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As the penetration of renewable energy to power grid increases gradually, to ensure the safety and stable operation of power
system, it is necessary for renewable energy to participate in the secondary frequency regulation of power system. +erefore, this
paper proposes an optimal control model of renewable energy participating in the secondary frequency regulation to solve the
dynamic power distribution problem. Besides, memetic salp swarm algorithm (MSSA) is used to solve this complex nonlinear
optimization problem, so as to quickly obtain high-quality power distribution schemes under different power perturbations and
maximize the dynamic response regulation performance of the entire regional power grid. Finally, based on the improved IEEE
standard two-area model, the established model is verified and the performance of the applied algorithm is tested by comparing
the traditional engineering allocation method and other intelligent optimization algorithms.

1. Introduction

In recent years, to cope with climate change and sustainable
energy development, the penetration of renewable energy
connected to power grid has increased rapidly [1–3]. Dif-
ferent from traditional hydrothermal power, wind power
and photovoltaic (PV) power with relatively mature tech-
nologies are greatly affected by meteorological conditions, so
their power fluctuations are highly random [4–6]. As the
regional power grid usually cannot fully absorb renewable
energy such as wind or solar energy, it is easy to disconnect
the wind farm or PV station from the power grid, which also
greatly increases the pressure of frequency regulation of the
system [7–10]. In this situation, the traditional configuration
of hydropower plant and thermal power station as the main
frequency regulation resources has been difficult to meet the
high quality of the system’s dynamic frequency regulation
needs [11–13].

+erefore, the development of new high-quality fre-
quency regulation resources has become one of the main
means to relieve the pressure of regional power grid [14–16].

Compared with traditional hydropower plant and thermal
power station, wind farm and PV station have faster re-
sponse speed as well as climbing speed and rapid power
fluctuations can be balanced more quickly [17–19]. +ere-
fore, for regional power grids with high renewable energy
penetration, especially in low-load areas, and wind farm, PV
station can be used on power point control method to
control it in below the operation condition of maximum
power point, with a certain reserve capacity to participate in
the secondary frequency regulation [6, 20, 21], called au-
tomatic generation control (AGC) [22–24].

In general, AGCmainly consists of two parts [25–27]: (1)
based on the real-time acquisition of frequency and power
deviation of the tie line, a centralized controller, such as
proportional-integral (PI) controller, is used to acquire the
approximate actual power fluctuation of the system, and
then the total power instruction of the regional power
network is issued; (2) according to the power allocation
algorithms, the total power instruction is assigned to each
unit participating in the frequency regulation [28–30].
Literature [31] proposes a sliding mode controller for
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multisource AGC system using teaching and learning-based
optimization algorithm. Literature [32] proposes a lifelong
learning-based complementary generation control of power
grids with renewable energy sources. Literature [33] pro-
poses AGC of a multiarea multisource hydrothermal power
system. However, although the abovementioned literature
realizes the control of multisource participating in AGC, the
modeling is relatively simple, considering only the climbing
response characteristics of the units and not other dynamic
response characteristics of different frequency regulation
resources, which will affect the overall control effect of the
system and easily make the system deviate greatly from the
optimal operating point. +erefore, this paper proposes a
multisource optimal collaborative control method for wind
and solar renewable energy based on its dynamic response
characteristics to participate in secondary frequency
regulation.

In essence, AGC optimal control is a complex non-
linear optimization problem [34–36]. In practice, power
distribution is often not optimized but arranged according
to adjustable capacity ratio and climbing speed, which
cannot meet the optimal control requirements of the
system [37–40]. On the other hand, traditional mathe-
matical optimization methods (such as interior point
method [41]), although fast in solving problems, have
poor global searching ability and are prone to fall into
local optimal solutions. In comparison, genetic algorithm
(GA) [42–44] and other metaheuristic algorithms [45–47]
have higher application flexibility and better global search
capability, but their solving speed is slow and cannot meet
the needs of AGC online control for large-scale regional
power grids [48–50]. +erefore, MSSA with a faster
convergence speed is used to solve the problem. Com-
pared with the original salp swarm algorithm (SSA),
memetic salp swarm algorithm (MSSA) employs multiple
independent slap chains to simultaneously implement the
exploration and exploitation [51]. Besides, MSSA also has
low dependence on the mathematical model. To verify the
validity of the proposed method, this paper used the
improved IEEE standard two-area model for simulation
test and analysis.

