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Various black-box optimization problems in real world can be classified as multimodal optimization problems. Neighborhood
information plays an important role in improving the performance of an evolutionary algorithm when dealing with such
problems. In view of this, we propose a particle swarm optimization algorithm based on dynamic neighborhood to solve the
multimodal optimization problem. In this paper, a dynamic ε-neighborhood selection mechanism is first defined to balance the
exploration and exploitation of the algorithm. ,en, based on the information provided by the neighborhoods, four different
particle position updating strategies are designed to further support the algorithm’s exploration and exploitation of the search
space. Finally, the proposed algorithm is compared with 7 state-of-the-art multimodal algorithms on 8 benchmark instances. ,e
experimental results reveal that the proposed algorithm is superior to the compared ones and is an effective method to tackle
multimodal optimization problems.

1. Introduction

Various black-box problems to be tackled difficultly in the
real world have the characteristic of multimodal problem [1].
Strictly speaking, a multimodal optimization problem
(MMOP) refers to an optimization problem with multiple
global or local optima. Typical instances include drug
molecular design [2], truss structure optimization [3], and
protein structure prediction [4]. When solving MMOPs, we
expect to locate several optimal solutions simultaneously, for
the following reasons [5, 6]: (1) finding multiple optimal
solutions in different regions of the search space at the same
time is conducive to maintaining the diversity of the pop-
ulation and offset the influence of genetic drift. (2) For many
real-world engineering optimization problems, designers
hope to freely choose solutions to meet different needs from
several excellent solutions with great differences. (3) For the
black-box problem, in the absence of prior knowledge, the

positions and the numbers of the global optima of the
problem cannot be obtained. Locating multiple optimal
solutions of the problem at the same time can improve the
possibility of finding its global optimal solution and can also
possibly provide multiple optimal solutions for decision
makers. In view of this, the field of multimodal optimization
has received more and more attention recently due to its
scientific and technological significance.

Traditional population-based evolutionary algorithms
(EAs), such as genetic algorithm (GA) [7, 8], differential
evolutionary (DE) [9], and particle swarm optimization (PSO)
[10], are natural candidates for solving MMOPs. However, it
should be noted that, in the case of solving MMOPs without
special treatment, these EAs can only converge to one optimal
solution of the optimization problem at a single run. In order
to find multiple optimal solutions of the problem, it is nec-
essary to run them repeatedly and it is expected to find a
different optimal solution each time.
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In order to enable EAs to solve MMOPs effectively,
researchers have proposed a series of techniques, most of
which are aimed at enhancing the diversity of population
and making it converge towards different search directions.
,ese techniques are commonly referred to as niching [5].
Representative niche techniques include crowding [11],
clustering [12–14], speciation [15], and stretching and
shrinking method [16]. Recently, niching techniques are also
embedded into PSO algorithm in a number of literatures.
For example, MMOP is solved by changing the topology of
PSO, such as niche PSO based on ring topology [13] and PSO
based on star topology and ring topology [17]. In addition,
the concept of speciation has also been introduced into the
species-based PSO [18–20], where species can form adap-
tively in different optimal states. However, in order to define
a species, a niching radius must be provided in advance.
Accordingly, species can be merged or separated into new
species in each iteration. Other methods, such as nbest PSO
[21, 22] and multiswarms [23, 24], are also proposed.

To remedy the defect of requirement for providing the
niching radius in advance, a parameter, which is easy to set
or with little sensitivity to the performance of the algorithm,
is employed to complete the clustering or grouping of in-
dividuals by replacing the niching radius. Schoeman and
Engelbrecht proposed a vector-based PSO algorithm, which
uses vector operations to demarcate the boundaries of niches
and maintain subswarms without any prior knowledge of
the problem domain [25]. A niche is determined by a radius
value based on the distance between the optimal of group
and the nearest particle. Qu et al. [26] proposed a distance-
based locally informed PSO (LIPS), where the global best
position is replaced by multiple local best positions to guide
the update of particles for converging to different optimal
subspaces. However, LIPS needs to specify the neighborhood
size of the particles. Based on the locality sensitive hashing,
Zhang et al. proposed a fast niching technique to find the
neighborhood set of particles, which can keep a balance
between the exploration and exploitation of the algorithm
while reducing the computational complexity of EAs [27].
Nevertheless, the method depends on the constructed hash
functions. Further, Zhang et al. proposed a concept of pa-
rameter-free Voronoi neighborhood; the information pro-
vided by the Voronoi neighbors is used to estimate the
evolutionary state of an individual. And different types of
individuals are assigned with different reproduction strat-
egies to support the exploration and exploitation of the
search space [28]. As the dimension of the problem in-
creases, the computational complexity of Voronoi will in-
crease dramatically.

