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When a compound fault occurs, the randomness and ambiguity of the gearbox will cause uncertainty in the collected signal and
reduce the accuracy of signal feature extraction. To improve accuracy, this research proposes a gearbox compound fault feature
extraction method, which uses the inverse cloud model to obtain the signal feature value. First, EEMD is used to decompose the
collected vibration signals of gearbox faults in normal and fault states. )en, the mutual information method is used to select the
sensitive eigenmode function that can reflect the characteristics of the signal. Subsequently, the inverse cloud generator is used to
extract cloud digital features and construct sample feature sets. On this basis, the concept of synthetic cloud is introduced, and the
cloud-based distance measurement principle is used to synthesize new clouds, reduce the feature dimension, and extract relevant
features. Finally, a simulation experiment on a rotating machinery unit with a certain type of equipment verifies that the proposed
method can effectively extract the feature of gearbox multiple faults with less feature dimension. And comparing with the feature
set extracted by the single cloud model, the results show that the method can better represent the fault characteristic information
of the signal.

1. Introduction

Gear transmission is one of the commonly used transmis-
sion methods in mechanical equipment and is often used in
high-speed trains, wind power generation, aviation, ship-
ping, petrochemical, mining, lifting, and transportation
industries. According to domestic and foreign statistics,
about 10.3% of mechanical failures are caused by gearbox
failure, so it is particularly important to predict and diagnose
gearbox failures [1].

Due to the complex and harsh working environment of
mechanical equipment, the vibration signals collected on-
site are often doped with noise. To eliminate the influence of
noise in the signal, a large number of researchers have
carried out relevant research work in recent years. To reduce
the noise in the signal, some researchers applied the wavelet
denoising method to feature extraction and achieved good
results [2–4]. However, this method has difficulties in
selecting wavelet bases and determining thresholds in

practical applications. Empirical mode decomposition
(EMD) has no fixed basis, so compared with wavelet analysis
methods, it solves the problem of difficult selection of
wavelet basis, and it has a better processing effect on
nonstationary signals than wavelet, but there is a problem
with model confusion. To solve the above problems, Wu
et al. [5] proposed the ensemble empirical mode decom-
position (EEMD) to denoise the original signal, which
overcomes the inherent mode confusion problem compared
with the original EMD method. Also, there are some other
methods used for fault feature extraction [5–8]. For example,
Deng et al. [9] proposed an improved quantum heuristic
differential evolution method to construct the best deep
confidence network and propose a new fault classification
method. )e advantage of this method is to integrate the
fault feature extraction process in the fault diagnosis
algorithm.

)e cloud model theory proposed by Professor Wang
et al. in 1995 has been widely used in data mining [10, 11],
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intelligent control [12–14], decision analysis [15, 16], in-
telligent transportation [17], image processing, and other
fields in the past 20 years. Han et al. [18] proposed that
EEMD can be combined with the cloud model to perform
feature extraction of bearing faults and achieved good re-
sults, but there is a problem of more fault feature dimen-
sions. )erefore, this article has improved based on the
literature [18] and proposed a fault feature extraction
method based on EEMD and synthetic cloud model, which
can effectively extract fault features while avoiding difficult
parameter selection problems. First, EEMD is used to de-
compose multiple IMF components of the vibration signal,
and the mutual information method is used to select the
sensitive eigenmode function that can reflect the charac-
teristics of the signal. Subsequently, the cloud model is used
to extract cloud digital features and use them as sample
features. )en, the concept of synthetic cloud is introduced,
the cloud similarity criterion is used to determine the choice
of the base cloud, and then the number of features is reduced
by synthetic cloud. Finally, by comparing with the feature
sets extracted by the single cloud model, the result shows
that this method can better represent the feature information
of the fault signal.

2. Related Theories

2.1. EEMD Decomposition Principle. Ensemble empirical
mode decomposition (EEMD) uses the statistical charac-
teristics of Gaussian white noise with uniform time-fre-
quency distribution to solve the problem of mode confusion,
to achieve the purpose of improving EMD. It adds Gaussian
white noise to the signal for multiple EMD decompositions
and finally defines the overall average of the IMF decom-
posed multiple times as the final IMF. Based on the above,
the principal steps of the EEMD algorithm are rough as
follows:

(1) Initialize the overall average number M and the
added noise amplitude, and set m� 1.