+e remaining of this paper is organized as follows:
Section 2 develops the optimal control model for automatic
generation control. In Section 3, MSSA is described.
Comprehensive case studies are undertaken in Section 4.
Section 5 summarizes the main contributions of the paper.

2. Optimal Control Model for Automatic
Generation Control

2.1. Control Framework. Generally, AGC has the following
three control modes: (a) flat frequency control, (b) flat tie-
line control, and (c) tie-line bias control. Also, tie-line bias
control was used in this paper. +e two-region inter-
connection power network is depicted in Figure 1, in
which the AGC control process of each region includes
two parts: controller control and optimal power distri-
bution. A PI controller is adopted to convert the power
deviation and frequency deviation of the real-time

receiving tie line into regional control deviation as input
and output to the real-time adjusting power of the re-
gional power grid ΔP. +en, ΔP is assigned to each AGC
unit through the power allocation algorithm. Different
from the traditional power system with hydropower plant
and thermal power station as the main reserve capacity,
wind farm and PV station no longer need to be discon-
nected from the grid but participate in the power AGC
regulation of the system.

2.2. Dynamic Response Model of Units. +e establishment of
dynamic responsemodel of the units is mainly in order tomore
accurately describe the units after the received power adjusts
instruction power dynamic response process. For different types
of units, the dynamic response model not only regulates the
upper and lower limits of capacity, climbing rate, frequency
regulation delay, and other common parts [52] but also includes
transmission links with their own energy conversion charac-
teristics. Besides, AGC often uses the frequency domain model
to describe the dynamic response process of the units, as shown
in Figure 2. Td represents the secondary frequency regulation
delay of the units; G(s) represents the power response transfer
function of the units, as shown in Table 1.T1∼T9 are the known
parameters of the transfer function, respectively [53].+erefore,
according to the inverse Laplace transform of the frequency
domain transfer function, the real-time output of the regulated
power can be calculated through the input power, as follows:

ΔPout
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where i represents the ith AGC unit; K represents the kth

discrete control period; ΔPin
i and ΔPout

i represent the input
regulation power command and real-time output of regu-
lated power of the ith AGC unit, respectively; and ΔT
represents the control period of AGC, with a value of 1 to 16
seconds.

2.3. Optimization Mathematical Model. A performance in-
dex is assigned to quantify the total power response devi-
ation, which is defined as the sum of the absolute deviation
value of the regulating power command value and the power
output value of all units, as follows:

minf � 􏽘
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i�1
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where N represents the number of control periods and n

represents the number of AGC units.
In addition to considering the dynamic response transfer

process of the units, some constraint conditions, such as
power balance constraint, units capacity constraint, and
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climbing constraint, should also be considered in the power
distribution process, as follows:

ΔPin
(k) � 􏽘

n

i�1
ΔPin

i (k), (5)

ΔPin
(k) · ΔPin

i (k)≥ 0, i � 1, 2, . . . , n, (6)

ΔPmin
i ≤ΔP

in
i (k)≤ΔPmax

i , i � 1, 2, . . . , n, (7)

ΔPin
i (k) − ΔPin
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􏼌􏼌􏼌􏼌􏼌≤ΔP
rate
i , i � 1, 2, . . . , n, (8)

where ΔPin represents total power regulation command and
ΔPrate

i represents the maximum climbing speed of the ith

AGC units.

3. Memetic Salp Swarm Algorithm

3.1. Inspiration. Salps are marine creatures that resemble
jellyfish in body structure and movement. +ey are usually
joined end to end to form a chain, also known as a salp chain.
+e leader is located at the first end of the chain and has the
best judgment of environment and food source. +e
remaining salps are followers, who follow the previous one

in turn. +is movement mode is conducive to the rapid
coordinated movement and feeding of the salps group.
Literature [54] established a mathematical model of salps
chain in 2017 and proposed SSA to solve a series of opti-
mization problems.