In order to handle the above problems, a dynamic
neighborhood-based multimodal PSO algorithm (DNPSO)
is proposed in this paper. ,e aim is to design different
evolutionary strategies based on neighborhood information
to balance the exploration and exploitation of the algorithm
without specifying an exact neighborhood size. ,e main
contributions of DNPSO are provided as follows:

(1) A dynamic ε-neighborhood selection mechanism is
proposed. Compared with the existing neighborhood-

based method, the neighborhood size of a particle in
this paper is dynamically changed, and it is different
for different particles. In addition, the proposed
mechanism may lead to a larger possibility of infor-
mation interaction between distant particles, which is
beneficial for generating an exploratory offspring and
restoring the exploration ability of PSO.

(2) Inspired by the successful application of neighbor-
hood information to the design of the multimodal
EAs, four different position updating strategies are
presented according to the particle’s position and
performance in its neighborhoods. Consequently,
the search performance of the algorithm can be
improved.

,e rest of this paper is arranged as follows. Section 2
gives the related work for PSO. ,e proposed DNPSO is
presented in Section 3, including the dynamic ε-neighbor-
hood selection mechanism, four different position updating
strategies, and the framework of the proposed algorithm. In
order to verify the effectiveness of the proposed DNPSO,
comparison experiments are presented in Section 4. Section
5 highlights main findings and future research opportunities
as a result of the survey.

2. Particle Swarm Optimization Algorithm

Consider the following maximization problem:

maxf(X),

s.t. X ∈ S⊆R
D

.
(1)

where X is a D-dimensional decision variable, S refers to the
bound-constraint of the decision space, RD means the D-
dimensional space, and f(·) is the objective function.

PSO is a heuristic search algorithm proposed by
Kennedy et al. [29]. ,e searching principle of PSO comes
from the imitation of bird foraging behavior. Due to its
simple structure and efficient searching performance, PSO
has been successfully applied to solving various optimi-
zation problems [30–32]. In PSO, the position of each
particle in the search space represents the “potential
feasible solution” of the problem to be optimized. ,e
particles are initially random in the feasible search space
with a random velocity, which aims to converge to the
global optimal solution of the optimization problem.
During the optimization process, each particle tracks two
optimal positions simultaneously. One is the best position
that it has achieved so far, also known as the individual
guider (Pbest), and the other is the global best position
detected so far in the neighborhood of the current particle
or in the entire swarm, also known as the global guider
(Gbest) [29]. Among them, the tracking of individual
guider can be regarded as the component of self-cogni-
tion, and the learning of global optimal position can be
seen as the component of social cognition. In the next
iteration, both the ego and the social cognition compo-
nents randomly influence the velocity of each particle.
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Since the PSO was proposed, researchers have proposed
numerous PSO variants. Two variants of PSO are presented
here, i.e., PSO with inertia weight [29] and LIPS proposed by
Qu et al. [26]. At each iteration, the velocity and position of a
particle in the PSO with inertia weight are updated as
follows:

vi,d(t + 1) � wvi,d(t) + c1r1 Pbesti,d(t) − xi,d(t) 

+ c2r2 Gbestd(t) − xi,d(t) ,

xi,d(t + 1) � xi,d(t) + vi,d(t + 1),

(2)

where t is the number of iterations;
Xi(t) � (xi,1(t), xi,2(t), ..., xi,D(t)) and Vi(t) � (vi,1(t),

vi,2(t), ..., vi,D(t)) mean the position and velocity of the i-th
particle at the t-th iteration, respectively. Pbesti(t) repre-
sents the best position found by the i-th particle and refers to
the best position of the swarm. w is the inertia weight; c1 and
c2 are cognitive and social coefficients, respectively. r1 and r2
are two random values within [0, 1]. Figure 1 shows the flow
chart of a conventional PSO.

,e velocity of a particle in LIPS is determined by the
information provided by its neighbors, and the velocity of
each particle is updated as follows:

vi,d(t + 1) � w vi,d(t) + φ Pi,d(t) − xi,d(t)  , (3)

where

Pi(t) �


nsize
j�1 φjnbestj(t) /nsize

φ
, (4)

where φj refers to a random value uniformly distributed in
[0, 4.1/nsize] [26], φ � 

nsize
j�1 φj, nbestj is the j-th nearest

neighborhood to Pbesti, and nsize means the neighborhood
size.

