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A nonlinear mathematical model of a magnetic bearing system has been obtained by applying a modified conventional
identification technique based on the principle of harmonic balance. In this study, we examined the rich nonlinear dynamics of a
magnetic bearing system with closed-loop control using phase portraits, Poincaré maps, and frequency spectra. (e resulting
bifurcation diagram can be used to evaluate the operational range of systems employing nonlinear actuators. Estimates of the
largest Lyapunov exponent based on the properties of synchronization revealed the occurrence of chatter vibration indicative of
chaotic motion. Various control methods, such as the state feedback control and the injection of dither signals, were then used to
quench the chaotic behavior.

1. Introduction and System Description

(e rotor in magnetic bearing systems is suspended by
magnetic bearings to ensure stable rotation at high speeds;
however, a closed-loop control system is required to stabilize
the system by eliminating vibrations caused by disturbing
forces. (e characteristics of magnetic bearings are inher-
ently nonlinear due to nonlinearities in electromagnetic
forces. (e occurrence of large unbalanced forces in rotor
bearings can cause nonlinear motion of high amplitude in
magnetic bearing systems. Accurate control of the system is
required which designers account for the effects of non-
linearities. In a previous work [1], we conducted experi-
ments on an unloaded symmetric rotor with flexible coupler
at one end and a bearing comprising two pairs of electro-
magnets at the other end (Figure 1). It was carried out by
applying a series of nonlinear electromagnetic forces to
identify a nonlinear model for this system. (ese rich
nonlinear dynamics must be taken into account in the design
of magnetic bearing systems. In this study, we sought to
predict these nonlinear dynamics by modifying the

conventional identification technique based on the principle
of harmonic balance in order to characterize the system with
a higher degree of precision. (e resulting nonlinear model
[1] is obtained as follows:

_x1 � x2, (1a)

_x2 � −d1x2 − d2x1 + d3x3 + d4x4 + d5x
2
1 + d6x1x3

+ d7x1x4 + d8x
2
3 + d9x

2
4 + d10x

3
1,

(1b)

L _x3 + Rx3 � KA ec1 + A0 sinΩt( 􏼁, (1c)

L _x4 + Rx4 � KA ec2 + A0 sinΩt( 􏼁, (1d)

where

ec1 � KH KPx1 + KDx2 + KI 􏽚 x1dt􏼒 􏼓,

ec2 � KH −KPx1 − KDx2 − KI 􏽚 x1dt􏼒 􏼓,

(2)
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with the limitations

−3.5 volts< ec1 < 6.5 volts,

−3.5 volts< ec2 < 6.5 volts,

0.0 amp<x3 andx4 < 2.0 amp,

(3)

where x1 is the displacement of the rotor around the
equilibrium point; x2 is the velocity of the rotor; x3 and x4
are coil currents oscillating around the bias current; ec1 and
ec2 are the outputs of the PID controller to the two coils;
KP � −55, KD � −0.3, and KI � −50 are the control gains; KA
(�2.4) and KH (�10000) represent the gains of the power
amplifier and displacement sensor; and A0sinΩt is the
forcing voltage generated by a programmable function
generator. (e procedures used to derive the other coeffi-
cients necessary for (1a)–(1d) are listed in Table 1 [1].

(is model captures the primary characteristics of the
system by comparing the frequency responses from
simulations with those from experiments [1]. However,
this model has not been subjected to dynamic analysis to
determine whether the nonlinear mathematical model
derived from experiments can be used to characterize and/
or predict the dynamics in a physical system. Further-
more, the chaotic motion that occurs at the moment the
rotor strikes the electromagnet has not been
characterized.

In this study, we employed bifurcation diagrams, phase
portraits, Poincaré maps, frequency spectra, and Lyapunov
exponents to observe periodic and chaotic motions. Across a
broad range of parameters, the Lyapunov exponent provides
the most powerful means by which to measure the sensitivity
of a dynamic system as it pertains to its initial conditions.
(is approach can be used to determine whether a system is
susceptible to chaotic motion. (e algorithms used to

compute Lyapunov exponents associated with smooth dy-
namic systems are well-established [2–5]. However, a
number of nonsmooth dynamic systems possess disconti-
nuities to which this algorithm cannot be applied directly,
such as those associated with dry friction, backlash, and
saturation. Many studies have proposed methods for the
calculation of Lyapunov exponents associated with non-
smooth dynamic systems [6–8]. In this study, we adopted the
method developed by Stefanski [8] for estimating the largest
Lyapunov exponent in a magnetic bearing system with
closed-loop control.

