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(e main objective of this study is to explore the complex nonlinear dynamics and chaos control in power systems. (e rich
dynamics of power systems were observed over a range of parameter values in the bifurcation diagram. Also, a variety of periodic
solutions and nonlinear phenomena could be expressed using various numerical skills, such as time responses, phase portraits,
Poincaré maps, and frequency spectra. (ey have also shown that power systems can undergo a cascade of period-doubling
bifurcations prior to the onset of chaos. In this study, the Lyapunov exponent and Lyapunov dimension were employed to identify
the onset of chaotic motion. Also, state feedback control and dither signal control were applied to quench the chaotic behavior of
power systems. Some simulation results were shown to demonstrate the effectiveness of these proposed control approaches.

1. Introduction

(e characteristics of power systems are well known to be
inherently nonlinear owing to the nonlinearity of syn-
chronous generators. (e most important issue in power
system operation is the prevention of voltage collapse.
Various works have already studied the voltage collapse in
electric power systems [1–4]. A power system is typically
described by a nonlinear dynamical system of equations,
including system parameters. Altering one of these pa-
rameters changes the power system dynamics that exhibit
chaos motion, leading to voltage collapse. However, the
chaotic motion in a power system may destabilize it, leading
to voltage collapses and even catastrophic blackouts.
Modern nonlinear theories of bifurcation and chaos are
widely adopted in the studies of nonlinear systems, and
chaos dynamics in power systems have been widely studied
[5–14]. (is work presents several numerical schemes, in-
cluding bifurcation diagrams, phase portraits, Poincaré
maps, and frequency spectra, to clearly explain the rich
nonlinear dynamics in power systems. Additionally, the
Lyapunov exponents of smooth dynamical systems were

calculated using highly developed algorithms [15–17] with
the objective of determining whether a system exhibits chaos
or not.

Chaotic behaviors in power systems are considered
undesirable due to the restrictions they impose on the op-
erating ranges of electrical and mechanical devices. (e
dynamics of a power system become unstable when they
exhibit chaotic motions. If instability is not properly con-
trolled, it causes voltage collapse, eventually leading to
blackouts [12]. Hence, in many engineering applications,
control approaches are developed to convert chaotic mo-
tions into periodic orbits or steady states. Since the pio-
neering work of Ott et al. [18] in controlling chaos, many
modified methods and other approaches have been suc-
cessively proposed [19–26]. Various control algorithms have
also been presented to control the chaos of power systems
[8, 27–30].(is work proposed converting chaotic behaviors
into periodic motions to improve the performance of system
dynamics with multiple machine power system chaotic
behaviors. Also, chaotic motions in a power system were
inhibited using state feedback control [21, 31] and dither
signal control [32], and the simulation results were
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presented to confirm the feasibility and efficacy of the
proposed control approaches.

2. The Problem Description and Modeling of
Special Swing Equations for Three Machines

A power systemmodel of three synchronous generators with
a resistive load configuration was considered, as shown in
Figure 1. Synchronous generators are the most important
energy source for power systems. (e study of inter-
connected power systems with synchronous motors as
significant equipment is the key to studying the dynamic
characteristics of power systems. (e governing differential
equations of the power system in Figure 1 can be expressed
as follows [33, 34]:

_δ1 � _ω1, (1a)

M1 _ω1 � −D1ω1 + P1 − F12sin δ1 − δ2( 􏼁 − F13sin δ1 − δ3( 􏼁,

(1b)

_δ2 � _ω2, (1c)

M2 _ω2 � −D2ω2 + P2 − F21sin δ2 − δ1( 􏼁 − F23sin δ2 − δ3( 􏼁,

(1d)

_δ3 � _ω3, (1e)

M3 _ω3 � −D3ω3 + P3 − F31sin δ3 − δ1( 􏼁 − F32sin δ3 − δ2( 􏼁.