3. Dynamic Neighborhood-Based PSO for
Multimodal Problems

In this section, two key techniques are presented in the
proposed DNPSO. One is the definition of dynamic
ε-neighborhood; the other is the four tailored particle update
strategies based on the neighborhood information of the
current particle, and the framework of the proposed DNPSO
is also provided.

3.1. Dynamic ε-Neighborhood. At present, a number of re-
searchers try to solve the MMOPs by using distance-based
neighborhood to form different species in the search space,
and most of them show that neighborhood information is
crucial to enhance the diversity of the population
[26, 33–35]. However, with neighborhood information, the
offspring produced by these methods tend to be attracted to
the inner regions enclosed by the initial population.
,erefore, the number of optimal solutions is likely to de-
pend on the initial distribution of individuals. To address
this issue, we expect that particles can exchange information
not only from their nearby particles, but also from the

distant particles.,ereby, a balance can be achieved between
the exploration and exploitation of the algorithm.

In view of this, this section presents a dynamic
ε-neighborhood approach, where ε refers to the neighbor-
hood radius. ,is approach is inspired by the idea of density
clustering, and readers interested in this can refer to [36].
Some definitions of dynamic ε-neighborhood are presented
as follows.

Definition 1. (Core object). Xi is a core object if the
ε-neighborhood of Xi contains at least MinPts samples.

Definition 2. (Directly neighborhood-reachable). If Xj is
located in the ε-neighborhood of Xi, and Xi is the core object,
then Xj is directly reachable by Xi.

Definition 3. (Neighborhood-reachable). For Xi and Xj, if
there exists a point p that makes Xi and p directly neigh-
borhood-reachable and p and Xj are also directly neigh-
borhood-reachable, then Xj is reachable by neighborhood of
Xi.

Figure 2 further illustrates the definitions of dynamic
ε-neighborhood. From Figure 2, we can easily obtain that if
X is a core object, then A, B, C, D, and E are directly

Initialize the positions, velocities, Pbest,
and Gbest of the population

Update the velocity and position for each 
particle using (2) and (3), respectively

Reset the particle which exceeds the bounds

Evaluate each particle

Update the Pbest and Gbest

Satisfy the termination 
condition?

Output

No

Yes

Figure 1: Flow chart of a conventional PSO.
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neighborhood-reachable by X, and F, G, H, and I are
neighborhood-reachable by X.

It should be noted that the purpose of dynamic
ε-neighborhood selection mechanism is to obtain the
neighbors of each particle in the population. ,erefore, each
particle in the population is regarded as the core object.
According to Definition 1, the ε-neighborhood of a core
object should include at leastMinPts points. A fixed value for
MinPts is first provided in this paper, as the value of ε is
difficult to set without prior knowledge. ,en, we set
εi � dismax, where dismax refers to the maximum distance
between Xi and the particles in the set of directly neigh-
borhood-reachable. Based on this, the neighborhood-
reachable particles of Xi are found, so as to form the dynamic
neighborhood of particle Xi.

,e proposed dynamic ε-neighborhood has three
characteristics. (1) ,e neighborhood size of particle Xi
varies dynamically in different evolutionary stage. (2) ,e
neighborhood sizes of different particles in the same evo-
lutionary stage may also be different. (3) Dynamic
ε-neighborhood divides the neighborhood of the particle Xi
into two levels. ,e particles in the group of directly
neighborhood-reachable can be regarded as the close
neighbors of Xi, while the particles in the group of neigh-
borhood-reachable are regarded as the far neighbors of Xi.
Algorithm 1 presents the pseudocode of dynamic ε-neigh-
borhood selection mechanism.

3.2. PSO Based on Neighborhood Information. ,e neigh-
borhood information of particles is employed to deal with
theMMOPs in DNPSO.,e detailed pseudocode of DNPSO
is shown in Algorithm 2. At the beginning of DNPSO, Latin
hypercube sampling (LHS) is utilized to generate the initial
population with the size of NPSO in the search space. ,en,
under MaxFEs, the particles are iteratively updated in the
population.,e detailed procedures are described as follows.
Firstly, Algorithm 1 is employed to find the neighborhood of
Pbesti in Pbest, including the close neighbors in the group of
directly neighborhood-reachable (Ndr) and far neighbors in
the group of neighborhood-reachable (Nr). ,en, com-
paring Pbesti with the particles in Ndr and Nr, a position
updating strategy is selected for Xi. After the new position of
Xi is generated and evaluated, it will be compared with
Pbesti. If the performance of the updated Xi is better than

that of Pbesti, update Pbesti; otherwise, Pbesti remains
unchanged.

