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&e main challenges of sequential estimations of underwater navigation applications are the internal/external measurement noise
and the missing measurement situations. A quadratic interpolation-based variational Bayesian filter (QIVBF) is proposed to solve
the underwater navigation problem of measurement information missing or insufficiency. &e quadratic interpolation is used to
improve the observed vector for the precision and stability of sequential estimations when the environment is changed or the
measurement information is lost. &e state vector, the predicted error covariance matrix, and the measurement noise matrix are
derived based on the variational Bayesian method. Simulation results demonstrate the superiority of the proposed QIVBF
compared with the traditional algorithm under the condition of measurement information lost by autonomous
underwater vehicles.

1. Introduction

Ocean has already become the strategic goal of many
countries because of its underdeveloped resources, marine
environments, and high-tech fields [1, 2]. &e autono-
mous underwater vehicles (AUVs) have become one of the
important tools for underwater detection, environment
survey, and underwater reconnaissance in the ocean [3, 4].
&e navigation and positioning methods with high ac-
curacy for AUV are the necessary conditions to acquire
effective information [5], and also, they are the key
technologies to determine whether AUV can work nor-
mally and return back safely [6, 7]. &e more accurate
navigation and positioning methods for AUV are the
necessary conditions for the underwater vehicle to ensure
the correct travel [8, 9].

&e development of underwater vehicles faces many
problems; for instance, the ocean environment is complex
and changeable due to all sorts of noise interferences, and the
AUV may fail to represent the true sensor measurements in
many actual applications, like the presence of ocean current,
salt cliffs, and ships around. &e measurements are some-
times unobservable or insufficient so that positions calcu-
lated are erroneous [10–12]. On the other hand, a few
navigation methods based on electromagnetic transmitting
cannot be used underwater since the signal attenuates
quickly underwater [13].What is more, the localization error
of the MEMS system accumulates along with time [14–17].
&ose above weaknesses will cause the measurement
missing, which has an adverse impact on the positioning of
AUV [18]. However, the debugging and arranging process
would waste time and material resources. &erefore, the
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performances of estimation algorithms are vital to working
normally for AUV [19, 20].

&e Kalman filter (KF), which is a widely and classical
recursive filter, could provide the optimal state estimates in
the linear dynamic system in the scenarios of known noise
models and system models [21–24]. Additionally, the ac-
curate measurements are difficult for the underwater in-
tegrated navigation system to describe because the
performance of sensors varies with the change in the en-
vironment and measurement information probability lost
[25, 26]. &e joint probability density function (PDF) is used
to model the information of the AUV.&en, the information
of the joint PDF is determined by using the variational
Bayesian (VB) method [27] in recursive process, which is the
optimal. To further improve the capability of the navigation
with the missing measurements, some strategies are
required.

&e recently proposed variational Bayesian- (VB-) based
adaptive KF is a deterministic approximate Bayesian method
that transforms the solution of the posterior probability
density function based on Bayes’ theorem into the solution
of the functional extreme value [28, 29]. It has more ideal
approximate estimation results and computational overhead
[30, 31]. It significantly reduces the difficulty of calculation
and makes high-precision filtering possible [32–35].

Aiming to mitigate the underwater navigation problem
of measurement information missing or insufficiency, this
paper proposes a quadratic interpolation-based variational
Bayesian filter (QIVBF) algorithm. &e QIVBF makes better
use of the quadratic interpolation (QI) method and the VB
method, so that the predicted error covariance matrix and
the measurement noise matrix are derived to estimate the
state vector more accurately. &e quadratic interpolation
improves the observed vector for the precision and stability
of sequential estimations when the environment is changed
or the measurement information is lost.

&e rest of the paper is presented as follows. In Section 2,
the situation of the measurement lost in underwater navi-
gation is described in detail. In Section 3, the QI method is
used in measurement missing situations. In Section 4, the
VBmethod is used to estimate the accurately predicted error
covariance matrix, measurement error matrix, and state
vector. Section 5 shows the simulation in underwater
navigation. Section 6 gives the main conclusions of the
paper.