(1f)

A special case of the swing equations was considered for
three machines. It was assumed that machine 1 has a large
inertia, i.e., M1 � (M1/ε) and ε≪ 1. (e transmission line
joining machines 2 and 3 is shorter than that of the other
lines. Similarly, the external power P1 is proportionally
larger: P1 � (P1/ε). With these assumptions, the conserva-
tive swing equations for the three machines are

_δ1 � _ω1, (2a)

M1 _ω1 � −εD1ω1 + P1 − εF12sin δ1 − δ2( 􏼁 − εF13sin δ1 − δ3( 􏼁,

(2b)

_δ2 � _ω2, (2c)

M2 _ω2 � −D2ω2 + P2 − F21sin δ2 − δ1( 􏼁 − F23sin δ2 − δ3( 􏼁,

(2d)

_δ3 � _ω3, (2e)

M3 _ω3 � −D3ω3 + P3 − F31sin δ3 − δ1( 􏼁 − F32 δ3 − δ2( 􏼁.

(2f)

From [33, 34], δ1 can be expressed as follows:

δ1 � −εμ2δ2 − εμ3δ3, (3)

where μ2 � (M2/M1) and μ3 � (M3/M1).
By substituting equation (3) in equations (2a)–(2f), write

an autonomous differential equation for δ2, δ3, ω2, and ω3
and eliminate δ1 and ω1 as follows:

_δ2 � _ω2, (4a)

_ω2 � −D2ω2 + α2 − β21sin δ2 1 + εμ2( 􏼁 + εμ3δ3􏼂 􏼃

− β23sin δ2 − δ3( 􏼁,
(4b)

_δ3 � _ω3, (4c)

_ω3 � −D3ω3 + α3 − β31sin δ2 1 + εμ2( 􏼁 + εμ3δ3􏼂 􏼃

− β32sin δ3 − δ2( 􏼁,
(4d)

where α2 � (P2/M2), β21 � (F21/M2), β23 � (F23/M2),
α3 � (P3/M3), β31 � (F31/M3), and β32 � (F32/M3).

For convenience, let ε� 0, and simplify equations
(4a)–(4d) into

_δ2 � _ω2,

(5a)

_ω2 � −D2ω2 + α2 − β21sin δ2( 􏼁 − β23sin δ2 − δ3( 􏼁, (5b)

_δ3 � _ω3, (5c)

_ω3 � −D3ω3 + α3 − β31sin δ3( 􏼁 − β32sin δ3 − δ2( 􏼁. (5d)

From [33, 34], express αk as follows:

αk � Pk − Kfωk, k � 2, 3, (6)

where Pk is a constant real power and Kf � Lk/Mk. Lk is a
load-frequency coefficient. By substituting equation (6) in
(5a)–(5d),

_δ2 � _ω2,

(7a)

_ω2 � −D2ω2 + P2 − Kfω2 − β21sin δ2( 􏼁 − β23sin δ2 − δ3( 􏼁,

(7b)

_δ3 � _ω3,

(7c)

_ω3 � −D3ω3 + P3 − Kfω3 − β31sin δ3( 􏼁 − β32sin δ3 − δ2( 􏼁.

(7d)

With y1 � δ2, y2 � ω2, y3 � δ3, and y4 � ω3 as the state
variables, the state equations of the swing equation can be
written as follows:
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_y1 � y2,

(8a)

_y2 � P2 − D2 + Kf􏼐 􏼑y2 − β21sin y1( 􏼁 − β23sin y1 − y3( 􏼁,

(8b)

_y3 � y4, (8c)

_y4 � P3 − D3 + Kf􏼐 􏼑y4 − β31sin y3( 􏼁 − β32sin y3 − y1( 􏼁.

(8d)

Table 1 [31] lists the numerical values for all the pa-
rameters in equations (8a)–(8d).

