and b are the random parameters in the re-
liability analysis of TFRM as shown in Table 2, in which the
variables follow normal distributions and are independent
mutually.
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Figure 3: Two-link flexible robot manipulator model.
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4.3. GA-ENN Modeling. Within the variance range of
random variables, 100 groups of input data are extracted
by the MC method. ,e output responses (maximum
deformation) of component-1 and component-2 are
calculated by limit state function. ,e 100 groups of data
are normalized and used as the network training samples.
According to equation (11), the network hidden lawyer
neuron is denoted as ki � 2∼9 (i � 1, 2). ,rough the
comparison of the network training error, the number of
hidden layer nodes is selected, that is, k1 � k2 � 3, as shown
in Table 3.

n �
������
ni + no

√
+ a, (11)

where n is the number of hidden layers; ni is the number of
input nodes; no is the number of output nodes; a is the
arbitrary constant in [16, 17].

,e 4-3-1 three-layer network structure was chosen as
the GA-ENN model, in which the transfer functions from
input layer to hidden layer and from hidden layer to
output layer and the training function are “tansig,”
“purelin,” and “trainbr,” respectively. Particle dimension
v � 19 and particle number N � 40 were selected. ,rough
100 iterations, the optimal adaptive value curves are
shown in Figure 4.

,e initial optimal weights and threshold values are
inputted into GA-ENN model. After the network training
with the BRA, the function of GA-ENN is obtained, in which
the weight and threshold levels of two components are
shown in the two following equations:

w1 �

1.5369 1.5369 1.5369 1.5369

7.6994 7.6994 7.6994 7.6994

0.8209 0.8209 0.8209 0.8209

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

b1 �

−1.4668

2.6843

3.9841

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

w2 � −0.2787 1.1137 0.2567􏼂 􏼃,

b2 � [0.8563],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

w1 �

−5.6841 −5.6841 −5.6841 −5.6841
0.1892 0.1892 0.1892 0.1892

−0.3698 −0.3698 −0.3698 −0.3698

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

b1 �

0.6982
−3.65781
−0.8129

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

w2 � −23831 −3.9841 0.9218􏼂 􏼃,

b2 � [−1.9853].
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(13)

4.4. Reliability Analysis. ,rough 10,000 simulations on the
GA-ENN by the MC simulation, the output responses are
obtained by inversed normalization. ,e deformation curve,
deformation distribution, and deformation cumulative
function of two components are shown in Figures 5–7.
Assuming that the allowable deformation is 1.8×10−2m, the
results of reliability analysis are listed in Table 4.

As shown in Figures 5–7, the maximum dynamical
deformation values of two components are evenly distrib-
uted around the mean values and approximately obey a
normal distribution with the mean values of 1.45×10−2m
and 1.69×10−2m and the standard deviations of
6.77×10−4m and 4.08×10−4m, respectively.

As revealed by Table 4, we obtain the reliability degrees 1
and 0.951 for component-1 and component-2, respectively.
TFRM is a continuous system. ,e system stiffness reliability
is equal to the product of the reliability degrees of the two
components [16].,us, the reliability degree of TFRM system
is Py � Py1·Py2 � 0.951. ,rough 1000 simulations on the BP-
ANNmodels for two components, the computational times of
two components are 0.126 s and 0.158 s, respectively.

4.5. Method Validation. To validate the GA-ENN, the dy-
namic reliability analyses of TFRMwere conducted withMC
simulation (direct method), extremum response surface
method (denoted by ERSM) [29], and the proposed GA-
ENN under the same computational conditions. All analyses
are performed by an Intel (R) Core (TM) i7-9700T desktop
computers with 2.00GHz CPU and 16GB RAM. ,e ERSM
is developed by introducing the thought of extremum into
quadratic polynomial-based response surface method. ,e
simulation time and reliability precision are shown in Ta-
ble 5 and Figure 8 as well as Table 6 and Figure 9.

As revealed in Table 5 and Figure 8, ERSM and GA-ENN
are much better than the MC method in computation time,
indicating that surrogate model approaches hold higher
simulation speed and analytical efficiency than Direct FE
model analysis for the same number of simulations.With the
increase of simulation times, the computational efficiency of
GA-ENN is higher than ERSM, indicating that GA-ENN
method holds higher simulation speed than the ERSM,
because the GA-based parameter optimization for GA-ENN
approach is faster than the least square method for ERSM in
acquiring the model parameters. ,erefore, the proposed
GA-ENN achieves higher efficiency than the quadratic
polynomial-based ERSM.