Many practical engineering problems involving chaos
require control techniques to convert chaotic attractors into
stable periodic orbits. Since the pioneering work of Ott et al.
[9], numerous methods for the control of chaos have been
devised [10–19]. Improving the performance of a controlled
magnetic bearing system and/or eliminating chatter be-
havior require the conversion of chaotic behavior into pe-
riodic motion. Two control methods have been developed
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Figure 1: Schematic diagram of a magnetic bearing system.

Table 1: Identified results [1].

System parameter Identified value
d1 3.066133
d2 4.3315×103

d3 −5.5786683
d4 6.5562
d5 1.43371× 107

d6 −2.531× 104

d7 −4.53203×104

d8 0.34514
d9 −0.40171
d10 −2.399816×1010

L 0.0161203
R 14.3128231
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for chaos suppression: state feedback control [11–15] and
dither control [16–19].

2. System Characteristics: Simulations
and Discussion

We conducted a series of numerical simulations based on
(1a)–(1d) to clearly elucidate the dynamic characteristics of
the system in this study. In (1a)–(1d), the amplitude of the
input excitation, A0, equals 3.5V. We employed FORTRAN
subroutines in the commercial software package DIVPRK
(IMSL) to solve ordinary differential equations [20]. (e
resulting bifurcation diagram is presented in Figure 2. (is
figure clearly shows that the first period-doubling bifurcation
occurred at approximately Ω� 19.5Hz and chaotic motion
appeared at approximately Ω� 18.5Hz. Further details of the
responses exhibited by the system are presented in
Figures 3–5, in which each type of response is characterized by
a phase portrait, Poincaré map, and frequency spectrum.
Figures 3(a)–3(c) show that the Tf-period includes the
constant term and fundamental components. From Figure 4,
we determined that a cascade of period-doubling bifurcations
produced a series of subharmonic components, revealing the
bifurcations with new frequency components at Ω/2, 3Ω/2,
5Ω/2, . . .. (e essence of chaotic behavior can be described
using Poincaré maps, which present an infinite set of points
referred to as a strange attractor. Chaotic motion also presents
a broad continuous frequency spectrum. (us, strange
attractors and continuous-type Fourier spectra are generally
regarded as strong indictors of chaos, as illustrated in
Figures 5(a)–5(c).

3. Synchronization and the Lyapunov Exponent

(e largest Lyapunov exponent is a useful diagnostic ele-
ment for the analysis of chaotic systems. Every dynamic
system possesses a spectrum of Lyapunov exponents (λ),
which determine length, area, and volume changes in the
phase space. In other words, Lyapunov exponents measure
the rate of divergence (or convergence) between two adja-
cent orbits. Chaos can be identified simply by calculating the
largest Lyapunov exponent, thereby determining whether
nearby trajectories generally diverge (λ> 0) or converge
(λ< 0). Any bounded motion in a system containing at least
one positive Lyapunov exponent is defined as chaotic,
whereas nonpositive Lyapunov exponents indicate periodic
motion. (ere are a number of well-established algorithms
that compute the Lyapunov spectrum of smooth dynamic
systems [2–5]. However, nonsmooth dynamic systems with
discontinuities, such as dry friction, backlash, and satura-
tion, do not allow for the direct application of such algo-
rithms. In this study, we estimated the largest Lyapunov
exponent in order to identify the onset of chaotic motion in a
controlledmagnetic bearing system. Stefanski [8] proposed a
simple method for estimating the largest Lyapunov expo-
nent based on properties associated with synchronization.
Synchronization controls the response system by accessing
the output of the drive system such that the output of the

response system asymptotically follows the output of the
drive system. (is method is described briefly as follows.