3. Overall Characteristics of the Power System:
Simulation Results and Discussion

Numerical simulations were executed based on equations
(8a)–(8d) to clearly understand the overall characteristics of
the power system. (e commercial package DIVPRK of
IMSL in the FORTRAN subroutines was utilized for the
mathematic applications to solve the ordinary differential
equation problems [35]. Figure 2 presents the resulting
bifurcation diagram, which clearly reveals that the first
period-doubling bifurcation occurred at about Kf � 0.078
and that a chaotic motion appeared approximately below
Kf � 0.0109. Figures 3–6 display various responses exhibited
by this system in detail, where each type of response was
characterized in detail using a phase portrait, a Poincaré
map, and a frequency spectrum. (e equilibrium point of
equations (8a)–(8d) was stable with Kf> 0.078, revealing that
no chatter vibration occurred. Figures 3(a)–3(d) show the

period-1 motion. Also, Figures 4(a)–4(d) show a cascade of
period-doubling bifurcations with new frequency compo-
nents atΩ/2, 3Ω/2, 5Ω/2. . ., causing a series of subharmonic
components. Figures 5(a)–5(d) depict the first period-four
bifurcation, which occurred when Kf fell below Kf≈ 0.0275.
A cascade of chaos-inducing period-doubling bifurcations
then appeared as Kf continued to fall in Figure 2, resulting in
a chatter vibration that could cause a voltage collapse,
thereby significantly reducing the power system perfor-
mance and possibly causing catastrophic blackouts. Two
descriptors, the Poincaré map and frequency spectrum,
could be utilized to characterize the essence of the chaotic
behavior. (e Poincaré map shows an infinite set of points
called a strange attractor. Simultaneously, the frequency
spectrum of the chaotic motion is a continuous broad
spectrum. (ese two main features, strange attractors and
continuous-type Fourier spectrum, are strong indicators of
chaos. Figures 6(a)–6(d) clearly reveal the chaotic behavior
in detail.

4. Lyapunov Exponent and Lyapunov
Dimension for Analyzing the Chaos in the
Power System

As described in Section 3, the chaotic motion in power
systems is difficult to identify using traditional approaches.
(is section describes the use of Lyapunov exponents to
verify the occurrence of chaos in power systems. Every
dynamic system involves a spectrum of Lyapunov expo-
nents (λ) [15], indicating changes in the length, area, and
volume within a phase space. To determine whether a
system exhibits the characteristics of chaos, only the largest
Lyapunov exponent needs to be calculated to determine

Generator

Resistive load

Inductor

Figure 1: Schematic of a power system.
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whether nearby trajectories diverge (λ> 0) or converge
(λ< 0) on average. Any bounded motion in a system with at
least one positive Lyapunov exponent is defined as chaotic,
whereas periodic motions exhibit no positive Lyapunov
exponents.

Figure 7 plots the evolutions of the largest Lyapunov
exponent in the power system, as computed using the al-
gorithm proposed by Wolf et al. [15]. (is figure reveals that
the onset of the chaotic motion occurred at approximately
Kf � 0.0109. At point P3, the sign of the largest Lyapunov
exponent changed from negative to positive as the parameter
Kf slowly decreased. At points P1 and P2, the largest Lya-
punov exponents approached zero, which is beyond the
point at which the system can undergo bifurcation. None-
theless, the Lyapunov exponent at that point provided no
indication of the involved bifurcation type, thereby neces-
sitating the application of a bifurcation diagram, as shown in
Figure 2. A conducted comparison of Figures 7 and 2 in-
dicated the occurrence of period-2 bifurcation at P1 and
period-4 bifurcation at P2. When Kf � 0.09, the Lyapunov
exponents obtained using equations (8a)–(8d) were
λ1 � −0.000084, λ2 � −0.0157341, λ3 � −0.5120906, and
λ4 � −0.5977934, and their sum was
λ1 + λ2 + λ3 + λ4 � −1.1257021, which is negative, indicating
that the power system had stable periodic motion. By
denoting λ1 ≥ · · · ≥ λn as the Lyapunov exponents of a
dynamical system, Kaplan and Yorke [36] expressed the
estimate of the Lyapunov dimension dL as

dL � j +
1

λj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

j

i�1
λi, where􏽘

j

i�1
λi > 0 and􏽘

j+1

i�1
λi < 0. (9)

(us, the Lyapunov dimension is an integer for pe-
riodic orbits and a noninteger for chaotic motion. Using
equations (8a)–(8d) with Kf � 0.09, this calculation
yielded a Lyapunov dimension of dL � 1. (erefore, this
system exhibited periodic motion, as the Lyapunov di-
mension was an integer. When the parameter Kf con-
tinuously decreased across bifurcation point P3, for
example, Kf � 0.009, the Lyapunov exponents were
λ1 � 0.0340716, λ2 � −0.0000068, λ3 � −0.3985904, and
λ4 � −0.5270599, and the Lyapunov dimension was
dL � 2.0854. Obviously, the power system could be

demonstrated to exhibit chaotic motion, as the largest
Lyapunov exponent was positive and the Lyapunov di-
mension was a noninteger.