,e main idea of DNPSO is to assign the most appro-
priate position updating strategy to the particles, so that
multiple optimal solutions of the optimization problem can
be located simultaneously more effectively. Specifically, this
paper adopts four updating strategies to generate offspring.

Case 1. When Pbesti has the optimal performance in its
directly neighborhood-reachable set, Ndr, and neighbor-
hood-reachable set, Nr, it indicates that Pbesti is likely to be
close to a peak in the search space, as shown in Figure 3(a).
,erefore, Pbesti can be modified in a small scale by adding a
Gaussian disturbance to it in the expectation that it will
move in the direction of its nearest peak.,e position update
formula of Xi is given as follows:

xi,d(t + 1) � Pbesti,d(t) + Gaussian(0, σ), (5)

where Gaussian(0, σ) is the Gaussian distribution with mean
zero and standard deviation σ.

Case 2. When Pbesti is optimal in its Ndr but is not the best in
its Nr, it indicates that Pbesti may be on a valley or on an
unimportant local optimal peak, as shown in Figure 3(b).
,erefore, it is necessary to exchange information with the
particles in its distant neighbors, i.e., the neighbors in Nr, to
make it jump out of the unimportant local optimum. ,e
velocity update strategy of Xi adopts formula (3), where
nbest stores all the particles which is better than Pbesti in Nr.

Case 3. When Pbesti is not optimal in its Ndr and not worst
in its Nr, it indicates that Pbesti may be halfway up a hill in
the search space, as shown in Figure 3(c). ,erefore, the
convergence speed can be improved and the exploitation of
the algorithm can be improved by exchanging information
with the superior particles in the nearest neighbors. Formula
(3) is also used for the velocity update of Xi, where nbest is
the nearest neighbor set, i.e., the particles which are better
than Pbesti in Ndr.

Case 4. When Pbesti has the worst performance in its Ndr
and Nr, indicating that Pbesti may be close to a valley, as
shown in Figure 3(d), at this point, it can learn multiple
directions, so as to improve the exploration of the algorithm.
,en, the velocity update formula of Xi adopts the following
formula:

vi,d(t + 1) � wvi,d(t) + c1r1 NbestNdr,d(t) − xi,d(t) 

+ c2r2 NbestNr,d(t) − xi,d(t) ,
(6)

where NbestN dr(t) is the optimal particle in Ndr and
NbestNr(t) is the optimal particle in Nr of Pbesti.

It should be noted that a neighborhood-reachable set,
Nr, may be an empty set. In this case, two situations are
discussed: (1) when Pbesti is optimal in its Ndr, it will be
processed in accordance with Case 1; (2) when Pbesti is not
the best in its Ndr, it will be processed in accordance with
Case 3.
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Figure 2: Diagram of dynamic ε-neighborhood.
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3.3. Complexity Analysis. ,e time complexity of multi-
modal EAs is governed by their niching components.
Generally, it is estimated by the number of elementary
operations performed at each generation. ,e computa-
tional complexity of the proposed DNPSO is composed of
two parts: the construction of particle’s neighborhood in
Subsection 3.1 and the operation of PSO in Subsection 3.2.
,e complexity of constructing the neighborhood of a
particle is O(D · NPSO + MinPts · NPSO). ,en, the com-
plexity of constructing all particle’s neighborhood in the
population is O((D + MinPts) · N2

PSO), where D is the
problem dimension and NPSO is the population size. ,e
time complexity of running PSO is O(DNPSO). Hence, the
total time complexity is O((D + MinPts) ·N2

PSO + D · NPSO).
Since the value of NPSO is large, the amortized cost of
DNPSO for each generation is O((D + MinPts) · N2

PSO).

4. Experiments and Analysis

In order to verify the effectiveness of the proposed
DNPSO, the experiment is divided into the following two
parts: (1) analyzing the sensitivity of the proposed al-
gorithm to the value of MinPts and (2) comparing
DNPSO with 7 state-of-the-art multimodal EAs to test its
capability of tackling MMOPs. In this paper, eight widely
used benchmark problems are selected to test the per-
formance of the algorithm. ,ese benchmark problems
are derived from the IEEE CEC 2013 special section on
multimodal optimization [37]. ,e characteristics of
these instances are shown in Table 1, where the “Peak
height” refers to the value of the global optimal solution.
All the algorithms are implemented by MATLAB R2014b
on a CPU with Intel Core i5 and 1.6 GHz, and the ex-
perimental results are the average of 30 independent
runs.