(e dynamic system is decomposed into the following
two subsystems:

A drive system

_x � f(x). (4)

A response system

_y � f(y). (5)

Consider a dynamic system comprising two identical
n-dimensional subsystems, where the response system (5)
is combined with coupling coefficient d, and the drive
system (4) remains the same. (e first-order differential
equations used to describe such a system are written as
follows:

_x � f(x),

_y � f(y) + d(x − y).
(6)

(e condition of synchronization is given by the fol-
lowing inequality:

d> λmax. (7)

(e smallest value of coupling coefficient d in syn-
chronization ds is assumed to be equal to the largest Lya-
punov exponent, as follows:

ds � λmax. (8)

(6) provides an augmented system based on (1a)–(1d), as
follows:

_x1 � x2, (9a)

_x2 � −d1x2 − d2x1 + d3x3 + d4x4 + d5x
2
1 + d6x1x3

+ d7x1x4 + d8x
2
3 + d9x

2
4 + d10x

3
1,

(9b)
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Figure 2: Bifurcation diagram of the system for A0 � 3.5V.
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L _x3 + Rx3 � KA ec1x + A0 sinΩt( 􏼁, (9c)

L _x4 + Rx4 � KA ec2x + A0 sinΩt( 􏼁, (9d)

_y1 � y2 + d x1 − y1( 􏼁, (10a)

_y2 � −d1y2 − d2y1 + d3y3 + d4y4 + d5y
2
1 + d6y1y3

+ d7y1y4 + d8y
2
3 + d9y

2
4 + d10y

3
1 + d x2 − y2( 􏼁,

(10b)

L _y3 + Ry3 � KA ec1y + A0 sinΩt􏼐 􏼑 + d x3 − y3( 􏼁, (10c)

L _y4 + Ry4 � KA ec2y + A0 sinΩt􏼐 􏼑 + d x4 − y4( 􏼁, (10d)

where

ec1x � KH KPx1 + KDx2 + KI 􏽚 x1dt􏼒 􏼓,

ec2x � KH −KPx1 − KDx2 − KI 􏽚 x1dt􏼒 􏼓,

ec1y � KH KPy1 + KDy2 + KI 􏽚 y1dt􏼒 􏼓,

ec2y � KH −KPy1 − KDy2 − KI 􏽚 y1dt􏼒 􏼓,

(11)

with the following limitations:

−3.5 volts< ec1x < 6.5 volts,

−3.5 volts< ec2x < 6.5 volts,

0.0 amp<x3 and x4 < 2.0 amp,

−3.5 volts< ec1y < 6.5 volts,

−3.5 volts< ec2y < 6.5 volts,

0.0 amp<y3 andy4 < 2.0 amp.

(12)

In the next step, we estimate the largest Lyapunov ex-
ponent for the selected parametric values in accordance with
the method described above. Figure 6 presents the results of
numerical calculations showing the estimated largest Lya-
punov exponents obtained using the above synchronization
method. All of the largest Lyapunov exponents are positive
with regard to the forcing frequency (Ω< 18.5Hz), indi-
cating that the system exhibits chaotic motion. (ese results
help to enhance our understanding of chatter vibration in a
controlled magnetic bearing system.

4. Quenching Chatter

Chaotic motion can induce chatter vibrations capable of
destroying a magnetic bearing system. Accurate prediction
of the behavior of a chaotic system can be beneficial;
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Figure 3: Period-one orbit for Ω� 20.0Hz: (a) phase portrait; (b) Poincaré map; (c) frequency spectrum.
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however, maximizing the benefits requires the ability to
control this behavior. A chaotic system must be transformed
into periodic motion in order to work under specific con-
ditions and thereby improve the performance of a dynamic
system and/or avoid chatter. In this section, we discuss the
means by which chaos can be converted into periodic
motion using minimal efforts. We present two methods of
controlling chaos: the addition of state feedback control
[12, 13] and the application of dither signals [16, 17].

4.1. State Feedback Control. Cai et al. [12, 13] proposed a
simple, yet effective, state feedback control algorithm. (is
method for the n-dimensional dynamical system is
explained briefly as follows:

_x � f(x, t), (13)

where x(t) ∈Rn is the state vector and f� (f1,. . ., fi,. . ., fn),
where fi is a linear or a nonlinear function and f includes at
least one nonlinear function. Suppose that fk(x, t) is the key
nonlinear function leading to chaotic motion in system (13).
We add to the equation only one term of state feedback of an
available system variable xm that includes fk(x, t), as
follows:

_xk � fk(x, t) + Gxm, k, m ∈ 1, 2, . . . , n{ }, (14)

where G is feedback gain. Other functions retain their
original forms. We applied this method to (1a)–(1d) to more
clearly elucidate the simple control scheme.