3.2. Optimization Framework. +is paper is combined with
cultural genetic algorithm, aiming at the shortcomings of
SSA algorithm to improve, and defined as MSSA. +e op-
timization process is as follows: the culture of each salp is
defined as a solution to the optimization problem. All salps
in the community are divided into different populations in
the unit of salp chain, and each salp chain has its own culture
and independently searches for food sources. At the same
time, the culture of each salp affects and is influenced by
other individuals and evolves with the evolution of the
population.When the population evolution reaches a certain
stage, the whole community will exchange information to
realize the mixed evolution of the population until the
convergence condition of the optimization problem is
satisfied.

+e optimization framework of MSSA is shown in
Figure 3, which mainly includes the following two opera-
tions, as follows [54]:
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Figure 2: Dynamic response models of different types of AGC units. (a) Traditional hydropower plant and thermal power station. (b)Wind
farm and PV station.
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(a) Local search in each chain: each salp chain will
implement a local search to improve the ability of
global exploration and local exploitation;

(b) Global coordination in virtual population: each salp
is taken as a virtual population, and the population
will be regrouped into multiple new salp chains.
Hence, a global coordination can be achieved.

3.3. Local Search in Each Chain. +e salp chain can be di-
vided into two roles, i.e., the leader and the follower. It is
worth noting that the leader is responsible for directing the
entire salp chain to the food source, following each other.
For the mth salp chain, the position of the leader can be
updated, as follows [55]:

x
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F
j
m + c1 c2 ub

j
− lb

j
􏼐 􏼑 + lb

j
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j
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j
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j
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⎧⎪⎨

⎪⎩
(9)

where the superscript j represents the jth dimension of the
searching space; x

j
mi is the position of the leader in the mth

salp chain; F
j
m denotes the position of the food source, i.e.,

the current best solution obtained by the mth salp chain; and
u

j

b and l
j

b are the upper and lower bounds of the jth di-
mension, respectively; c1 � 2e− (4k/kmax)2 , where k is the
current iteration number and kmax is the maximum iteration
number, respectively. Besides, c2 and c3 are the random
numbers, respectively, and c2, c3 ∈ [0, 1] [56].

In addition, the position of the followers can be updated,
as follows [55]:

x
j
mi �

1
2

x
j
mi + x

j
m,i− 1􏼐 􏼑, i � 2, 3, . . . , n, m � 1, 2, . . . , M,

(10)

where x
j
mi is the position of the ith salp in the mth salp chain;

n is the population size of each salp chain; and M is the
number of salp chains, respectively.

3.4. Global Coordination in Virtual Population. To achieve a
global coordination, the virtual population will be regrouped
into different salp chains according to the salps’ fitness
values, as shown in Figure 4. Specifically, all salps are sorted
according to the order of fitness from large to small. Finally,
the salps will be divided into Mth salp chains, and the
distribution rules are as follows: the first salp regroups into
the first chain, the Mth salps into the Mth chain, the M + 1th
into the first chain, and so on. +e update rules of the Mth

salp chain are described as follows [57]:

Y
m

� xmi, fmi|xmi � X(m + M(i − 1)), fmi � F(m + M(i − 1)), i � 1, 2, . . . , n􏼂 􏼃, m � 1, 2, . . . , M, (11)

where x
j
mi is the position vector of the ith salp in the mth

chain; fmi is the fitness value of the ith salp in the mth chain;
F is the fitness value set of all the salps following the
descending order; and X is the corresponding position
vector set of all the salps, i.e., a position matrix, as follows:
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where d is the number of dimensions, and each row vector
represents the position vector of each salp.

In addition, the overall flowchart of MSSA is given in
Figure 5.

3.5.MSSADesign forAGCSystem. In order to ensure that the
initial solution is a feasible solution, this paper forms the
initial solution according to an engineering method called
PROP method. In other words, the initial solution is ob-
tained by the same adjustable capacities’ ratio.

On the other hand, this paper applies the penalty
function method to the fitness function Fit(x) to satisfy the
constraint conditions (5)–(8), as follows:

Fit(x) �
f(x), if constraints are satisfied,

f(x) + M Zu − Z
lim
u􏼐 􏼑

2
, otherwise,

⎧⎪⎨

⎪⎩

(13)

where M is the penalty function factor, and its value is
usually a relatively large positive number; Zu is the uth

constraint; and Zlim
u is the limit of the uth constraint.