4.1. Parameter Settings. In DNPSO, the population size,
NPSO, the maximum number of evaluations, MaxFEs, and
the niching radius, r (which is used to distinguish the two

neighboring global optimal solutions) are all set according to
[34], as shown in Table 2. ,e amplitude accuracy is set to
1E-03. MinPts� 3; in formula (4), w � 0.7298; the standard
deviation in formula (6) is 0.1; in formula (7), w � 0.7298,
c1 � 2.05, and c2 � 2.05. According to [26], the neighborhood
size (nsize) changes within {2, 3, 4, 5} as increase of
generations.

4.2. PerformanceMetrics. In this paper, two commonly used
performance indicators are used to evaluate the performance
of an algorithm [28]:

(1) Peak ratio (PR): the peak ratio is the average per-
centage of the global optima found in multiple in-
dependent runs. ,e PR is calculated using the
following formula:

PR �


R
i�1 NPFi

NPF × R
, (7)

where NPFi is the number of global optima found in the i-th
run, NPF denotes the number of know global optima, and R
is the number of runs.

(2) Success rate (SR): success rate is the ratio between the
number of successful runs (NSR) and the total
number of runs (R). A successful run of an algorithm
is when all global peaks are found in a run. It is
calculated as follows:

SR �
NSR

R
. (8)

4.3. Analysis onKey Parameters. In this section, F2, F3, and
F4 (when D � 2 and 3) and F6 and F7 (when D � 5) are
selected as representatives to analyze the influence of the
MinPts and σ, on the performance of DNPSO.

Input: Population size, NPSO, MinPts, the i-th particle in the population, Xi;
Output: Ndr: Directly neighborhood-reachable group of Xi; Nr: neighborhood-reachable group of Xi;
(1) For j� 1: NPSO;
(2) While Xi∼�Xj do;
(3) Calculate the Euclidean distance between Xi and Xj;
(4) End;
(5) End;
(6) Take the nearest MinPts particles with Xi, p1, . . ., pMinPts, and store them in Ndr;
(7),e maximum distance between Xi and the particles in Ndr is denoted as dismax, and set εi � dismax;
(8) For k� 1: MinPts;
(9) For j� 1: NPSO;
(10) While p1-MinPts∼�Xj & Xi∼�Xj do;
(11) Calculate the Euclidean distance between pk and Xj. If the distance is less than εi, then put it into Nr.
(12) End;
(13) End;
(14) End.

ALGORITHM 1: Dynamic ε-neighborhood selection of particle Xi.
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0 5 10 15 20 25 30
0

20
40
60
80

100
120
140
160
180
200

(a)

0 5 10 15 20 25 30
0

20
40
60
80

100
120
140
160
180
200

(b)

0 5 10 15 20 25 30
0

20
40
60
80

100
120
140
160
180
200

(c)

0 5 10 15 20 25 30
0

20
40
60
80

100
120
140
160
180
200

(d)

Figure 3: Illustration of the four cases of particles. ,e black solid circle is the core particle, the hollow circles are the direct neighborhood-
reachable points of the core particle, and the squares are the neighborhood-reachable point of the core particle.

Input: ,e population size, NPSO, the maximum number of evaluations, MaxFEs;
Output: Pbest;
(1) Generate an initial population with the size of NPSO with LHS, initialize Pbest;
(2) Evaluate the fitness of the particles in the initial population;
(3) FEs�NPSO;
(4)While FEs<MaxFEs do;
(5) For i� 1: NPSO;
(6) Find the neighbors of Pbesti with Algorithm1, include Ndr and Nr;
(7) If the fitness of Pbesti is better than that of each individual in Ndr and Nr, then;
(8) Update the position of Xi by strategy (6);
(9) Elseif the fitness of Pbesti is the best in Ndr but is not the best in Nr, then;
(10) Update the velocity and position of Xi using strategies (4) and (2), respectively;
(11) Elseif the fitness of Pbesti is not the best in Ndr and is not the worst in Nr, then;
(12) Update the velocity and position of Xi with strategies (4) and (2), respectively;
(13) Elseif the fitness of Pbesti is worst in Ndr and Nr, then;
(14) Update the velocity and position of Xi with strategies (7) and (2), respectively;
(15) End;
(16) Evaluate the fitness of Xi;
(17) Update Pbesti;
(18) FEs� FEs+ 1;
(19) End;
(20) End.