In the absence of state feedback control, (1a)–(1d) ex-
hibits chaotic behavior under the following parameters:
A0 � 3.5 V and Ω� 18.2Hz. Consider how the addition of
state feedback control to the right-hand side of the (1a)–(1d)
would affect the results. Figure 7 presents the resulting
bifurcation diagram for Ω� 18.2Hz with state feedback
control. When G� 0, (1a)–(1d) displays chaotic motion (see
Figure 5). (is figure shows that chaotic motion occurs at
approximately G>−7.0 and disappears at approximately
G≤−7.0. When the feedback gain G falls below −7.0, the
system described by (1a)–(1d) exhibits stable periodic mo-
tion. After 10 seconds, the control signal is applied to the
system to control chaotic oscillation (Figure 8). In so doing,
the state feedback control can be used to suppress chaotic
motion and improve the performance of a magnetic bearing
system with closed-loop control.

4.2. Dither Control. In this section, we describe how chaotic
motion can be controlled by injecting an external dither
signal to adjust nonlinear terms. A dither is a high-frequency
signal introduced to modify the behaviors of nonlinear
systems through the elimination of nonlinearities. (e
ability of a dither signal to average out nonlinearities can be
attributed to its high frequency and periodic nature. Dither
smoothing techniques were proposed in references [16, 17]
to stabilize chaotic systems. Some of the most common
dither signals were proposed by Cook [21].

(i) Square-wave dither: the simplest type of dither signal
is the square-wave signal as shown in Figure 9, where
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Figure 4: Period-two orbit for Ω� 19.0Hz: (a) phase portrait; (b) Poincaré map; (c) frequency spectrum.
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dither signal takes the constant values W and −W al-
ternately, each holding for a half-period T/2, with T
being much smaller than the time constant of the
system. (e amplitude W is applied in front of the
nonlinearity f(·). (us, the effective value of n (the
output of the nonlinear element) can be written as [16]

n �
1
2

[f(y + W) + f(y − W)]. (15)

(us, the system equations can be written as follows:

_y � n. (16)

Consider the effect of adding square-wave dither
control to the system described in (1a)–(1d), where
Ω� 18.2Hz. Increasing the amplitude of the square-
wave dither signal from W� 0 to 0.0005V would
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Figure 5: Chaotic motion for Ω� 18.2Hz: (a) phase portrait; (b) Poincaré map; (c) frequency spectrum.
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change the chaotic behavior to period-one motion.
(e resulting bifurcation diagram under
Ω� 18.2Hz with a square-wave dither signal is
shown in Figure 10. Figure 11 shows the effects 10
seconds after applying a control signal to the system
in order to illustrate the effectiveness of this con-
troller in controlling chaotic oscillations.

(ii) Sinusoidal dither: one simple dither signal is a high-
frequency sinusoid. Here, the effective value of n is
its average over a complete period of the sinusoidal
dither signal oscillation:

n �
1
2π

􏽚
2π

0
f(x + W sin θ)dθ. (17)

Adding a sinusoidal dither signal to (1a)–(1d) yields the
following coupled system:

_􏽥x1 � 􏽥x2, (18a)

_􏽥x2 � −d1􏽥x2 − d2􏽥x1 + d3􏽥x3 + d4􏽥x4 + n, (18b)

L _􏽥x3 + R􏽥x3 � KA 􏽥ec1 + A0 sinΩt( 􏼁, (18c)

L _􏽥x4 + R􏽥x4 � KA 􏽥ec2 + A0 sinΩt( 􏼁, (18d)

where

􏽥ec1 � KH KP􏽥x1 + KD􏽥x2 + KI 􏽚 􏽥x1dt􏼒 􏼓,

􏽥ec2 � KH −KP􏽥x1 − KD􏽥x2 − KI 􏽚 􏽥x1dt􏼒 􏼓,

n �
1
2π

􏽚
2π

0
d5 􏽥x1 + W sin θ( 􏼁

2
+ d6 􏽥x1 + W sin θ( 􏼁􏽨

· 􏽥x3 + W sin θ( 􏼁 + d7 􏽥x1 + W sin θ( 􏼁 􏽥x4 + W sin θ( 􏼁

+ d8 􏽥x3 + W sin θ( 􏼁
2

+ d9 􏽥x4 + W sin θ( 􏼁
2

+ d10 􏽥x1 + W sin θ( 􏼁
3
􏽩,

(19)

with the following limitations:

−3.5 volts<􏽥ec1 < 6.5 volts,

−3.5 volts<􏽥ec2 < 6.5 volts,

0.0 amp< 􏽥x3 and 􏽥x4 < 2.0 amp.