As illustrated in Table 6 and Figure 9, the GA-ENN is
almost consistent with MC method in the calculation ac-
curacy, which is higher than the calculation accuracy of
ERSM. ,is is because adopting GA can gain more ap-
preciatedmodel parameters, while the least square method is

Table 1: Basic parameters of component-1 and component-2.

Parameters Mass M (kg) Length L (m) Drive torque τ (N·m)
Component-1 5.5 0.75 215sin3(2πt)− 62
Component-2 7.5 0.75 75sin3(2πt) + 15
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unworkable in acquiring the optimal modeling parameters.
It is demonstrated that the GA-ENN holds higher accuracy
than ERSM [19, 29–31]. ,e GA-ENN greatly save

computational time and improved calculation efficiency
while keeping computational accuracy. ,erefore, the pro-
posed GA-ENN is verified to be a feasible and effective

Table 2: Random parameters of component-1 and component-2.

Variables Density ρ (kg·m−3) Elasticity modulus E (Pa)
Component-1 Component-2

h1 (m) b1 (m) h2 (m) b2 (m)
Mean 2067 4.0875×109 0.06 0.015 0.04 0.01
Standard deviation 10 2.0438×108 0.04 0.01 0.0267 0.0067

Table 3: Network training error with different hidden neuron number.

Neuron number 2 3 4 5 6 7 8
Network-1 error 0.12 0.10 0.13 0.13 0.12 0.20 0.22
Network-2 error 0.17 0.16 0.16 0.17 0.19 0.18 0.20
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Figure 4: Optimal fitness value curves. (a) Component-1. (b) Component-2.
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Figure 5: Maximum deformations of midpoint on the two components. (a) Component-1. (b) Component-2.
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Figure 6: Maximum deformation distributions of two components. (a) Component-1. (b) Component-2.
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Figure 7: ,e cumulative curves of TFRM deformations. (a) Component-1. (b) Component-2.

Table 4: Analytical results of TFRM deformation reliability.

Components Failure number Reliability Mean (×10−3m) Standard deviation (×10−3m) Distribution Computational time (s)
Component-1 0 1 14.5 0.677 Normal 0.126
Component-2 49 0.951 16.9 0.408 Normal 0.158

Table 5: Simulation time of TFRM reliability analyses

Methods
Simulation time under different simulations (s)

102 103 104 105

MC method 2.94×103 2.98×104 2.99×105 —
ERSM 0.36 0.59 1.68 125.28
GA-ENN 0.14 0.25 0.49 36.08
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method in dynamic reliability analysis of flexible
mechanism.

5. Conclusions

(1) A genetic algorithm- (GA-) based extremum neural
network (GA-ENN) method is proposed by com-
bining artificial neural network (ANN), genetic al-
gorithm (GA), and extremum thought to improve
the modeling precision and simulation efficiency in
the reliability analysis of flexible mechanism.

(2) ,e total reliability degree of TFRM is 0.951 and the
reliability degrees of component-1 and component-2
are 1 and 0.951, respectively. Meanwhile, the max-
imum deformations of component-1 and compo-
nent-2 follow the normal distribution with the
means of 1.45×10−2m and 1.69×10−2m and the
standard variances of 6.77×10−4m and 4.08×10−4m
as well.

(3) ,e developed GA-ENN holds high modeling pre-
cision and simulation efficiency in respect of the
comparison of methods.

(4) ,e advantages of GA-ENN are more obvious with
the increase of simulation number, which supports
that the GA-ENN model has higher computational
efficiency and precision and better robustness than
the quadratic polynomial function in dynamic reli-
ability analysis.

(5) ,e efforts of this study provide a promising way for
the reliability analysis and optimization of flexible
mechanism and complex structures with the em-
phasis on high-precise model and high-simulation
speed.

Data Availability

,e data used to support the findings of this study are in-
cluded within the article.
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Figure 8: Computing time of ERSM and GA-ENN methods.

Table 6: Evaluation precision of TFRM reliability analyses

Number of samples
Reliability degree Precision (%)

MC method ERSM GA-ENN ERSM GA-ENN
102 0.9700 0.9800 0.9700 99 99
103 0.9520 0.9610 0.9510 99.1 99.9
104 0.9865 0.9538 0.9866 96.7 99.99
105 — 0.9568 0.9861 — —
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Figure 9: Precision of ERSM and GA-ENN methods.
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