ALGORITHM 2: DNPSO.
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4.3.1. Analysis of MinPts. ,e value of MinPts determines
the value of neighborhood radius, ε, in Subsection 3.1, which
indirectly affects the number of particles in the neighbor-
hood-reachable set, Nr. Here, we analyze the influence of
MinPts on the performance of DNPSO, when its values set is
2, 3, 4, and 5, respectively. Table 3 shows the PR and SR
values obtained by DNPSO with different values of MinPts.

It can be concluded from Table 3 that (1) for problems
F2, F3, and F6, the proposed DNPSO obtains the same PR
and SR whenMinPts� 2, 3, 4, and 5. (2) For other problems,
the PR value achieved from DNPSO when MinPts� 3 is the
highest whenMinPts� 2, 3, 4, and 5. (3) For F4 (2D), the SR
value obtained from DNPSO whenMinPts� 3 is higher than
those when MinPts� 2, 4, and 5; for F4(3D) and F7(5D),
when MinPts� 2, 3, 4, and 5, the SR values obtained from
DNPSO are equal to 0. Considering the performance of
DNPSO with different values ofMinPts, the value ofMinPts
is set as 3 in subsequent experiments.

4.3.2. Analysis of σ. ,e value of σ determines the size of
Gaussian disturbance in formula (6), that is, the range of
local search. ,is section analyzes the influence of σ on the
performance of DNPSO, when σ set is 0.01, 0.05, 0.1, and 0.2.
Table 4 shows the PR and SR values obtained by DNPSO
under different σ values. It can be seen from Table 4 that (1)
for F2, F3, and F6, the PR and SR values obtained by different
values are similar. (2) For other problems, the PR value
obtained when σ � 0.1 is higher than those obtained when
σ � 0.01, 0.05, and 0.2. Based on these results, the value σ is
set as 0.1 in subsequent experiments.

4.4. Comparison with Multimodal Evolutionary Algorithms.
In order to verify the effectiveness of DNPSO, this section
compares it with seven state-of-the-art multimodal EAs.
,ese comparison algorithms include three multimodal
algorithms based on PSO (R2PSO, R3PSO [15], and LIPS
[26]), three multimodal algorithms based on DE (NCDE,

NSDE [23], and VCNDE [28]), and one multiobjective EA
(EMO-MMO [38–42]). In order to ensure the fairness of
comparison, the population size, NPSO, the maximum
number of evaluations, MaxFEs, the niching radius, r, and
amplitude accuracy of all comparison algorithms are con-
sistent with the proposed DNPSO, and the remaining pa-
rameters are set according to their original literatures’
suggestions.

Table 5 shows the mean value and standard deviation of
PR obtained by DNPSO and 7multimodal EAs when dealing
with problems F1–F8, and the optimal results have been
highlighted. In this paper, the Mann-Whitney test at a
significance level of 5% is employed to evaluate significant
difference between DNPSO and the compared algorithms,
where “+” and “−” mean that DNPSO is significantly su-
perior to and inferior to the compared one, respectively, and
“�” indicates that there is no significant difference between
them. In the table, “test” gives the results of the nonpara-
metric test. In the penultimate row of Table 5, “win/tie/lose”
is used to calculate the comparison result between DNSPO
and each compared algorithm. Among them, “win” means
the number of test problems that DNPSO dominates the
compared one, “tie” indicates that the performance of
DNPSO is similar to that of the compared one, and “lose”
means the number of test problems that DNPSO is domi-
nated by the compared one.

Table 1: Benchmark instances.

Function D Decision space No. of global/ local optima Peak height
F1 Equal maxima 1 x ∈ [0 1] 5/0 1
F2 Uneven decreasing maxima 1 x ∈ [0 1] ¼ 1

F3 Six-hump camel back 2 x1 ∈ [−1.9 1.9] 2/2 1.0316x2 ∈ [−1.1 1.1]

F4 Shubert 2 X ∈ [−10, 10]2 18/many 186.731
Shubert 3 X ∈ [−10, 10]3 81/many 2709.093

F5 Vincent 2 X ∈ [0.25, 10]2 36 1
F6 Modified Rastrigin 2 X ∈ [0, 1]D 12/0 -2
F7 Composition function 3 5/10 X ∈ [−5, 5]D 6/many 0
F8 Composition function 4 5/10 X ∈ [−5, 5]D 8/many 0

Table 2: Parameter settings.

F1 F2 F3 F4(2D) F4(3D) F5 F6 F7 F8
MaxFEs 5×104 5×104 5×104 2×105 4×105 2×105 2×105 4×105 4×105
Npop 100 100 100 300 300 300 100 200 200
R 0.01 0.01 0.5 0.5 0.5 0.2 0.01 0.01 0.01

Table 3: Results obtained by DNPSO with differentMinPts values.

