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With the rapid development and application of intelligent traffic systems, traffic flow prediction has attracted an increasing
amount of attention. Accurate and timely traffic flow information is of great significance to improve the safety of transportation.
To improve the prediction accuracy of the backward-propagation neural network (BPNN) prediction model, which easily falls
into local optimal solutions, this paper proposes an adaptive differential evolution (DE) algorithm-optimized BPNN (DE-BPNN)
model for a short-term traffic flow prediction. First, by the mutation, crossover, and selection operations of the DE algorithm, the
initial weights and biases of the BPNN are optimized. )en, the initial weights and biases obtained by the aforementioned
preoptimization are used to train the BPNN, thereby obtaining the optimal weights and biases. Finally, the trained BPNN is
utilized to predict the real-time traffic flow. )e experimental results show that the accuracy of the DE-BPNN model is improved
about 7.36% as compared with that of the BPNNmodel.)eDE-BPNN is superior to the performance of three classical models for
short-term traffic flow prediction.

1. Introduction

In recent years, with the development of traffic detection
technology, big data technology, and data mining tech-
nology, accurate and real-time traffic flow operation data
and traffic accident data are easy to collect [1]. By studying
the changing characteristics of traffic flow before and after
traffic accidents, the traffic safety status is analyzed, evalu-
ated, and forewarned according to the collected real-time
traffic flow data. Real-time and dynamic release of early
warning information can adjust and control traffic flow
parameters in time, greatly reduce the occurrence of traffic
accidents and the degree of accident damage, and thus
improve the operation efficiency of the expressway network.
Among them, the intelligent prediction of traffic flow plays a
key role in various technologies. Short-term traffic flow
forecasting is the most valuable practice in traffic applica-
tion, and it is the foundation and basis for the realization of
advanced traffic management system and traffic information
service system. )e accuracy of short-term traffic flow

prediction directly affects the effects of traffic flow guidance
and traffic control, which is of great significance for
maintaining traffic safety. Real-time and accurate traffic flow
prediction is the premise and key to the realization of both
traffic flow guidance systems and traffic control systems [2].

As a matter of fact, short-term traffic flow prediction
largely relies on the historical and real-time traffic data
collected through various sensors (e.g., induction coils, ra-
dar, cameras, mobile global positioning systems, and social
media) to build corresponding models and algorithms. )e
fundamental principle of short-term traffic flow prediction is
as follows: first, a rational prediction model is built by a
dedicated structure and parameters based on a certain
amount of sensor data such as the historical traffic flow,
vehicle density, and vehicle speed; then, the prediction
model is trained by the corresponding learning algorithm
based on the collected data to obtain a set of optimal so-
lutions; finally, the traffic sensor data to be determined are
fed back into the trained model to predict the future traffic
flow. By principle, existing short-term traffic flow prediction
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methods are broadly classified into parametric methods,
nonparametric methods, and simulation approaches [3].
Parametric methods principally include time series models,
Kalman filtering, autoregression, and exponential smooth-
ing. Nonparametric methods include K-nearest neighbor
methods, support vector machines (SVMs), and artificial
neural networks. Simulation approaches predict traffic flow
using existing traffic simulation tools. )ese classical short-
time traffic flow prediction methods offer favourable results
for theoretical analysis and simulation. Unfortunately, their
application in practical engineering scenarios is greatly
limited due to the explosive growth of traffic big data.