5. Quenching Chaos in the Power System

Analyzing and predicting the behaviors of chaotic systems
are beneficial, but a system needs to be controlled to
maximize its benefits. Improving the performance of a
dynamic system and avoiding chaotic motion both require
periodic motion, which is more important when working
under specific conditions. (is section presents two control
methods, state feedback control [21, 31] and dither control
[32], to suppress the chaos in the used power system in this
study.

5.1. State Feedback Control. Cai et al. [21, 31] proposed a
simple and effective method for converting chaos into pe-
riodic motion at a steady state using the linear-state feedback
of an available system variable. For an n-dimensional dy-
namic system, this method can be briefly summarized as
follows:

_x � f(x, t), (10)

where x(t) ∈Rn is the state vector and f� (f1,. . ., fi,. . ., fn),
where fi is a linear or nonlinear function and f includes at
least one nonlinear function. If fk(x, t) is the key nonlinear
function that leads to chaotic motion in equation (10), only
one term of the state feedback of an available system variable
xm was added to the equation that includes fk(x, t) as follows:

_xk � fk(x, t) + Kxm, k, m ∈ 1, 2, . . . , n{ }, (11)

where K is the feedback gain, and the other functions keep
their original forms.

Equations (8a)–(8d) can be rewritten as follows with the
state feedback control:

_y1 � y2,

(12a)

_y2 � P2 − D2 + Kf􏼐 􏼑y2 − β21sin y1( 􏼁 − β23sin y1 − y3( 􏼁 + Ky2,

(12b)

_y3 � y4,

(12c)

_y4 � P3 − D3 + Kf􏼐 􏼑y4 − β31sin y3( 􏼁 − β32sin y3 − y1( 􏼁 + Ky4.

(12d)

Without the state feedback control, equations (8a)–(8d)
exhibited chaotic behavior under the parameter Kf � 0.009.
Considering that the effect of the state feedback control was

Table 1: Physical parameters of a power system.

Parameter Value
β21 −2
β23 −1
β31 −1
β32 −1
D2 0.2
D3 0.5
P2 0.3
P3 0.5
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Figure 3: Period-1 orbit of the numerical simulation results for Kf � 0.09: (a) time responses; (b) phase portrait; (c) Poincaré map; (d) frequency
spectrum.
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Figure 2: Bifurcation diagram of the rotor angular velocity against Kf.
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Figure 4: Period-2 orbit of the numerical simulation results for Kf � 0.06: (a) time responses; (b) phase portrait; (c) Poincaré map; (d) frequency
spectrum.
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Figure 5: Continued.
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added to the right-hand side of equations (8a)–(8d), by de-
creasing the feedback gain K from 0 to −0.1, the chaotic be-
havior disappeared at certain feedback gains. Figure 8 presents
the resulting bifurcation diagram, which comprehensively

explains the dynamic behavior of the controlled power system
over a range of feedback gains. Chaotic motion appeared when
K<−0.0008, and stable periodic motion appeared when K
decreased beyond −0.0008. Period-doubling bifurcations
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Figure 6: Chaoticmotion of the numerical simulation results forKf � 0.009: (a) time responses; (b) phase portrait; (c) Poincaré map; (d) frequency
spectrum.
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Figure 5: Period-4 orbit of the numerical simulation resultsKf � 0.02: (a) time responses; (b) phase portrait; (c) Poincaré map; (d) frequency
spectrum.
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appeared when K decreased to between about −0.0699 and
−0.0008. A further decrease in K beyond −0.0699 resulted
in a period-1 motion. (e efficacy of the proposed system
in controlling chaos was demonstrated by applying a
control signal after 300 seconds, as shown in Figure 9.
(erefore, to suppress the occurrence of chaos, the simple
state feedback of an available system variable can be
sufficient to disturb the balance of dynamic behaviors in a
chaotic system.

