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A compound control based on active disturbance rejection control (ADRC) scheme and slide mode control (SMC) is proposed to
investigate the attitude tracking problem for a spacecraft with modeling uncertainties, external disturbances, actuator failures, and
actuator saturations simultaneously. A positive term including control input is separated from the system, and then, the active
disturbance rejection concept and the extended state observer (ESO) are applied to deal with the general uncertain item caused by
uncertainties, external disturbances, actuator failures, and actuator saturations. )e sliding mode surface is designed to transform
the attitude tracking problem into attitude stabilization problem. In order to deal with the actuator saturations, a saturation degree
coefficient and its corresponding adaptive law are introduced. Compared to other existing references, the proposed scheme does
not need to know the structure or upper bound information of the inertial matrix uncertainties and external disturbances. Finally,
the stability of the closed-loop system is analyzed by using input to state stability theory. Simulation results are given to verify the
effectiveness of the proposed scheme. More importantly, the proposed technique can also be applied to the attitude stabilization of
other aircraft, such as the attitude of unmanned aerial vehicle and helicopter in maritime rescue.

1. Introduction

With the development of space missions, the reliable control
scheme is significantly important for the rigid spacecraft. As
the part of spacecraft systems, attitude control plays an
important role in spacecraft design and has been studied
extensively under various scenarios [1–5]. )e reliability of
attitude control determines that the planned missions can be
accomplished successfully or not. It is a significant challenge
to obtain a steady attitude when there exist uncertainties,
external disturbances, actuator failures, or saturations.
However, lots of nonlinear control schemes are applied on
attitude control in much literature. In [3, 4], an extended
state observer sliding mode control (SMC) is proposed for
spacecraft attitude control with inertia uncertainty and
external disturbance. In [4, 5], the adaptive SMC is applied
to attitude stabilization with control constraints. In the
above adaptive SMC scheme, it is assumed that the inertia
matrix and the external disturbance are bounded and satisfy

certain conditions. In [6], two quasi-continuous higher-
order sliding controllers are applied to spacecraft attitude-
tracking. In [7], to alleviate chattering and ensure a smooth
control for actuators by SMC, a second-order sliding mode
controller based on anti-unwinding control method is
proposed for the attitude stabilization of a rigid spacecraft.
In [1], nonlinear H∞ robust controller is proposed for F-16
aircraft with mass and moment inertia uncertainties. To
solve the associated Hamilton–Jacobi partial differential
inequality, a special Lyapunov function with mass and
moment inertia uncertainties is considered. A robust control
law based on the mini-max approach and the inverse op-
timal approach is proposed for the attitude control with
external disturbances [8]. In [9], the inverse optimal feed-
back control based on integrator backstepping is proposed
for rigid spacecraft without considering the disturbances and
uncertainties. )e optimal adaptive controller is designed to
achieve attitude tracking for rigid spacecraft [10]. To deal
with the inertia matrix uncertainty and attenuate the
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disturbance, both the adaptive control and the inverse op-
timal control approach are applied. However, the above-
mentioned controls are based on precise analytic structure of
uncertainty to derive online updating algorithms for un-
known but constant parameters in the system.

Actually, the inputs of spacecraft systems are usually
limited, which are known as actuator saturation or input
saturation. In practical systems, input saturation may lead to
instability or unacceptable performance degradation for the
spacecraft’s attitude. To deal with the input saturation, lots of
methods appeared [5, 11–15]. In [11], taking into account
control input saturation, external disturbances, and para-
metric uncertainty, a variable structure control method is
proposed for spacecraft attitude stabilization, which ensures
the fast and accurate response. )ereafter, the continuous
variable structure control approach is presented for attitude
tracking [12]. In [13], two saturated finite-time attitude
controllers based on the homogeneous method are proposed
for rigid spacecraft subject to control input saturation,
without considering the external disturbance and uncer-
tainty. In [14], a saturated attitude control scheme composed
of the quaternion part, the saturated angular velocity part,
and the bounded antidisturbance part was proposed for
spacecraft with bounded disturbances. In [15], two novel
anti-unwinding attitude controllers based on the inverse
optimal approach and unit quaternion are designed for
spacecraft subject to uncertainty and external disturbance.