(20)

(e dither frequency must substantially exceed that of
any other frequency used to operate the system in order to
ensure that the dither signal does not introduce other un-
desirable oscillations at the same frequency as the dither
signal. For example, Figure 12 presents the resulting
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bifurcation diagram for a system with a sinusoidal dither in
which parameter Ω is 18.2Hz and the frequency of the
sinusoidal dither is 6000 rad/s. (is reveals that a sinusoidal
dither with amplitude exceeding 0.0005V can convert
chaotic behavior into stable periodic motion in a magnetic
bearing system. (e next steps are setting W� 0.008V and
plotting the effective nonlinearity n and original nonlinearity
f, as shown in Figure 13. (e time response of displacement
10 seconds after the injection of a sinusoidal dither signal is
shown in Figure 14(a). (e chaotic behavior is converted
into period-one motion. Figure 14(b) presents a phase
portrait of the controlled system. Note that the behavior of
the system is initially chaotic, but gradually becomes peri-
odic following dither injection.

5. Conclusions

(is work uses the identified nonlinear model examine
global bifurcation and chaos control in the magnetic bearing
system. Dynamic behavior over the entire range of pa-
rameter values is observable in the resulting bifurcation
diagram, which reveals that the magnetic bearing system
exhibits period-doubling bifurcations and chaotic motions.
(e largest Lyapunov exponent derived using the properties
of synchronization provided the most powerful tool to
measure and analyze chaotic motion in such a system.
Controlling chaotic motion is an effective way to prevent
chatter vibration in magnetic bearing systems. State feed-
back control is a simple, yet effective, approach to sup-
pressing chaos. It can be implemented by adding feedback
associated with a suitable variable into the original system
with control gain sufficient to overcome the development of
chaos in dynamic systems prone to chaotic behavior. It is
also possible to convert chaotic behavior into a periodic orbit
through the injection of a dither signal in front of nonlin-
earities in a chaotic magnetic bearing system.

Our analysis revealed that the proposed nonlinear model
is able to predict the occurrence of bifurcation and chaos in
an active magnetic bearing system, which means that it is
potentially applicable to a wide range of functions in the
design of active magnetic bearing systems. Chaotic behavior
must be accepted in some situations; however, it is normally
deemed undesirable, as it degrades performance and re-
stricts the operating range of electric and mechanical de-
vices. Accordingly, we applied state feedback and dither

control methods to quench chaos, improve the performance
of the magnetic bearing system, and prevent the occurrence
of chaos behaviors. Furthering the development of mag-
netically levitated vehicles requires an understanding of their
nonlinear dynamic characteristics from the viewpoint of
stability, safety, and ride quality at high speeds. Our con-
tribution of this study is that studying nonlinear dynamics
and controlling chaotic vibrations in the active magnetic
bearing systems will help to advance the development of
magnetic transportation systems.

Data Availability

No data were used to support this study. We only used
computer for simulation. (erefore, we can only provide
simulation programming, which can be obtained from the
corresponding author upon request.

Conflicts of Interest

(e author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

(is research was supported by the Ministry of Science and
Technology in Taiwan, Republic of China, under project
number MOST 108-2221-E-212 -010 -MY3.

References

[1] S. C. Chang and P. C. Tung, “Nonlinear identification of a
magnetic bearing system with closed loop control,” JSME
International Journal Series C Mechanical Systems, Machine
Elements andManufacturing, vol. 42, no. 4, pp. 982–990, 1999.

[2] I. Shimada and T. Nagashima, “A numerical approach to
ergodic problem of dissipative dynamical systems,” Progress of
5eoretical Physics, vol. 61, no. 6, pp. 1605–1616, 1979.

[3] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “De-
termining Lyapunov exponents from a time series,” Physica D:
Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.

[4] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn,
“Lyapunov characteristic exponents for smooth dynamical
systems and for Hamiltonian systems; a method for com-
puting all of them. Part 1: theory,” Meccanica, vol. 15, no. 1,
pp. 9–20, 1980.