Accordingly, to solve the data explosion problem arising
from the explosive growth of traffic data, many short-term
traffic flow prediction methods based on improving the
parameters of the aforementioned classical models have
been developed. For instance, based on a classical parametric
prediction method, the seasonal autoregressive integrated
moving average (ARIMA) model, Williams and Hoel [4]
built a short-term traffic flow prediction model by consid-
ering the impact of seasonal factors on road traffic flow.
Furthermore, considering the influencing factors of affect
spatiotemporal correlations such as the road network to-
pology and time-varying speed, Duan et al. [5] proposed a
spatiotemporal model based on the Space-Time Autore-
gressive Integrated Moving Average (STARIMA) model,
which further enhances the accuracy of short-term traffic
flow prediction. However, it is difficult to achieve high traffic
flow prediction accuracy with the limited small samples.
)erefore, Kumar [6] assumed a linear traffic flow and at-
tached great importance to the temporal correlation of traffic
flow at a particular location with a relatively stable traffic
flow, thereby proposing a Kalman filter-based prediction
scheme, which improves the prediction accuracy using small
samples. However, such methods neglect the impacts of
complex and changeable actual traffic environment chal-
lenges, such as spatiotemporal interaction and coupling.

To solve this problem, building new short-term traffic
flow prediction models by combining models based on
nonparametric prediction methods is considered to be a
solution for short-term traffic flow prediction [7, 8]. Duo
et al. [9] optimized the parameters of an SVM and built a
short-term traffic flow prediction model by decomposing the
traffic flow sequence into different frequency components
and then introducing the crossover and mutation factors of
the genetic algorithm into particle swarm optimization
(PSO). Dai et al. [10] proposed a gated recurrent unit-
(GRU-) based short-term traffic flow predictionmodel based
on an analysis of the spatiotemporal characteristics of traffic
flow data. Chen et al. [11] attempted to build a number of
prediction models with different time delays to propose the
least squares support vector regression (LSSVR) based short-
term traffic flow prediction model and to achieve a
favourable prediction performance. Zhao et al. [12] pro-
posed a hybrid model by combing K-nearest neighbor
(KNN) with support vector regression (SVR), imitating the
KNN search mechanism to rebuild a historical traffic flow
sequence Unfortunately, since the road network traffic
system is affected by uncertainties such as the road traffic

environment, weather conditions, and pedestrians, the ac-
tual traffic flow data are evidently nonlinear, time-varying,
and susceptible to random noise. )erefore, the above traffic
flow prediction methods are not suitable for short-term
traffic flow prediction in complex conditions because they
are still limited by dedicated model parameters, low pre-
diction accuracy, and poor generalization. So, exploring
more effective methods to achieve higher short-term traffic
flow prediction accuracy has become a great concern for
traffic researchers.

Recently, deep learning-based methods, such as back-
ward-propagation neural networks (BPNNs), have been
successfully applied to various tasks in traffic flow predic-
tion. Some scholars have introduced artificial neural net-
works with many hidden layers to build short-term traffic
flow prediction models [13–15], which achieve better pre-
diction performance. However, BPNNs have two obvious
shortcomings, including a high involvement in local optimal
solutions and a low convergence rate. Meanwhile, these
models lack the interpretability of the learning process.
Hence, how to optimize the structural parameters of a BPNN
and building a practicable short-term traffic flow prediction
model is the main focus of this article.

For the above problems, based on the influence of traffic
volume and traffic safety, this paper proposes an adaptive
differential evolution (DE) algorithm-optimized BPNN
(DE-BPNN) model for short-term traffic flow prediction.
First, the DE algorithm is used for heuristic random opti-
mization of the group difference of the BP parameters based
on a brief description of the BPNN to make up for the
random defects of the BPNN in terms of the initial weight
and bias selection. Second, to accelerate the convergence rate
in short-term traffic flow prediction, the BPNN is combined
with the DE algorithm to build a novel short-term traffic
prediction model for global optimization and generalization
of short-time traffic flow. Finally, simulation verification is
performed for the proposed algorithms and models using
the standard data set collected by the Caltrans Performance
Measurement System (PeMS), USA. )e simulation results
show that the proposed algorithm has a better learning
ability and global optimization performance compared to
conventional algorithms such as ARIMA, wavelet neural
networks (WNNs), and BPNNs.