2 3 4 5
PR SR PR SR PR SR PR SR

F2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F4(2D) 0.92 0.2 1.00 1.00 0.97 0.6 0.93 0.2
F4(3D) 0.15 0.00 0.69 0.00 0.55 0.00 0.41 0.00
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7(5D) 0.13 0.00 0.70 0.00 0.68 0.00 0.68 0.00
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Table 4: Results obtained by DNPSO with different σ values.

0.01 0.05 0.1 0.2
PR SR PR SR PR SR PR SR

F2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F4(2D) 0.98 0.80 1.00 1.00 0.98 0.80 1.00 1.00
F4(3D) 0.44 0.00 0.63 0.00 0.44 0.00 0.63 0.00
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7(5D) 0.50 0.00 0.58 0.00 0.50 0.00 0.58 0.00

Table 5: Peak ratios (PRs) achieved from the compared algorithms.

PR DNPSO LIPS EMO-MMO R2PSO R3PSO NCDE NSDE VNCDE

F1
Mean 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Test \ � � � � � � �

F2
Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Test \ � � � � � � �

F3
Mean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Test \ � � � � � � �

F4 (2D)
Mean 1.00 0.75 1.00 0.53 0.69 0.14 0.27 0.96
Std 0.00 0.22 0.00 0.11 0.05 0.01 0.02 0.01
Test \ + � + + + + �

F4 (3D)
Mean 0.69 0.49 0.80 0.32 0.28 0.68 0.13 0.74
Std 0.14 0.03 0.23 0.10 0.02 0.04 0.01 0.13
Test \ + � + + � + �

F5
Mean 1.00 0.20 1.00 0.01 0.16 0.50 0.06 0.55
Std 0.00 0.05 0.00 0.00 0.01 0.01 0.04 0.05
Test \ + � + + + + +

F6
Mean 1.00 0.84 1.00 0.88 0.87 1.00 0.40 1.00
Std 0.00 0.13 0.00 0.01 0.11 0.00 0.01 0.00
Test \ + � � � � + �

F7 (5D)
Mean 0.70 0.41 0.60 0.14 0.13 0.26 0.35 0.70
Std 0.01 0.01 0.10 0.01 0.01 0.02 0.02 0.02
Test \ + � + + + + �

F7 (10D)
Mean 0.54 0.20 0.66 0.06 0.37 0.63 0.52 0.66
Std 0.00 0.00 0.01 0.09 0.00 0.01 0.02 0.00
Test \ + − + − � � −

F8 (5D)
Mean 0.38 0.09 0.19 0.00 0.02 0.10 0.11 0.37
Std 0.01 0.09 0.04 0.00 0.00 0.02 0.12 0.11
Test \ + + + + + + �

F8 (10D)
Mean 0.16 0.06 0.12 0.00 0.05 0.24 0.12 0.29
Std 0.10 0.02 0.08 0.00 0.10 0.21 0.15 0.33
Test \ + � + + � � −

Win/tie/lose \ 8/3/0 1/9/1 7/4/0 6/4/1 4/7/0 6/5/0 1/8/2
Rank 2.81 5.18 2.86 6.27 5.90 4.32 5.95 2.68

Table 6: Post hoc analysis using DNPSO as control method.

DNPSO vs LIPS LIPS EMO-MMO R2PSO R3PSO NCDE NSDE VNCDE
Statistic 2.26 0.04 3.30 2.95 1.43 3.00 0.13
Adjusted p value 0.0409 0.9652 0.0065 0.0093 0.2047 0.0093 0.9287
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Figure 4: Continued.
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It can be obtained from Table 5 that (1) for problems F1,
F2, and F3 there is no significant difference between the PR
obtained by DNPSO and all compared algorithms. (2) For F4
and F7(5D), except EMO-MMO and VNCDE, PRs obtained
by the remaining five algorithms are significantly inferior to
DNPSO. (3) For F5, there is no significant difference be-
tween DNPSO and EMO-MMO, but the PRs obtained by
DNPSO are significantly better than those of the other six
compared ones. (4) For F6, the PR obtained by DNPSO is
significantly better than those of LIPS and NSDE, with no
significant difference from the other 5 compared algorithms.
(5) For F7 (10D), the PRs achieved by DNPSO are obviously
better than those of LIPS and R2PSO, but worse than those
of EMO-MMO, R3PSO, and VNCDE. (6) For F8 (5D),
except VNCDE, PRs obtained by the remaining 6 algorithms
are significantly inferior to DNPSO. (7) For F8 (10D), the PR
achieved by DNPSO is obviously better than those of LIPS,
R2PSO, and R3PSO, but worse than that of VNCDE.
According to the overall statistical results, DNPSO domi-
nated LIPS on at least 8 instances, superior than R2PSO on at
least 7 instances, and outperformed R3PSO and NSDE on at
least 6 instances, superior than NCDE on at least 4 instances.