2. Problem Statement

An underwater navigation function with measurement in-
formation lost is described as follows [36]:

Xk|k− 1 � fk− 1 Xk− 1|k− 1  + ωk− 1,

Zk � ΗkXk|k + υk,

⎧⎨

⎩ (1)

where Xk− 1|k− 1 � Px,k− 1
Vx,k− 1

Py,k− 1
Vy,k− 1 

T
is the

state posterior given the observation at time k − 1; Px,k− 1 and
Py,k− 1 denote the positions of the AUV at the time k − 1 in x
and y directions, respectively. Vx,k− 1 and Vy,k− 1 denote the
velocities of the AUV at the time k − 1 in x and y directions,

respectively. &e Zk � Px,k− 1 Vx,k− 1 Py,k− 1 Vy,k− 1 
T

is
the measurement vector at the time k, with Px,k− 1 and Py,k− 1
representing the position measurements of the AUV at the
time k − 1 in x and y directions, respectively, and Vx,k− 1 and
Vy,k− 1 are the velocity measurements of the AUV at the time
k − 1 in x and y directions, respectively.&e ωk− 1 denotes the
process noise, which often follows the Gaussian distribution
with zero mean vector and process error covariance Qk− 1.
Similarly, υk means the measurement noise, which follows
the Gaussian distribution with zero mean vector and
measurement error covariance Rk. &e fk− 1(·) is the known
process function at the time k − 1. &e Ηk is the mea-
surement model at the time k.

However, the underwater environment is complex and
time-varying. Hence, the measurement information is un-
avoidable lost, which is described as follows:

Yk �
0, pro � a,

Zk, pro � 1 − a,
 (2)

where Yk is the observation vector and pro means the
probability.

3. Cubature Unscented Kalman Filter (CUKF)

3.1. StateModel andMeasurementModels of a Linear System.
For linear systems, the state transfer model is [37]

X(t) � F(t)X(t) + W(t), (3)

where F can be established from system transfer models; W

is the system input noise, assumed to be white with zero
mean. &e state vector is defined as

X � δL δλ δh δVE δVN δVU ϕE ϕN ϕU ∇bx ∇by

∇bz εbx εby εbz Mx My Mz ]Twith δL, δλ, and δh

denoting the latitude, longitude, and height position error in
ENU axes, respectively; δVE, δVN, and δVU are the east,
north, and upward velocity errors in ENU axes, respectively;
ϕE, ϕN, and ϕU represent the heading, pitch, and roll errors
in ENU axes, respectively; ∇bx, ∇by, and ∇bz set as the biases
of the accelerometer projections onto the ENU axes; εbx, εby,
and εbz for the gyroscope drift projections onto the ENU
axes, respectively; Mx, My, and Mz are the measured
magnetic field vector in the ENU axes, respectively.

&e linear measurement model is defined as

Z(t) �

V
INS
E − V

DR
E

V
INS
N − V

DR
N

V
INS
U − V

DR
U

φGyro
− φMag

θGyro − θAcce

c
Gyro

− c
Acce

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� H(t)X(t) + V(t), (4)

where VINS
E , VINS

N , and VINS
U are the estimated velocities by

DR (Dead Reckoning) along the east, north, and upward
direction, respectively; VDR

E , VDR
N , and VDR

U represent the
measurement velocity of INS (Inertial Navigation System)
along the east, north, and upward direction, respectively.
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φGyro and φMag are the heading measured by gyroscopes and
magnetometers, respectively; θGyro and θAcce denote the
pitch measured by gyroscopes and accelerometers, re-
spectively; cGyro and cAcce describe the roll measured by
gyroscopes and accelerometers, respectively; H is the ob-
servation matrix; V is a white Gaussian measurement noise
with zero mean value.

3.2. CUKF Models. Generally, for underwater navigation,
the state and measurement models of multisensor fusion are
nonlinear [38, 39]. How to derive a nonlinear sequential
state estimation from equations (3) and (4) is the main task.
One can draw the nonlinear state and measurement models
as follows:

Xk+1 � f Xk(  + Wk, (5)

Zk � h Xk(  + Vk, (6)

where Xk and Zk represent the state vector and measure-
ment at time step k, respectively. f(·) is n-dimensional
nonlinear function for state transition and h(·) is the m-
dimensional nonlinear measurement function. Wk and Vk

are zero mean process noise and measurement noise with
covariance matrix Qk and Rk, respectively. &rough dis-
cretization, it is straightforward to convert the process and
measurement equations in (12) and (13) to the nonlinear
process function f(·) and measurement function h(·) in (5)
and (6).