2. Traffic Flow Prediction Modelling
Based on DE-BPNN

In general, traffic flow prediction can be classified by the
prediction period into long-term prediction, medium-term
prediction, and short-term prediction. In fact, once travellers
learn the evolution trend of short-term traffic flow in real-
time, they can change their routes for fast, convenient, and
comfortable travel. )erefore, travellers extremely concern
about short-term traffic flow prediction. In actual traffic
environments, the 5- to 30-minute traffic flow evolution trend
is chosen as the time range for short-term traffic flow pre-
diction. To ensure the prediction accuracy, the traffic flow
data sequence observed within n identical time intervals at an
observation point in the traffic network is assumed to be
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xi , i � 1, 2, . . . , n, and the predicted traffic flow of a certain
period in the future is y. With a rational traffic flow prediction
model, it is possible to observe the traffic flow data sequence
for accurate prediction within a short time, thereby providing
an effective decision-making basis for travellers to choose
their travel routes. )is paper adopts the DE-BPNN-based
model for the optimization and improvement of accuracy. For
the simplicity of analysis and the integrity of the overall frame
structure, the basic structure of the BPNN-based short-term
traffic flow prediction model is introduced first.

2.1. Overview of the BPNN-Based Short-Term Traffic Flow
PredictionModel. It is well known that the traffic system is a
large, complex, nonlinear, time-varying, and stochastic
system. BPNN can identify complex nonlinear systems and
constantly adjust the parameters based on a large number of
collected data sequences. Moreover, it can approximate any
nonlinear continuous function with an arbitrary precision
through the deep data fusion of parallel structures and the
data processing capability of self-learning. Such properties
help to remarkably reduce the computing workload of
online prediction. )erefore, BPNN-based methods are
widely applied in the field of short-term traffic flow pre-
diction [16, 17]. Generally, the BPNN structure includes an
input layer, a hidden layer, and an output layer. Each layer is
connected by weights and bias. )e weights and bias value
range is typically [−1, 1]. As shown in Figure 1, a neuron
model contains an input layer with n nodes, an intermediate
layer with m nodes, and an output layer with 1 node. In
short-term traffic flow prediction, the processing procedure
basic execution process consists of the forward propagation
of traffic information and the backward propagation of
error, as shown in Figure 2.

It is assumed that xi represents the traffic flow of an
observation point in the traffic network in the ith time in-
terval; the input is (x1, x2, . . . , xn)T, and the output is y.

netj � 

n

i�1
ωij ∗xi + θj,

yj � fj netj ,

net � 
m

j�1
υj ∗yj + θ,

y � f(net),

j � 1, 2, . . . m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where wij and υj are the connection weight between the
input-hidden layers and hidden-output layers, respectively;
θj and θ are the biases of the hidden layer and output layer,
respectively; fj(·) and f(·) are the activation functions of
the hidden layer and output layer, respectively.

)e BPNN weights and biases can generate three ma-
trices and one bias, including, the weight matrix W from the
input layer to the hidden layer, the weight matrix V from the
hidden layer to the output layer, and the bias matrix T of the
hidden layer and the output layer bias θ. Each matrix is
represented as follows:

W �

ω1,1 ω1,2 · · · ω1,n

ω2,1 ω2,2 · · · ω2,n

⋮ ⋮ ⋮

ωm,1 ωm,2 · · · ωm,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V � υ1, υ2, . . . , υm ,

T � θ1, θ2, . . . , θm 
T
.

(2)

Compared with classical traffic flow prediction algo-
rithms, the BPNN has obvious superiorities, such as higher
prediction accuracy and noise robustness. However, such a
black box-like learning mode still faces several challenges
[7]. Firstly, since the training process utilizes the current
real-time data, the trained network may be no longer ap-
plicable when the traffic flow changes. Secondly, the con-
nection weights and bais of each layer in BPNN are set
randomly, which may make the training process fall into
local minimization. To alleviate these challenges, this paper
relies on the DE algorithm to optimize BPNN parameters,
resulting in faster convergence, simpler implementation,
and higher prediction accuracy.