4. Case Studies

+e proposed methodology is tested on the IEEE load
frequency control model. It is worth noting that 1 AGC unit
in region A is increased to 5 units, as shown in Figure 1.
Besides, Tables 2 and 3 show the main parameters of re-
sponse transfer and power regulation of the units, respec-
tively, and the control period of AGC is set to 4 seconds.
Also, the response performance is compared to that of
PROP, GA, and SSA. To achieve a fair comparison, the
population size is set to 10 and the maximum number of

Table 1: Dynamic response transfer functions of different AGC
units.

Type Transfer function
Nonreheat turbine 1/1 + T1s

Reheat turbine (1 + T2s/(1 + T3s)(1 + T4s)(1 + T5s))

Hydropower ((1 − T6s)(1 + T7s)/(1 + 0.5T6s)(1 + T8s))

Wind and solar
renewable energy 1/1 + T9s

4 Mathematical Problems in Engineering



iterations is set to 100. It is worth noting that if the pa-
rameters are not chosen properly, the convergence time will
be too long or the local optimum will be trapped. Besides,
ode23 was selected as the solver, and the sampling rate was
set to 0.001 s.

4.1. Convergence Research. Figure 6 shows the convergence
curves of MSSA under different power distribution in-
structions. It can be found that MSSA can solve the optimal
solution with high quality after 30 steps of iteration, and the
subsequent iteration only makes slight reduction adjust-
ment, which also indicated the fast convergence of the al-
gorithm. In order to better evaluate the quality of the optimal
solution of different methods, Table 4 shows the comparison
of the convergence results of different methods, in which
each indicator unit is MW. It shows that PROP performs
power allocation according to the ratio of the adjustable
capacity of the unit, so the power output of thermal power
units with larger regulating capacity is relatively high, and it
will lead to a large power deviation. On the other hand, GA,

SSA, and MSSA can significantly reduce power deviation
after their respective optimization operation, and MSSA has
the best performance.

4.2. Online Optimization. In order to evaluate the online
optimization performance of MSSA, in the area of A, a step
power perturbation ΔPL � 80MW has occurred. +e online
optimization results of MSSA and PROP are compared as
shown in Figure 7. Compared with previous optimization,
the power deviation obtained by MSSA is smaller, and the
overshoot of the total power instruction can be avoided. In
addition, wind farm and PV station can recover the power
system disturbed by high power quickly in the initial stage of
power disturbance because of their fast response speed.

To further test the optimization performance of dif-
ferent algorithms, Table 5 presents the online optimization
results of different algorithms (the optimal value is marked
in bold), in which area control error (ACE), |Δf1|, and
CPS1 are the average values in the simulation. Besides, the
power deviation is the total deviation in the simulation
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Virtual population

Slap chain#4 

Regroup

Slap chain#1
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of fitness value
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Figure 4: Regroup operation of virtual population.

Salp
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Local search

Global coordination
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 operation
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Figure 3: Optimization framework of MSSA.

Mathematical Problems in Engineering 5



time. Accuracy is used to measure the fitting degree of the
actual adjustment output and the adjustment instruction
curve in the simulation time. It can be found that, com-
pared with PROP, the other three methods can significantly
reduce power deviation, thus significantly improving the

system’s dynamic response performance. Compared with
GA and SSA, the online optimization results of MSSA are
better, which is because memetic computing framework
can observably improve the ability of exploration and
exploitation.

Initialize optimization parameters

Determine fitness function;

Update position of leader by (9);

End

Yes

No

Begin

k = 1

k = k + 1

Calculate fitness value of the ith salp in the mth

 salp chain;

Implement regroup operation-based
global coordination by (11);

Determine food source of the mth

salp chain;

Update position of the ith salp
 in the mth salp chain by (10);

k < kmax

Figure 5: +e general procedure of MSSA.

Table 2: Parameters of dynamic response transfer functions of AGC units.