&e degree of nonlinearity in the practical underwater
navigation is much bigger than the theoretical analysis,
especially for MEMS-grade sensors [40, 41]. It may not
achieve the desired effect for traditional UKF, and this paper
proposes a new algorithm of cubature unscented Kalman
filter (CUKF) considering the trade-off among different
aspects to improve further accuracy, real-time, and stability.

&e procedure for implementing the CUKF can be
summarized as follows:

Step 1: Sample. &e n-dimensional random variable Xk

with mean Xk and covariance Pk is approxi-
mated by sigma points selected using the fol-
lowing equations:

χi,k− 1 � Xk− 1, i � 0,

χi,k− 1 � Xk− 1 + a

�����

LPk− 1



 
i
,

i � 1, . . . , L,

χi,k− 1 � Xk− 1 − a

�����

LPk− 1



 
i− L

,

i � L + 1, . . . , 2L,

(7)

where a ∈ R is a turning parameter denoting the
spread of the sigma points around Xk− 1 and is
often set to a small positive value. &is pa-
rameter only affects errors caused by more than
second-order matrices. &e (

�����

LPk− 1



)i is the
ithcolumn of the matrix square root of LPk− 1

which is real symmetric positive definite matrix
obtained through Cholesky resolution for LPk− 1.
&e sample points are composed of sigma points
set χi , i � 0, . . . , 2L, and the corresponding
weight with these sample points is described as
ω0 � 1 − (1/a2), ωi � (1/2La2), (i � 1, . . . , 2L),
ωi is the weight of ithsigma point, and


2n
i�0ωi � 1.

Step 2: &e first prediction. Each point is instantiated
through the process model to yield a set of
transformed samples

χi,k|k− 1 � fk− 1 χi,k− 1 . (8)

&e predicted mean and covariance are computed as

Xk|k− 1 � 
2L

i�0
ωiχi,k|k− 1,

Pk|k− 1 � 
2L

i�0
ωi χi,k|k− 1 − Xk|k− 1  χi,k|k− 1 − Xk|k− 1 

T
+ Qk.

(9)

Step 3: &e first update, with the process of measure-
ment update, is as follows:
&e measurement vector is

Zk � hk− 1 χi,k|k− 1 . (10)

&e first predicted measurement vector is

Zk � 
2n

i�0
ωiZi,k|k− 1. (11)

&e first covariance matrix of the innovations is

P
zz

k � 
2n

i�0
ωi Zi,k|k− 1 − Zk  Zi,kk− 1 − Zk 

T
+ Rk. (12)

&e first cross covariance matrix between the predicted
state estimate errors and innovations is

P
xz

k � 
2n

i�0
ωi χi,k|k− 1 − Xk|k− 1  Zi,k|k− 1 − Zk 

T
. (13)

&e gain matrix is

Kk � P
xz

k
P

zz

k 
− 1

. (14)

&e updated state estimates are

Xk � Xk|k− 1 + Kk Zk − Zk . (15)

&e covariance matrix of errors in the updated state
estimates is

Pk � Pk|k− 1 + Kk
Pz,kK

T
k . (16)
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Step 4: Cubature points generation
Update the covariance matrix of error

Pk � SkS
T
k . (17)

Generate the cubature points

ξj,k � ξ1j,k 
T

ξ2j,k 
T

  � Akξj + Xk,

j � 1, . . . , N.

(18)

Calculate the propagated cubature points

μj,k+1|k � fk ξ1j,k , j � 1, . . . , N,

πj,k+1|k � hk ξ1j,k , j � 1, . . . , N,
(19)

Step 5: &e second prediction.
&e predicted mean and covariance are calcu-
lated as

Xk+1|k �
1
2N



2N

j�1
μj,k+1|k,

Pk+1|k �
1
2N



2N

j�1
μj,k+1|k μj,k+1|k 

T

− Xk+1|k
Xk+1|k 

T
+ Qk.