2.2. Improvement of theModel by DEAlgorithm-Based BPNN
Parameter Optimization. As a group difference-based
heuristic global search algorithm, the DE algorithm opti-
mizes the distribution of the weights and biases for each
layer in BPNN through real number encoding. During the
iteration process, the optimal weights and biases are chro-
mosomes obtained by the assistance of the DE algorithm. In
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Figure 1: Neuron model structure.
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Figure 2: Single hidden layer BPNN structure diagram.
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the end, the local optimization of the BPNN-based traffic
flow prediction model ultimately leads to the global optimal
solution. Conventionally, the DE algorithm employs a dif-
ferent strategy for mutation operations, that is, the difference
vector between individuals in the population to perturb
individuals to achieve individual variation. )e mutation
method of the DE algorithm improves the search capacity by
using the characteristics of the population distribution
effectively.

In fact, the DE optimization process adopts population
initialization, mutation, crossover, and selection strategies to
map matrices, including W, V, T, and θ, into the chro-
mosome. )e mapping relationship is expressed as follows:

ω1，1,ω1，2, . . . ,ωn,m, υ1, υ2, . . . , υm, θ1, θ2, . . . , θm, θ ,

(3)

where the set of mappings is D, which represents the number
of dimensions of a variable. )e initial variables are cal-
culated and assigned based on equation (4), and the initial
population zi(0)|zL

i.j ≤ zi.j(0)≤ zU
i.j, i � 1, 2, . . . ,Np,

j � 1, 2, . . . , D} is generated randomly as given in the fol-
lowing equation.

zi,j(0) � z
L
i.j + rand(0, 1) z

U
i.j − z

L
i.j , (4)

where zi(0) represents the ith individual of the 0th generation
in the population; zi.j(0) represents the jth “gene” (number
of dimensions) of the ith individual in the 0th generation in
the population; zL

i.j and zU
i.j, respectively, represent the

minimum and maximum numbers of dimensions of the
individual; Np represents the population size; and rand(0, 1)

is a random number uniformly distributed in the interval
(0, 1).

A mutation operation is performed to achieve individual
mutation through a differential strategy. )ree different
individuals are randomly selected from Np numbers of
individuals; two of them are scaled by the vector difference,
and another vector is added thereto, that is,

vi(g + 1) � zr1(g) + F zr2(g) − zr3(g)( , (5)

where zi(g) represents the ith individual in the gth gener-
ation population; r1, r2, r3, and target vector i are different
from each other; and F is a scale factor, which has been
assigned a value between [0, 2] and used to control the
scaling of differential variables [18, 19].

)e crossover operation is performed between indi-
viduals for the gth generation population zi(g)  and the
intermediate vi(g + 1) 

ui.j(g + 1) �
vi.j(g + 1), ifrand(0, 1)≤CR orj � jrand,

zi.j(g), otherwise,
⎧⎨

⎩

(6)

where CR is the crossover factor and jrand is a random
integer in [1, 2, . . . , D]. To ensure at least one “gene” in the
intermediate individual is passed to the next generation, the
jthrand gene of each individual is passed in the first crossover
“gene” operation. zi(g) or vi(g + 1) is chosen as the allele of

ui(g + 1), which depends on the CR probability for sub-
sequent crossover operations.

)e selection strategy focuses on the population selec-
tion after the crossover operation in the differential algo-
rithm. Based on the complexity of the actual traffic
environment, the DE algorithm employs the greedy algo-
rithm to choose the individuals inputting to the next gen-
eration of the traffic flow population; that is,

zi(g + 1) �
ui(g + 1), f ui(g + 1)( ≤f xi(g)( ,

xi(g), otherwise.
 (7)

For the DE algorithm, the mutation, crossover, and
selection operations are continuously performed through
equations (5)–(7) until meeting the conditions. )us, the
DE-BPNN parameter optimization is achieved. Note that,
the scale and crossover factors of the DE algorithm are fixed
values based on experience. In actual traffic flow prediction,
this algorithm requires a wider search range to avoid be-
coming trapped in local optimal solutions in the early stage,
while it requires a narrower search range to prevent the
algorithm frommissing the extreme points in the later stage.
)erefore, to conform to the dynamics of short-term traffic
flow, it is necessary to improve the method of determining
the scale and crossover factors.