(2) Perform the mth EMD decomposition.

(1) Add white noise nm(t) of constant amplitude to
the signal x(t) to be analyzed;

xm(t) � x(t) + nm(t). (1)

In the above formula, nm(t) is the white noise added
for themth time, and xm(t) is the signal after themth
noise is added.

(2) Use EMD to decompose the noised signal xm(t) to
obtain a set of IMF cn,m (n � 1, 2, . . . , N), where cn,m

is the nth IMF obtained from themth decomposition
(3) If m<M, then return to step (1) and make

m � m + 1. Repeat steps (1) and (2) until m � M.

(3) Calculate the overall average yn of the M IMFs

yn �
1

M


M

m�1
cn,m, n � 1, 2, . . . , M. (2)

(4) Save the average yn (n � 1, 2, . . . , N) of the previous
N IMF decompositions as the final IMF.

2.2. Cloud Model Related ,eories

2.2.1. CloudModel. )e cloudmodel [19] is a qualitative and
quantitative conversion model proposed by the academi-
cians Li and Du. )e cloud generator can realize the mutual
conversion between qualitative concepts and quantitative
data. )e cloud model uses expectations Ex, entropy En, and
hyper-entropy He as digital features to represent qualitative
concepts. )e expected value Ex is the value that best
represents the current qualitative concept, reflecting the
information center value of the corresponding qualitative
knowledge, and entropy En is a measure of the randomness
of a qualitative concept, reflecting the degree of dispersion of
cloud drops that can represent this qualitative concept. )e
hyper-entropyHe is the entropy of the entropy En, reflecting
the random degree of the numerical value belonging to the
qualitative concept, and it also indirectly reflects the
thickness of the cloud. As is shown in Figure 1, it is a simple
cloud model (Ex� 18, En� 2, He� 0.2), and its ordinate μ is
the degree of certainty of the cloud drop on the qualitative
concept, which represents the certainty of the current cloud
drop on its concept.

)e above-mentioned cloud digital feature expectations
Ex, entropy En, and hyper-entropy He are calculated using
the algorithm of backward cloud algorithm [20].)e specific
calculation method is as follows:

Input: N cloud drops xi;
Output: the qualitative concept expectations Ex,
entropy En, and hyper-entropy He represented by
these N cloud drops.

(1) )e estimated value of Ex is

Ex �
1
N



N

i�1
xi. (3)

(2) )e estimated value of En is

En �

��
π
2



×
1
N



N

i�1
xi − Ex


. (4)

(3) )e estimated value of He is

He �

������

S
2

− E
2
n



. (5)

)e one-dimensional forward cloud algorithm is

Input: )ree numerical characteristic values Ex, En,
He, cloud drop N representing the qualitative con-
cept A;
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Output: the quantitative value of N cloud drops, and
the certainty μ that each cloud drop represents a
concept A.

(1) Generate a normal random number En′ with En as
the expected value and He as the standard deviation;

(2) Generate a normal random number x with Ex as the
expected value and En′ is the standard deviation, x is
the cloud drop;

(3) Calculate y � e− (x− Ex)2/2(En′)2 , which is the certainty
of x;

(4) Repeat the above steps until N cloud drops are
generated.

2.2.2. Cloud Synthesis. Cloud synthesis [21] is the process of
superimposing two cloud models to obtain a comprehensive
cloud model. C1 � (Ex1, En1, He1), C2 � (Ex2, En2, He2)

are two cloud models, and a and b are two constants.
According to the independent normal distribution algo-
rithm, the synthesis method of the integrated cloud can be
expressed as follows:

aC1 + bC2 � a Ex1, En1, He1(  + b Ex2, En2, He2( 

� aEx1 + bEx2,

���������������

aEn1( 
2

+ bEn2( 
2



,

����������������

aHe1( 
2

+ bHe2( 
2



 .
(6)

)emethod of selecting the base cloud to be synthesized
is based on the similarity criterion of the cloud. To consider
the basic structure of the original base cloud as far as
possible, the cloud similarity [19] is used as the judgment of
the base cloud to be synthesized. According to the guide-
lines, the definition of cloud similarity is mainly described as
follows:

Input: two cloud models C1(Ex1, En1, He1) and
C2 � (Ex2, En2, He2), and the number of cloud
drops n1 and n2;
Output: the distance between two cloud models
d(C1,

C2).
(1) )e two cloudmodels generate n1 and n2 cloud drops

respectively through the cloud generator.