Uncontrolled
Controlled

–4
–2

0
2
4
6

D
isp

la
ce

m
en

t (
m

m
)

18166 8 10 200 122 144
Time (sec)

×10–3

(a)

–0.04
–0.02

0
0.02
0.04

V
el

oc
ity

 (m
m

/s
)

1.25 1.3 1.35 1.551.45 1.5 1.6 1.651.4 1.71.2
Displacement (mm) ×10–3

(b)

Figure 14: Controlling chaotic motion to desired period-one orbit forW� 0.003V andΩ� 18.2Hz: (a) time responses of displacement.(e
sinusoidal dither signal is injected after 1 s. (b) phase portrait of controlled system.

Mathematical Problems in Engineering 9



[5] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn,
“Lyapunov characteristic exponents for smooth dynamical
systems and for Hamiltonian systems; a method for com-
puting all of them. Part 2: numerical application,”Meccanica,
vol. 15, no. 1, pp. 21–30, 1980.

[6] P. C. Müller, “Calculation of Lyapunov exponents for dy-
namical systems with discontinuities,” Chaos, Solitons &
Fractals, vol. 5, no. 9, pp. 1671–1681, 1995.

[7] N. Hinrichs, M. Oestreich, and K. Popp, “Dynamics of os-
cillators with impact and friction,” Chaos, Solitons & Fractals,
vol. 8, no. 4, pp. 535–558, 1997.

[8] A. Stefanski, “Estimation of the largest Lyapunov exponent in
systems with impacts,” Chaos, Solitons & Fractals, vol. 11,
no. 15, pp. 2443–2451, 2000.

[9] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,”
Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990.

[10] Z. Shen and J. Li, “Chaos control for a unified chaotic system
using output feedback controllers,” Mathematics and Com-
puters in Simulation, vol. 132, pp. 208–219, 2017.

[11] S. M. A. Pahnehkolaei, A. Alfi, and J. A. Tenreiro Machado,
“Chaos suppression in fractional systems using adaptive
fractional state feedback control,” Chaos, Solitons & Fractals,
vol. 103, pp. 488–503, 2017.

[12] C. Cai, Z. Xu, W. Xu, and B. Feng, “Notch filter feedback
control in a class of chaotic systems,” Automatica, vol. 38,
no. 4, pp. 695–701, 2002.

[13] C. Cai, Z. Xu, and W. Xu, “Converting chaos into periodic
motion by state feedback control,” Automatica, vol. 38, no. 11,
pp. 1927–1933, 2002.

[14] W. S. Wu, Z. S. Zhao, J. Zhang, and L. K. Sun, “State feedback
synchronization control of coronary artery chaos system with
interval time-varying delay,” Nonlinear Dynamics, vol. 87,
no. 3, pp. 1773–1783, 2017.

[15] M. Z. Ullah, F. Mallawi, D. Baleanu, and A. S. Alshomrani, “A
new fractional study on the chaotic vibration and state-
feedback control of a nonlinear suspension system,” Chaos,
Solitons & Fractals, vol. 132, Article ID 109530, 2020.

[16] C. C. Fun and P. C. Tung, “Experimental and analytical study
of dither signals in a class of chaotic system,” Physics Letters A,
vol. 229, no. 4, pp. 228–234, 1997.

[17] Y. M. Liaw and P. C. Tung, “Application of the differential
geometric method to control a noisy chaotic system via dither
smoothing,” Physics Letters A, vol. 239, no. 1-2, pp. 51–58,
1998.

[18] Q. Wei and X. Y. Wang, “Chaos controlling of permanent
magnet synchronous motor base on dither signal,” Journal of
Vibration and Control, vol. 19, no. 16, pp. 2541–2550, 2013.

[19] S. C. Chen and E. T. Mbitu, “Quench limit cycle using dif-
ferent dither signal in a servo motor system,” in Proceedings of
the International Conference on Advanced Materials for Sci-
ence and Engineering (ICAMSE), pp. 501–504, Tainan, Taiwan,
November 2016.

[20] IMSL, Inc, User’s Manual−IMSL MATH/LIBRARY, IMSL,
Inc., Louisville, CO, USA, 1989.

[21] P. A. Cook, Nonlinear Dynamical Systems, Prentice-Hall,
London, UK, 1994.

10 Mathematical Problems in Engineering