2.3. Method of Determining the Dynamics of Adaptive Scale
and Crossover Factors for DE Algorithm. To ensure the ac-
curacy and effectiveness of short-term traffic flow prediction,
the established adaptive scale factors need to guarantee the
following characteristics: as the number of iterations in-
creases, the mutation rate should gradually decrease; at the
beginning of an iteration, a larger scale factor should be
selected to increase the diversity of the traffic flow pop-
ulation; a smaller scale factor should be selected in the later
stage to preserve the superior individuals of the traffic flow
population. Based on these considerations, adaptive scale
factors are generated with the following equation:

F � F0 ∗ 2 e
1− Gm/Gm+(1− G)( ), (8)

where F0 represents the initial scale factor, Gm is the
maximum number of iterations, and G stands for the current
number of iterations.

Similarly to the scale factor, as the number of iterations
increases, the crossover rate changes dynamically. )e larger
crossover factor at the initial stage ensures the global traffic
flow state mutation. )e smaller crossover rate in the later
period is more focused on local traffic state convergence.
Hence, the design adaptive crossover factor is shown in the
following equation:

CR � CRmax −
G CRmax − CRmin( 

Gm

 , (9)

where CRmax is the maximum value of the crossover pa-
rameter and CRmin represents the minimum value of the
crossover parameter.

In regard to traffic flow prediction, because the DE al-
gorithm optimizes the BP parameters, it can prevent the
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BPNN from being trapped in local optimal solutions and
improve the accuracy of the BPNN-based traffic flow
algorithm.

3. Design of the Short-Term Traffic Flow
Prediction Algorithm Based on Adaptive DE-
BPNN

)e preceding section introduces the BPNN-based short-
term traffic prediction model and the DE algorithm, as well
as the method for determining the dynamic parameter
factors in the DE algorithm. )e basic procedure of the
hybrid short-term traffic flow prediction model algorithm is
given below, as shown in Figure 3.

Step 1: initialize the population. Np populations are
randomly initialized based on equation (4). Each in-
dividual has D dimensions, each of which represents a
parameter in a neural network.
Step 2: the error between the neural network output
and actual values is defined as the population-depen-
dent fitness function. )e fitness of each individual is
calculated, and the minimum fitness value is the global
minimum; the globally optimal individual is updated.
)e fitness function can be represented by the mean
square error (MSE) or the root mean square error
(RMSE) as given in the following equation:

MSE �
1

Nts



Nts

i�1
yi − yi( 

2
,

RMSE �

��������������

1
Nts



Nts

i�1
yi − yi( 

2




,

(10)

where Nts represents the number of trained samples; yi

is the actual value of the predicted traffic flow; and yi

stands for the value of the actual traffic flow.
Step 3: the next-generation individual xi(g + 1) is
obtained based on the DE mutation, crossover, and
selection operations.
Step 4: step 3 is repeated until the next-generation
population is obtained.
Step 5: determine whether or not the termination
condition (the global minimum meets the predefined
accuracy requirements, or the maximum number of
iterations is reached) is met; if yes, the iteration will be
stopped with the optimal individuals as parameters of
the neural network; otherwise, go to the next step.
Step 6: if g � g + 1; go back to Step 2.
Step 7: enter the test set and perform prediction with
the trained network.