(2) Sort the cloud drops according to the abscissa from
largest to smallest.

(3) Filter the cloud drops and keep the cloud drops in the
range of [Ex − 3En, Ex + 3En].

(4) Assuming n1 ≤ n2, randomly select n2 cloud drops
from n1 cloud drops in cloud 1, and sort them in
sequence, and keep them in set Drop1 and set Drop2
respectively. If n1 > n2, the same is true.

(5) Calculate the distance between each cloud drop in
the two sets Drop1 and Drop2 in the corresponding
order:

d C1,
C2  ≈ d(Drop1,Drop2) �

1
n2



n2

k�1

���������������������������

x1k − x2k( 
2

+ μ(x)1k − u(x)2k( 
2



. (7)
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Figure 1: An example of cloud models and digital features.
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In the above steps, in step 3, since the cloud satisfies the
normal distribution, most of the cloud drops remain in the
interval [Ex − 3En, Ex + 3En], so the number of cloud
drops outside the interval can be ignored. In the cloud
similarity measurement, it is difficult to distinguish the
similarity by setting a threshold. In this article, the distance is
directly used as the similarity selection, and the two clouds
with the smaller distance are selected as the base cloud to be
synthesized.

2.2.3. Mutual Information Method. Mutual information
(MI) can be used to describe the relationship between two
random variables. It is regarded as the amount of infor-
mation contained in one random variable about another
random variable. )e mutual information between two
variables can be described as

I(X, Y) � H(X) + H(Y) − H(X, Y). (8)

In the formula, H(X) and H(Y) are the entropy of
variables X and Y, respectively, H(X, Y) is the joint entropy
of variables X and Y, and the distribution can be expressed as

H(X) � − 
i

p xi( logp xi( ,

H(Y) � − 
i

p yi( logp yi( ,

H(X, Y) � − 
i


j

p xi, yj logp xi, yi( ,

(9)

where p(x) and p(y) are the probability density functions of
X and Y; p(x, y) is the joint probability density function.

2.3. Feature Extraction Method Based on the EEMD Cloud
Model. )e cloud model is used as a composite fault signal
feature characterization method. )e feasibility of its cloud
digital feature entropy as a fault signal feature character-
ization has been demonstrated by related experiments [18].
Also, cloud digital features have related applications in fault
diagnosis applications [22–24]. )erefore, it is theoretically
feasible to use the digital feature of the cloud model as a
feature representation of the fault signal.

)e cloud model can be used as a feature extraction
method to obtain cloud digital features, but for gearbox
multifault vibration signals, the cloud digital features ob-
tained with a single cloud model have a high dimensionality
in numbers, and some features are difficult to distinguish
effectively. )erefore, this paper uses the synthetic cloud
model as the feature extraction method to extract the fea-
tures of the gearboxmultifault vibration signal. According to
the previous analysis, the feature extraction method based
on EEMD and cloud model can be completed by the fol-
lowing steps:

(1) IMFj (j � 1, 2, . . . , n) is obtained by decomposing
the vibration signal collected by the EEMD
experiment.

(2) Calculate all mutual information values between all
IMFj (j � 1, 2, . . . , n) components and the original

signal. Select the sensitive IMF based on the mutual
information threshold.
)e threshold is determined according to reference
[25].

uh �
max ui( 

10 × max ui(  − 3
, i � 1, 2, . . . , n. (10)

In the above formula, it is the mutual information
between the ui IMF and the original signal n is the
number of IMFs and max(ui) is the maximum value
of the mutual information.

(3) Keep the IMF components whose mutual informa-
tion value with the original signal is greater than the
threshold uh, and delete the IMF components whose
mutual information value with the original signal is
less than the threshold.