Units Type Parameters of transfer function
G1 +ermal power station T2 � 5, T3 � 0.08, T4 �10, T5 � 0.3
G2 LNG units T2 � 2, T3 � 0.05, T4 � 5, T5 � 0.2
G3 Hydropower plant T6 �1, T7 � 5, T8 � 0.513
G4 Wind farm T1 � 0.01
G5 PV station T1 � 0.01
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Figure 6: Convergence curves of MSSA. (a) ΔPin � 80MW. (b) ΔPin � − 50MW.

Table 4: Comparison on convergence results obtained by different methods.

ΔPin Method ΔPin
1 ΔPin

2 ΔPin
3 ΔPin

4 ΔPin
5 Power deviation

80

PROP 32.00 19.20 12.80 9.60 6.40 676.95
GA 15.52 23.18 17.92 12.7 10.68 529.86
SSA 10.61 25.74 17.26 14.67 11.72 471.48
MSSA 14.26 20.84 19.52 15.12 10.26 402.451

− 50

PROP − 23.81 − 14.29 − 4.76 − 2.38 − 4.76 479.83
GA − 4.26 − 23.24 − 10.02 − 3.86 − 8.62 274.26
SSA − 8.65 − 20.62 − 9.85 − 4.29 − 6.59 307.48
MSSA − 4.48 − 20.69 − 9.14 − 5.58 − 10.11 234.254

Table 3: Main parameters of power regulation of AGC units.

Units Td (s) ΔPrate (MW/min) ΔPmax (MW) ΔPmin (MW)

G1 60 30 50 − 50
G2 20 18 30 − 30
G3 5 150 20 − 10
G4 1 — 15 − 5
G5 1 — 10 − 10
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Figure 7: Continued.

Mathematical Problems in Engineering 7



5. Conclusions

In this paper, a multisource optimal collaborative control
method for power system with renewable energy participation
in secondary frequency regulation is proposed. +e main
contributions can be summarized as follows:

(i) A novel AGC control model is established for the
power systemwith high renewable energy penetration

to improve the dynamic response performance of the
system;

(ii) +e study verified the effectiveness of MSSA for AGC.
It can not only meet the online regulation require-
ments of AGC but also quickly obtain high-quality
regulation schemes with high convergence stability,
and the dynamic response performance of the entire
regional power grid is significantly improved.
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Figure 7: Result comparison of online optimization by MSSA and without optimization when ΔPL � 80MW. (a) Total power regulation
curve. (b) Curve of ACE. (c) Curve of CPS1. (d) Frequency deviation Δf. (e) Active power of tie line (MW). (f ) Power output curve of the
units.

Table 5: Result comparison of online optimization obtained by different methods.

ΔPL Algorithms |ACE| (MW) Δf1 (Hz) CPS1 (%) Accuracy (%) Power deviation (MW)

80

PROP 7.7678 0.0356 194.69 95.84 630.05
GA 7.4209 0.0323 195.86 98.25 261.32
SSA 7.5095 0.0321 195.84 98.17 267.52
MSSA 7.3995 0.0316 195.57 98.84 254.21

− 50

PROP 5.0541 0.0235 197.78 94.99 477.46
GA 4.6046 0.0203 198.25 98.21 164.26
SSA 4.6044 0.0202 198.29 98.23 161.48
MSSA 4.6040 0.0196 198.36 98.41 149.96
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Besides, electric vehicles will be considered to participate
in AGC in future studies.

Abbreviations

ΔPin
i : Input regulation power command of the ith AGC

unit
ΔPout

i : Real-time output of regulated power of the ith AGC
unit

ΔT: Control period of AGC
N: Number of control periods
n: Number of AGC units
ΔPrate

i : Maximum climbing speed of the ith AGC units
x

j

mi: Position of the leader in the mth salp chain
F

j
m: Position of the food source

x
j

mi: Position vector of the ith salp in the mth chain
fmi: Fitness value of the ith salp in the mth chain
F: Fitness value set of all the salps following the

descending order
X: Corresponding position vector set of all the salps
PV: Photovoltaic
AGC: Automatic generation control
GA: Genetic algorithm
SSA: Salp swarm algorithm
MSSA: Memetic salp swarm algorithm.
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