4. Simulation Experiment

4.1. ExperimentConditions. To verify the performance of the
proposed short-term traffic flow prediction model, the PeMS

data set, one of the most commonly used data set in short-
term traffic flow prediction [20], was selected. )e data
acquired from one road segment were chosen for detection;
the data collected by these detectors were summarized once
in every 5 minutes, and the traffic flow was summarized for
three one-way lanes. )en, the data were subjected to
preprocessing, including the removal of redundant data, the
correction of erroneous data, and normalization. Figure 4
shows the traffic flow at a detection point along a freeway
overtime during the week. It can be seen that the traffic flow
on weekdays tends to be consistent. To more closely assess
the similarity of weekdays, the daily traffic flow was com-
pared in the same plane. As shown in Figure 5, the morning
and evening rush hours are almost at the same time on the
weekdays, which reflects the consistency of travel patterns.
Hence, to ensure the accuracy of the prediction, weekends
and weekdays are distinguished, and the experimental study
was conducted on weekday traffic flow data collected from
May 2 to May 6, 2018. )e data collected on May 2 and 3,
2018, were used as the training set, while the data acquired
on May 4 were used as the prediction set.

4.2. Assessment Indicators. To evaluate the effectiveness of
the DE-BPNN model and some conventional models, the
four most commonly used performance indicators were
selected for regression problems: the mean absolute error
(MAE), the MSE, the mean absolute percentage error

Determine BPNN's structure 
parameters

Establish the mapping relationship 
between the input and output

Initialize parameters

Determine the fitness function
calculate the fitness value for each 

variable

Mutation and crossover operations
update the fitness value for each 

variable

Select the 
global optimal 

fitness value
�e maximum

number of iterations is reached,
or the training error is less than

the set value

Output the optimal network

Yes

No

Figure 3: DE-BPNN algorithm flowchart.
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(MAPE), and the mean square percent error (MSPE). All
indicators are defined as follows: yt and yt represent the
detection value and the model prediction value of traffic
flow, respectively [21, 22].

(1) Mean absolute error (MAE): it can avoid the problem
of mutual cancellation of errors, so it can well reflect
the actual situation of predicted value errors.

MAE �
1
n



n

t�1
yt − yt


. (11)

(2) Mean square error (MSE): it is a measure reflecting
the difference between the estimated quantity and
the estimated quantity, which can evaluate the
change degree of the data. )e smaller the MSE
value, the better the accuracy of the prediction model
in describing the experimental data:

MSE �
1
n

�����������



n

t�1
yt − yt( 

2




. (12)

(3) Mean absolute percentage error (MAPE): it is used as
a statistical indicator to measure the accuracy of
prediction. A smaller MAPE indicates a better model
effect.

MAPE �
1
n



n

t�1

yt − yt

yt




. (13)

(4) Mean square percent error (MSPE): it is used to test
the degree of model fitting. )e smaller the MSPE is,
the better the fitting degree is, and the model can be
accepted.
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Figure 4: Correlation of time series on weekdays.
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MSPE �
1
n

������������



n

t�1

yt − yt

yt

 

2



. (14)

4.3. Model Parameters. )e experiment used the BPNN-
based method with a single hidden layer (m− 2m+ 1− 1). As
shown in Figure 2, the input data were set as
(x1, x2, . . . , xn)T, and the output result was y[23, 24]. )e
parameters of the BPNNmodel are as follows: the maximum
number of trainings is 1,000, the training error target is
0.001, the learning rate is 0.01, the activation function of the
hidden layer is tansig: f(x) � (2/(1 + e− 2x)) − 1, the acti-
vation function of the output layer is purelin: f(x) � x, and
the training function is trainlm. )e parameter settings for
the DE algorithm are as follows: the population size is
Np � 10, the number of iterations is g � 100, the results of
several trial calculations determine the mutation factor is
F0 � 0.9, and the crossover factor CRmin � 0.1 and
CRmax � 0.7. )e experiment was performed on a PC with
an Intel i7 2.4GHZ CPU and an 8GB RAM; the algorithm
was written in the MATLAB R2018a environment.