5.2. Dither Control. (is section describes how to control
motion in a chaotic system by injecting another external
input dither signal to only modify nonlinear terms. A dither
signal averages nonlinearity due to its high frequency and
periodic nature. Researchers have developed dither
smoothing methods [32, 37] to stabilize chaotic systems, and
popular dither signals were proposed in [38]. (e simplest
dither signal is a square-wave dither signal in which the
frequency and amplitude are 2000 rad/s andW, respectively,
in front of the nonlinearity f(.). (erefore, the effective value

of μ and the output of the nonlinear element can be
expressed as

μ �
1
2

[f(y + W) + f(y − W)]. (13)

Consequently, the system equation can be expressed as

_y � μ. (14)

Considering the influence of the dither signal control
added to systems (8a)–(8d) under the parameter Kf � 0.009,
by raising the amplitude of the square-wave dither signal
from W� 0 to W� 0.5, the dynamics changed from chaotic
behaviors to periodic motions. Figure 10 displays the evo-
lution of the bifurcation diagram. Figure 11(a) depicts the
time response of the displacement with the amplitude of the
square-wave dither signal W� 0.2. (e chaotic behavior
system was transformed into a period-1 orbit. Figure 11(b)
illustrates the phase portrait of the controlled system. No-
tably, the system exhibited a chaotic behavior before dither
was introduced but exhibited a periodic motion afterward.

0.5

0

–0.5

8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4
Mechanical rotor angle (rad)

Ro
to

r a
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

(a)

Uncontrolled

Controlled

3

2

1

0

–1

–2
0 100 200 300 400 500 600 700 800

Times (s)

Ro
to

r a
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

(b)

Figure 9: Transforming chaotic motion into a period-1 orbit for K� −0.08 and Kf � 0.009: (a) phase portrait of the controlled system; (b) time
responses of the controlled system. A state feedback control signal was introduced after 300 s.
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6. Conclusions

(is work addressed the rich nonlinear dynamics and chaos
control in power systems. (e resulting bifurcation diagram
showed many nonlinear behaviors, indicating that the tested
power system exhibited chaotic motion at lower Kf, meaning
that the system could undergo a cascade of period-doubling
bifurcations prior to the onset of chaos. Numerical ap-
proaches, including phase portraits, Poincaré maps, and
frequency spectra, were employed to explore the dynamics
of the used power system. (e most powerful algorithm to
determine whether a power system is in chaotic motion or
not is to use the Lyapunov exponent and Lyapunov di-
mension. (e presence of a chaotic behavior was generic for
certain nonlinearities, parameter ranges, and external forces,
and it may need to be avoided or controlled to improve the
performance of the power system.(e state feedback control
scheme was simple and effective for chaos suppression, and
it can be implemented by adding the feedback of suitable
variables to the original systemwith sufficient control gain to
quench chaos development. Additionally, the square wave of
the dither signal can be applied to efficiently convert a
chaotic motion into a periodic orbit by injecting a dither
signal in front of the nonlinearity of the power system. We
believe that studying the nonlinear dynamics and chaos
control in power systems will help prevent voltage collapses
and advance the development of smart power systems.

Other numerous methods for chaos control have been
devised, such as synchronization control, time-delayed
feedback control, neurofuzzy control, adaptive control, and
bang-bang control. In this study, two chaos control strat-
egies, state feedback control and dither control, were
implemented to control the chaotic behavior of a power
system. (e effectiveness of these proposed chaos control
strategies was illustrated through numerical simulations.
Also, a simple control method was presented to convert
chaos into periodic motion using the linear-state feedback of
an available system variable. Overall, it was found that
compared with other chaos control methods, the state
feedback control technique is simple and can be easily
implemented in chaos suppression. Finally, the robustness of
the parametric perturbation on a chaotic systemwith various
chaos control methods will be studied in my future work.
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