(20)

Step 6: &e second update.
Factorize

Pk+1|k � Sk+1S
T
k+1. (21)

Generate the cubature points

ξj,k+1 � Ak+1ξj + Xk+1|k, j � 1, . . . , 2L. (22)

Calculate the propagated cubature points:

π∗j,k+1|k � hk+1 ξj,k+1 , j � 1, . . . , 2L. (23)

&e second predicted measurement

Zk+1 �
1
2L



2L

j�1
π∗j,k+1|k. (24)

&e second covariance matrix of the innovations

P
zz

k+1 �
1
2L



2L

j�1
π∗j,k+1|k  π∗j,k+1|k 

T
− Zk+1Z

T
k+1 + Rk+1,

P
zz

k+1 �
1
2L



2L

j�1
π∗j,k+1|k  π∗j,k+1|k 

T
− Zk+1Z

T
k+1 + Rk+1.

(25)

0
1 2 3 k–3 k–2 k–1 k Time (s)

1

y

lk–3 (t)

(a)
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y
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(c)

Figure 1: QI method from the time sequence 1 to (k)− 1. (a) QI basis function at the time sequence k− 3. (b) QI basis function at the time
sequence k− 2. (c) QI basis function at the time k− 1.
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Step 7: Compute gain matrix, estimate state, and its
covariance matrix secondly:

Kk+1 � P
xz

k+1
P

zz

k+1 
− 1

,

Xk+1 � Xk+1|k + Kk+1 Zk+1 − Zk+1 ,

Pk+1 � Pk+1|k + Kk+1
P

zz

k+1K
T
k+1.

(26)

Step 8: Repeat Steps 1 to 7 for the next sample.

4. Quadratic Interpolation-Based Variational
Bayesian Filter

4.1. Lagrange Interpolation Polynomial. When the mea-
surement information is lost, the Lagrange interpolation
polynomial (LIP) can be used to calculate the predicted
observed vectorY

⌢

k. &e QI method is used because the
Runge phenomenon needs to be avoided [42, 43].

Assumption 1. (a) &e measurement information is lost at
the time k. (b) &e measurement information is observed
from the time 1 to k-1, as the method function in Figure 1.

&e QI polynomial is described as

L2(t) � Yk− 3lk− 3(t) + Yk− 2lk− 2(t) + Yk− 1lk− 1(t), (27)

where lk− 3(t) � ((t − tk− 2)(t − tk− 1)/(tk− 3 − tk− 2)(tk− 3
− tk− 1)), lk− 2(t) � ((t − tk− 3)(t − tk− 1)/(tk− 2 − tk− 3)

Table 1: &e pseudocode of the proposed algorithm.

Pseudocode
Input: X0|0, P0|0, Q0

LIP method:

Y
⌢

k � Yk− 3lk− 3(tk) + Yk− 2lk− 2(tk) + Yk− 1lk− 1(tk)

� Yk− 3((tk − tk− 2)(tk − tk− 1)/(tk− 3 − tk− 2)(tk− 3 − tk− 1)) + Yk− 2((tk − tk− 3)(tk − tk− 1)/(tk− 2 − tk− 3)(tk− 2 − tk− 1))

+Yk− 1((tk − tk− 3)(tk − tk− 2)/(tk− 1 − tk− 3)(tk− 1 − tk− 2))

Time update:
Xk|k− 1 � fk− 1(Xk− 1|k− 1)

Pk|k− 1 � (Xk|k− 1 − Xk− 1|k− 1)(Xk|k− 1 − Xk− 1|k− 1)
T + Qk− 1

Variational Bayesian measurement update initialization:

X(0)
k|k � Xk|k− 1, P

(0)
k|k− 1 � Pk|k− 1, M

(0)
k|k− 1, m

(0)
k|k− 1, U

(0)
k|k− 1, u

(0)
k|k− 1.