4.4. Interpretation of Results

4.4.1. Model Prediction Results. In this paper, the traffic flow
data observed at an observation point in the road network on
May 4 were analyzed. )e prediction results are shown in
Figure 6. It can be seen from Figure 6 that the DE-BPNN
model yields excellent prediction results. )e predicted
values at each time point are basically consistent with the
actual values, so the traffic flow trend throughout the day is
excellently predicted, and the trend of the change in the
traffic flow is accurately identified.

4.4.2. Comparative Analysis of Models. )eoretically, the
adaptive DE-BPNN model proposed in this paper offers
higher convergence rates and smaller prediction errors
compared with the use of the BPNN alone. In the early stage,
the DE algorithm can effectively avoid the local extremum
problem and offer fast convergence and optimization.
Furthermore, this algorithm can find the optimal initial
parameters of the BPNN during training and continuously
optimize the BPNN, and the parameter values are more
accurate than the initial values randomly generated by the
neural network, thereby enhancing the prediction accuracy.
To compare the predictive performance of the DE-BPNN
model, three classical prediction models were selected for
comparison, including the ARIMA-based, WNN-based, and
BPNN-based models. )e results of the short-term traffic
flow predictions performed with the ARIMA, BPNN, and
WNN models are given below. )e data in Figures 7–9
include the actual values, the predicted values, and the
prediction errors, including the emergence of morning and
evening peaks.

For a more intuitive comparison of the model prediction
results, the four performance evaluation indicators are used
to evaluate the four prediction models.

)e performances of the ARIMA, WNN, BPNN, and
DE-BPNN models were compared. We used the same data
set in all cases. Table 1 shows the prediction result of the
5 min freeway traffic flow verification data set. It should be
noted that we only used the traffic flow data as the input for
prediction without considering engineering factors related
to the traffic flow, such as weather conditions, accidents, and
other traffic flow parameters (density and speed). As shown
in Table 2, the MAE values of DE-BPNN model decreases
49.04%, 8.16%, and 7.36% as compared with those of the
ARIMA, WNN, and BPNN models, respectively; the MSE
values of DE-BPNN model decreases 44.97%, 5.88%, and
6.66% as compared with those of the ARIMA, WNN, and
BPNN models, respectively; the MAPE values of the DE-
BPNN decreases 33.43%, 19.68%, and 18.55% as compared
with those of the ARIMA, WNN, and BPNN models, re-
spectively; and the MSPE values decreases 23.58%, 29.85%,
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Figure 6: Traffic flow prediction results of the DE-BPNN model.
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Figure 7: Traffic flow prediction results with the ARIMA model.
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and 27.69% as compared with those of the ARIMA, WNN,
and BPNN models, respectively.

5. Conclusions

Short-term traffic flow prediction is of great social and
economic significance for reducing traffic safety hazards,
reducing traffic accidents, providing safe and efficient ex-
perience for highway travellers, and improving highway
traffic and transportation efficiency. By integrating intelli-
gent optimization algorithm theory with machine learning
methods, this paper proposes a DE-BPNN model for short-
term traffic flow prediction. Restricted by a variety of in-
ternal and external factors, the actual traffic system exhibits
strong nonlinearity and uncertainty. )e BPNN is suitable
for any nonlinear fitting; furthermore, to avoid being
trapped in local extrema during the conventional BPNN
training process, a difference-based heuristic random search
DE algorithm is used for global preoptimization, and then,
the weights and biases obtained from the DE algorithm are
used to train the BPNN, thus improving the prediction
accuracy. )e results show that the DE-BPNN prediction
model effectively improves the prediction accuracy of short-
term traffic flow. Compared with the ARIMA, WNN, and
BPNN models, the DE-BPNN model leads to lower values
for the MAE, MSE, MAPE, and MSPE error evaluation
indicators. )e research scope can be expanded, and more
complex road network data can be used for experiments in
the future. Traffic flows may be affected by weather, traffic
accidents, and other factors. How to use such auxiliary
information to improve the prediction accuracy will also be a
focus in future studies.
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