(4) Perform cloud model feature extraction and trans-
formation on the retained IMF components, syn-
thesize the cloud into a new cloud, and calculate the
cloud digital features of the new cloud as a new
sample feature set.

)e algorithm flow diagram of the method for extracting
the fault feature of the gearbox compound fault based on the
EEMD and cloud model is shown in Figure 2.

3. Experimental Verification and
Result Analysis

To verify the effectiveness of the feature extraction method
proposed in this paper, it is applied to the actual diagnosis of
multiple faults in a certain type of equipment bearing. )e
experimental data [26] is collected from the rubber ex-
pansion dryer and extrusion dehydrator simulation platform
of the Guangdong Petrochemical Equipment Fault Diag-
nosis Key Laboratory. By replacing various faulty gears,
bearings, transmission shafts, and other components, the
simulation cantilever centrifugal compression realized
common single failures and compound failures of the engine
or expander unit.

Aiming at common bearing and gear faults of complex
equipment, combined with the typical industrial unit
structure and load, based on the above simulation experi-
ment platform, a set of fault accessories matching the system
is designed, including bearing external cracks, bearing in-
ternal cracks, bearing ball wear, bearing lack of balls, cracked
teeth, and gear wear. Some parts of the experimental failure
parts are shown in Figures 3–5. Based on the above fault
accessories, the test selects the NSK NN3021 bearing model
for multiple fault simulation, and each fault sample is set to
40.

Based on the above fault accessories, the experiment
selects NSK NN3021 bearing model for multiple fault
simulation and designs 5 types of multiple fault types,
namely, type 1-normal, type 2-gearbox large and small gear
missing teeth + Left bearing inner ring missing the ball, type
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3-gearbox large and small gears missing teeth +Outer ring
wear on the right bearing, type 4-gearbox large and small
gears missing teeth + Left bearing inner ring wear, and type
5-gearbox large and small gears missing teeth + Left bearing
outer ring wear. )e original signal of the five sample data is
shown in Figure 6.

)e EEMD parameter sets the total average time
M� 100, and the added noise amplitude is 0.01 times the
standard deviation of the original signal. After the above
signal is decomposed by EEMD, 9 groups of IMF compo-
nents are obtained. Usually, the most important information
of the original signal is concentrated in the decomposed
EEMD among the first few IMF components, as shown in
Figure 7, and the MI values of IMF1∼IMF9 and the original
signal are calculated by the MI method in the five states. )e
abscissas in the figure represent the IMF components, the
threshold is calculated by formula (10), and the thresholds
are 0.1861, 0.1550, 0.1565, 0.1421, and 0.1359, respectively. It
can be seen from Figure 8 that both IMF1 and IMF2 are
higher than the corresponding threshold, and IMF3 in type 3
is higher than the threshold, so IMF1, IMF2, and IMF3 are
selected as the sensitive IMF components after EEMD de-
composition. To facilitate subsequent experimental simu-
lations, IMF4 is selected as the sensitive IMF component at
the same time, so IMF1∼IMF4 components were selected as
the sensitive IMF components.

IMF1∼IMF4, respectively, represent the first 4 sensitive
IMF components selected, and the cloud digital features are
calculated by formulas (3)–(5). )e cloud digital feature
average values of each category signal and IMF component
are shown in Table 1.

For the convenience of calculation, in the paper, the
clouds of IMF1∼IMF4 components are defined as base clouds
C1∼C4. In this paper, the synthetic cloud is used to extract
cloud digital features, the number of cloud drops is set to
1000, the cloud digital information obtained by IMF com-
ponents is calculated by similarity to calculate the distance,
and the two IMF components with the smaller distance are
selected as the base cloud as the synthetic cloud algorithm.
Calculate the distance between the cloud and the cloud by
formula (7), and use this as the basis to determine the base
cloud to be synthesized, and get d(C1,

C2) � 0.2642,
d(C3,

C4) � 0.1642. )erefore, IMF1 and IMF2, IMF3, and
IMF4 are selected as the base cloud to be synthesized. In the
synthetic cloud algorithm, the value of a is set to 1, and the
calculation method of the value of b is calculated as follows:

bi �
Ex1

Ex2
. (11)

In the above formula, bi is the value of the coefficients of
different synthetic base clouds, and Ex1 and Ex2 are the
average expected values of the base cloud to be synthesized,
where Ex1 >Ex2.)erefore IMF1 and IMF2, IMF3, and IMF4
are, respectively, used as base clouds to perform synthetic
cloud, and calculation of the digital characteristics of the
synthetic cloud is shown in Table 2.