In addition, STAC platform is used to test the difference
between the proposed DNSPO and the compared algo-
rithms, and Friedman test with significance level of 0.05 is
used for analysis. ,e analysis results are shown in the last
row of Table 5, and the comprehensive ranking values of all
algorithms on PR are given. DNPSO is used as the control
method, it can be seen that rank of DNPSO is slightly higher
than that of VNCDE, but lower than those of the other 6
compared algorithms. Furthermore, we adjusted the p value
of pairwise comparison by using Finner operation, and the
results are listed in Table 6. As can be seen from Table 6,
DNPSO is statistically superior to LIPS, R2PSO, R3PSO, and

NSDE and has similar performance with other three com-
pared algorithms.

Figure 4 shows the distribution of Pbest of the proposed
DNPSO and LIPS on different population iterations for F6,
where F6 has 12 global optimal solutions, as shown by red
solid circles in the figure. It can be achieved from the figure
that (1) both of them can converge to the vicinity of 12 global
optimal solutions within 15 iterations; (2) the blue circles in
Figure 4(g) are closer to the red solid circles than those in
Figure 4(h), which indicates that the convergence precision
of DNPSO is higher than that of LIPS.

Table 7 lists the SR obtained by DNPSO and 7 multi-
modal EAs when dealing with problems F1–F8. ,e optimal
results have been highlighted. ,e last row shows the
comprehensive ranking values of SR of all algorithms. It can
be seen from Table 7 that (1) for problems F1, F2, and F3
DNPSO and all the compared algorithms can find all the
optimal solutions in each run. (2) For F4 (2D), the SR of
DNPSO and EMO-MMO is equal to 1; the SR of VNCDE is
equal to 0.54, while the SR obtained by the remaining 5
algorithms is 0. (3) For F5, the SRs of DNPSO and EMO-
MMO are 1, and those of other algorithms are 0. (4) For F6,
the SR values of DNPSO, EMO-MMO, NCDE, and VNCDE
are all higher than those of the other three compared al-
gorithms. (5) For F4 (3D), F7, and F8, the SR values obtained
by all algorithms is 0; that is, no single run can find all the
global optimal solutions. (6) From the perspective of rank
value, DNPSO and EMO-MMO have similar performance,
and the rank value is superior to the other compared
algorithms.

Table 8 lists the running time of DNPSO and 7 multi-
modal EAs on the problems F1-F8. It can be seen from
Table 8 that (1) R2PSO has the shortest running time and
VNCDE has the longest running time. (2) ,e proposed
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Figure 4: Distributions of Pbests of DNPSO and LIPS on different stages of F6. (a) Iteration 1 of DNPSO. (b) Iteration 1 of LIPS. (c) Iteration
5 of DNPSO. (d) Iteration 5 of LIPS. (e) Iteration 10 of DNPSO. (f ) Iteration 10 of LIPS. (g) Iteration 15 of DNPSO. (h) Iteration 15 of LIPS.
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DNPSO has slightly longer running time than those of LIPS,
R2PSO, and R3PSO, but less than those of the remaining
four algorithms.

5. Conclusions

To tackle MMOPs, this paper presents a multimodal particle
swarm optimization algorithm based on dynamic neigh-
borhood, called DNPSO. ,e proposed DNPSO defines a
dynamic neighborhood selection mechanism, which makes
the neighborhood size of particles change dynamically in the
process of evolution, and distinguishes the particles in the
neighborhood between directly neighborhood-reachable
and neighborhood-reachable at the same time, so as to
balance the exploration and exploitation of the algorithm.
Following that, based on the information provided by the
neighbors, four different particle position updating strate-
gies are designed to further support the algorithm’s ex-
ploration and exploitation of the search space. ,e
experimental results on eight test benchmark functions show
that the proposed algorithm is competitive with several
existing multimodal EAs and is an effective method to deal
with MMOPs.

DNPSO, like other EAs, shows poor performance when
dealing with high-dimensional MMOPs, which requires
further study. It is also suggested to extend this dynamic
neighborhood method to other EAs like DE in the future. In
addition, it may be worthy to apply DNPSO to real-world
problems such as feature selection.
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