Variational Bayesian measurement estimation: for l� 0: NVB-1

&e parameters of Pk|k− 1:

m
(l+1)
k|k− 1 � m

(l)
k|k− 1 + 1

M(l+1)
k|k− 1 � A(l)

k + M(l)
k|k− 1

⎧⎨

⎩

&e parameters of Rk:

u
(l+1)
k|k− 1 � u

(l)
k|k− 1 + 1

U(l+1)
k|k− 1 � B(l)

k + U(l)
k|k− 1

⎧⎨

⎩

&e expectations of Pk|k− 1 and Rk are calculated:

E(l+1)(Pk|k− 1) � M(l+1)
k|k− 1/(m

(l+1)
k|k− 1 − nX − 1)

E(l+1)(Rk) � U(l+1)
k|k− 1/(u

(l+1)
k|k− 1 − n

Y
⌢ − 1)

&e state vector X(l+1)
k|k and error covariance matrix P(l+1)

k|k :

X(l+1)
k|k � X(l)

k|k + K(l+1)
k (Y

⌢

k − ΗkX
(l)
k|k)

P(l+1)
k|k � P(l+1)

k|k− 1 − K(l+1)
k ΗkP

(l+1)
k|k− 1

⎧⎨

⎩

end
Output: Xk|k, Pk|k.

Table 2: &e simulation parameters.

Parameters Values
P0|0 eye(4)

Qk− 1 10− 3 × diag([1, 0.5, 1, 0.5])

Rk eye(4)
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(tk− 2 − tk− 1)), and lk− 1(t) � ((t − tk− 3)(t − tk− 2)/(tk− 1 − tk− 3)

(tk− 1 − tk− 2)).
Hence, Y

⌢

kcan be factored as follows:

Y
⌢

k � Yk− 3lk− 3 tk(  + Yk− 2lk− 2 tk(  + Yk− 1lk− 1 tk( 

� Yk− 3
tk − tk− 2(  tk − tk− 1( 

tk− 3 − tk− 2(  tk− 3 − tk− 1( 

+ Yk− 2
tk − tk− 3(  tk − tk− 1( 

tk− 2 − tk− 3(  tk− 2 − tk− 1( 

+ Yk− 1
tk − tk− 3(  tk − tk− 2( 

tk− 1 − tk− 3(  tk− 1 − tk− 2( 
,

(28)

where Y
⌢

kis the predicted observed vector at the time k and tk

means the time of k.

4.2.?eVariational BayesianApproach. In order to estimate
the state vector Xk|k with the measurement information lost,
the joint PDF PDF(Xk|k,Pk|k− 1,Rk,Y1: k− 1, Y

⌢

k) is considered
to calculate the optimal solutions of Xk|k, Pk|k− 1 and Rk.
However, this PDF cannot be obtained, so the VB method is

used to find some independent PDFs q(·), which are used to
approximate PDF(Xk|k,Pk|k− 1,Rk,Y1: k− 1, Y

⌢

k).
Set Θ � Xk||k,Pk|k− 1,Rk . &en, the optimal solutions of
Θ, which is satisfied, are as follows:

log q(κ) � EΘ− κ log PDF Θ,Y1: k− 1, Y
⌢

k    + Cκ, (29)

where EΘ− κ log[PDF(Θ,Y1: k− 1, Y
⌢

k)]  is the expectation
log[PDF(Θ,Y1: k− 1, Y

⌢

k)] of the Θ except for κ. Cκ is a con-
stant about κ. In Bayesian statistics theory, the covariance
matrix is defined to follow the inverse Wishart (IW)
distribution.

&e distributions of Pk|k− 1and Rk are set in

q Pk|k− 1  � IW Pk|k− 1; mk|k− 1,Mk|k− 1 ,

q Rk(  � IW Rk; uk|k− 1,Uk|k− 1 ,

⎧⎪⎨

⎪⎩
(30)

where IW(Pk|k− 1; mk|k− 1,Mk|k− 1) is the variable Pk|k− 1 that
follows IW distribution with mk|k− 1 degree of freedom
(DOF) and Mk|k− 1 inverse scale matrix.
IW(Rk; uk|k− 1,Uk|k− 1) is the variable Rk that follows IW
distribution with uk|k− 1 DOF andUk|k− 1 inverse scale matrix;

log[PDF(Θ,Y1: k− 1, Y
⌢

k)] can be rewritten as follows:
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Figure 2: &e positions in x direction of the different algorithms.
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PDF Θ,Y1: k− 1, Y
⌢

k  � PDF Y
⌢

k|Xk|k,Rk PDF Xk|k|Y1: k− 1,Pk|k− 1 

× IW Pk|k− 1; mk|k− 1,Mk|k− 1 IW Rk; uk|k− 1,Uk|k− 1 PDF Y1: k− 1( .