As the final pattern recognition algorithm, there are
many classifier algorithms, such as the literature [9, 27, 28],
and the proposed method boosts the classification

Begin

Use EEMD to decompose the
fault signal 

IMF1 IMF2 IMFm…

Threshold uh selection of sensitive
IMF components 

Cloud model computing cloud digital
features 

Use cloud similarity to calculate
distance to determine the base cloud

to be synthesized

Feature reduction through synthetic
cloud algorithm 

Sample feature set

End

Figure 2: )e algorithm flow diagram of the method for extracting
the fault feature of the gearbox compound fault based on the EEMD
and cloud model.

Bearing ball wear

Figure 3: Bearing ball wear failure parts.

Bearing missing ball

Figure 4: Bearing missing ball accessories.

Cracked tooth

Figure 5: Cracked tooth fault accessories.
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performance across the classes of the data. Since the fault
sample data is small, considering the time efficiency issue,
this paper directly uses the support vector machine as the
classifier for experimental verification. For the calculated
synthetic cloud digital features, 200 samples were selected
from the samples at a ratio of 6 : 4, as 120 samples were used
for training and 80 samples were used for testing. In the
support vector machine (SVM) algorithm, the penalty factor
C� 150, σ � 1, the experimental results are shown in Table 3,
and the test classification effects of the two methods are
shown in Figures 7 and 9. )e results show that, in the
feature extraction method of the EEMD synthetic cloud
model, compared with the single cloud model, the feature
dimension is reduced, and the degree of discrimination is
also improved.

From Figure 7 and Table 3, it can be seen that the cloud
digital features extracted by the single cloud model are used

as the fault feature extraction method to verify that the
classification accuracy is up to 88.25%, which verifies that the
cloud model as a method for extracting composite fault
features is reliable and effective. It can be seen from Figure 9
and Table 3 that the synthetic cloud model feature extraction
method proposed in this paper has a verification classifi-
cation accuracy of 91.25%. At the same time, analyzing
Figure 7 shows that fault category 1 and fault category 2 in
the single cloudmodel are prone tomisdiagnosis. Analysis of
Figure 9 shows that fault categories 2 and 4 in the synthetic
cloud model have fault identification phenomena. In the
synthetic cloud algorithm, the choice of parameters will also
directly affect the category of features, so it depends on the
situation. But overall, in terms of feature dimension and
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classification accuracy, the synthetic cloud model method
and the single cloud model fault feature extraction method
have certain advantages.

4. Conclusions

)is paper proposes a feature extraction method for gearbox
composite fault signals based on EEMD and synthetic cloud
model. )e EEMD algorithm is used for signal decompo-
sition and then uses themutual informationmethod to select
the sensitive IMF to obtain the feature information. )en,
the concept of synthetic cloud is introduced, and the cloud-
based distance measurement principle is used to select the
cloud to be synthesized, synthesize the new cloud, and re-
duce the number of features at the same time, and relevant
features are extracted. Finally, use the actual composite fault
data set for verification and compare it with the feature set
extracted by the single cloud model. Also, the time com-
plexity of the method proposed in this article mainly de-
pends on the choice of parameters. )ere are mainly several
parameters to determine including the number of decom-
position k in the EEMD algorithm, and the similarity dis-
tance of the cloud model. In terms of judgment, the number

of cloud drops needs to be calculated, and the number of
generated cloud drops determines the timeliness of the
entire algorithm. In practical applications, the method
proposed in this paper is mainly determined by the number
of cloud drops, depending on the scale of the data. )e
experimental results prove that this method is effective and
superior to the single cloud model fault extraction method,
which has certain engineering practical application
significance.
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