(31)

Hence, PDF(Θ,Y1: k− 1, Y
⌢

k) is expended in

PDF Θ,Y1: k− 1, Y
⌢

k  � N Y
⌢

k; hk Xk|k ,Rk N Xk|k;Xk|k− 1,Pk|k− 1 

× IW Pk|k− 1; mk|k− 1,Mk|k− 1 IW Rk; uk|k− 1,Uk|k− 1 Pro Y1: k− 1( .

(32)

&e optimal solution is defined as follows:

log PDF Θ,Y1: k− 1, Y
⌢

k   � −
1
2

Y
⌢

k − ΗkX
(l)
k|k 

T

R− 1
k Y

⌢

k − ΗkX
(l)
k|k 

−
1
2
Xk|k − Xk|k− 1 

T
P− 1

k|k− 1 Xk|k − Xk|k− 1  −
1
2

n
Y
⌢ + uk|k− 1 + 2 log|Rk

−
1
2

tr Uk|k− 1R
− 1
k  −

1
2

nX + mk|k− 1 + 2 log Pk|k− 1


 −
1
2

tr Mk|k− 1P
− 1
k|k− 1  + Cκ.

(33)

When choosing κ � Pk|k− 1, the parameters of Pk|k− 1 are
given by using

m
(l+1)
k|k− 1 � m

(l)
k|k− 1 + 1,

M(l+1)
k|k− 1 � A(l)

k + M(l)
k|k− 1,

⎧⎪⎨

⎪⎩
(34)
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Figure 3: &e positions in y direction of the different algorithms.
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where A(l)
k � Pk|k− 1 + (X(l)

k|k − Xk|k− 1)(X
(l)
k|k − Xk|k− 1)

T.
When choosing κ � Rk, the parameters of Rk are given

by using

u
(l+1)
k|k− 1 � u

(l)
k|k− 1 + 1,

U(l+1)
k|k− 1 � B(l)

k + U(l)
k|k− 1,

⎧⎪⎨

⎪⎩
(35)

where B(l)
k is calculated as follows:

B(l)
k � E

(l)
( Y

⌢

k − ΗkX
(l)
k|k ) Y

⌢

k − ΗkX
(l)
k|k 

T

 . (36)

&en, Pk|k− 1 and Rk at l+1th step are calculated as fol-
lows, respectively:

E
(l+1) Pk|k− 1  �

M(l+1)
k|k− 1

m
(l+1)
k|k− 1 − nX − 1 

, (37)

E
(l+1) Rk(  �

U(l+1)
k|k− 1

u
(l+1)
k|k− 1 − n

Y
⌢ − 1 

. (38)

When choosing κ � Xk|k, q(Xk|k) is modelled as follows:

q Xk|k  � N Xk|k;X(l+1)
k|k ,P(l+1)

k|k , (39)

where N(Xk|k;X(l+1)
k|k ,P(l+1)

k|k ) denotes the variable Xk|k that
follows Gaussian distribution with X(l+1)

k|k mean vector and
P(l+1)

k|k error covariance matrix, and the measurement update
is written as follows:

X(l+1)
k|k � X(l)

k|k + K(l+1)
k Y

⌢

k − ΗkX
(l)
k|k ,

P(l+1)
k|k � P(l+1)

k|k− 1 − K(l+1)
k ΗkP

(l+1)
k|k− 1,

⎧⎪⎪⎨

⎪⎪⎩
(40)

where the Kalman gain K(l+1)
k at the l+1th step is calculated

by using (41) at time k.

K(l+1)
k � P(l+1)

k|k− 1H
T
k HkP

(l+1)
k|k− 1H

T
k + R(l+1)

k 
− 1

. (41)

After fixed-point iterationNVB, the VB approximate of
PDF is derived by

q Pk|k− 1  ≈ q
NVB( ) Pk|k− 1  � IW Pk|k− 1; m

NVB( )
k|k− 1 ,M NVB( )

k|k− 1 ,

q Rk(  ≈ q
NVB( ) Rk(  � IW Rk; u

NVB( )
k|k− 1 ,U NVB( )

k|k− 1 ,

q Xk|k  ≈ q
NVB( ) Xk|k  � N Xk|k;X NVB( )

k|k ,P NVB( )
k|k .

(42)

&e pseudocode is presented in Table 1. If the mea-
surement information vector is lost, the LIP method is used
to calculate the predicted observed vector Y

⌢

k. &en, the
predicted state vector Xk|k− 1 and predicted error covariance
matrix Pk|k− 1 are calculated by using the state vector Xk|k,
error covariance matrix Pk|k and process noise matrix Qk.
&en, X(0)

k|k , P
(0)
k|k− 1, M

(0)
k|k− 1, m

(0)
k|k− 1, U

(0)
k|k− 1 and u

(0)
k|k− 1 are ini-

tialized for the subsequent variational Bayesian measure-
ment estimation. &e predicted error covariance matrix

KF

QIVBF
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Figure 4: RMSE of the KF and QIVBF algorithms.
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P(l+1)
k|k− 1 and the measurement noise matrix R(l+1)

k at the l+1 th
step are calculated in order to estimate the state vector X(l+1)

k|k

and error covariance matrix P(l+1)
k|k at the l+1 th step, re-

spectively. Finally, after NVB th iteration, the accurate state
vector Xk|k and error covariance matrix Pk|k are determined
at the time k.

5. Simulations and Results

&e proposed QIVBF is compared with the traditional KF in
a simulation with measurement missing scenarios, and the
root mean squared error (RMSE) is defined to compare the
performances of these algorithms.

RMSE(k) �

����������������������

Px,k − X
t
k 

2
+ Py,k − Y

t
k 

2


, (43)

where (Px,k, Py,k) and (Xt
k,Yt

k ) are the predicted position
and reference position, respectively. &e parameters are set
in Table 2.

According to the navigation system, the accuracy of the
methods is compared, and the above position estimation
errors are analyzed. From Figures 2 and 3, the proposed
QIVBF performs closer to the reference than the traditional
KF.&e proposed QIVBF results in a much better estimation
accuracy than the existing filter on handling the problems of
underwater navigation in the scenarios of measurement
information missing. In particular, KF can easily lose
tracking of the reference values by reason that the accu-
mulated errors of iteration. On the other hand, the quadratic
interpolation improves the observation vector for the pre-
cision and stability of estimation iterations when the en-
vironments change, or the measurement information is lost.
&erefore, the results demonstrate that the proposed QIVBF
outperforms the traditional KF in the condition of mea-
surement information missing.

&e navigation accuracy and anti-interference ability of
the KF and QIVBF are compared by calculating the root-
mean-square error (RMSE) of the position estimation. &e
RMSE has a good reflection of the measurement precision. It
can be seen from Figure 4 that the QIVBF performs better
than the traditional KF. When the measurement in-
formation is missing, the traditional KF cannot estimate the
accurate Kalman gain, which leads to the filter divergence.
However, the proposed QIVBF uses the QI method to es-
timate the lost observed vector, which can help estimate the
accurate information about cross error covariance matrix.
&en, the VB method can help calculate the accurate state
vector and error covariance matrix. &e RMSE of QIVBF is
lower than KF. Hence, the performance of QIVBF is better
than KF.

6. Conclusions

&e paper proposes a quadratic interpolation-based varia-
tional Bayesian filter for underwater navigation when
measurement information is lost, where the quadratic in-
terpolation method is used to calculate the observed vector
when the measurement information is lost. &en, the state
vector together with the predicted error covariance matrix

and the measurement noise matrix is estimated based on the
VB method. Simulation results demonstrated the effec-
tiveness of the proposed QIVBF algorithm as compared with
the traditional algorithm in the case of measurement in-
formation missing. &e idea of the proposed QIVBF can be
extended to design a nonlinear filter for the non-Gaussian
noises with measurement information lost. In future work,
we plan to apply multiple datasets of underwater navigation
measurements, so that the position and attitude can be
estimated based on the fusion of various data sources for
better accuracy.
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