Note that the abovementioned references concentrate on
the attitude control without actuator fault. In practice, be-
sides the saturation, actuator failures also usually occur in
spacecraft systems. As is known to all, control failures can
lead to performance deterioration, instability, and even
catastrophic accidents. )erefore, it is very important to
design a controller with fault-tolerant capability to improve
the spacecraft system reliability. In order to enhance the
reliability of spacecraft systems, some scholars are focusing
on fault-tolerant attitude control [16–19]. In [20], an
adaptive fault-tolerant control method is proposed for the
spacecraft subjected to two types of faults, without uncer-
tainties and disturbances. In [16], an adaptive backstepping
sliding mode control scheme is designed to achieve attitude
tracking for flexible spacecraft with actuator failures, dis-
turbances, and uncertainties. In [17], an adaptive fault-
tolerant control based on the fuzzy logic system and sliding
mode observers is presented for near-space vehicle without
the bounds of the derivative of the faults. In [18], two in-
tegral-type sliding mode control schemes are used to
compensate actuator faults for spacecraft with external
disturbances.

However, as far as the authors know, few papers focus on
the attitude control for the rigid spacecraft subjected to
uncertainties, disturbances, failures, and actuator saturation
simultaneously. In [2], a nonregression-based indirect ro-
bust approach is presented to achieve attitude tracking when
accounting for uncertainties, disturbances, failures, and
actuator saturation simultaneously. Although the uncer-
tainty is done by its bound, it is assumed that the external
disturbance and the inertia matrix are bounded and satisfy
certain conditions. In [19], a variable structure control is

developed for attitude stabilization of spacecraft with partial
loss of actuator effectiveness fault and actuators saturation.
)en, the authors proposed an adaptive slidingmode control
for spacecraft subjected to partial loss of actuator effec-
tiveness fault, and the control law is modified to ensure that
the control signal never contains saturation [21]. )e neural
network is used to approximate uncertainties and online
updating law to estimate the bound of actuator fault without
any information of the fault. In [22], based on fuzzy logic
and backstepping techniques, a robust adaptive control is
proposed for spacecraft in the presence of uncertainties,
disturbances, actuator failures, and input saturation. Ac-
tually, the spacecraft system with uncertainties, distur-
bances, actuator failures, and actuator saturation
simultaneously is a more complicated uncertain nonlinear
system, whose typical representative is a nonaffine nonlinear
system. In [23–27], the active disturbance rejection tech-
nique presented in [28] is applied to the nonaffine nonlinear
system. )erefore, in this paper, a compound control based
on active disturbance rejection control (ADRC) scheme and
slide mode control (SMC) is designed to achieve attitude
tracking for the spacecraft system. To handle the saturation,
the saturation coefficient is introduced and its adaptive law is
designed. )e main contribution of this paper compared to
others is that the proposed scheme can achieve reliability
against inertia matrix uncertainties, external disturbances,
actuators faults, and saturation. Moreover, the actuator
faults that the scheme can deal with by the proposed scheme
include partial effectiveness loss fault, additive fault, and
total fault. )e proposed scheme does not depend on the
precise analytic structure of inertia matrix and disturbances,
nor depend on their bounds, which can also be applied in
spacecraft systems with time-varying parameters.

)is paper is organized as follows.)e spacecraft attitude
tracking problem and some preliminary results are described
in Section 2. )e compound control scheme is proposed to
achieve the attitude tracking in Section 3. Several simulation
results are presented in Section 4, and conclusions are drawn
in Section 5.

2. Problem Formulation and Preliminaries

2.1. Attitude Dynamics. )e mathematical models of the
rigid spacecraft attitude dynamics are given by [2–4]

J(t) _ω � −ω×J(t)ω + Fu + d(t), (1)

_qυ �
1
2

q×
υ + q0I3( ω, (2)

_q0 � −
1
2
qT
υω, (3)

where J(t) ∈ R3×3 is the inertia matrix of the spacecraft
determined by the mass distribution of the spacecraft, and
obviously, it is symmetric positive definite. u ∈ R3×1 is the
actual control torque generated by thrusters. F ∈ R3×1 is the
thruster distribution matrix (for a given spacecraft, F is
available and can be adjusted by changing the locations and
directions of the thrusters [3]). d(t) ∈ R3×1 is the external
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disturbance. q � [qυ; q0] ∈ R4×1 is the unit quaternion vector
representing the spacecraft’s attitude orientation, satisfying
qT
υqυ + q20 � 1, where qυ � [q1, q2, q3]

T and q0 are the vector
part and scalar components, respectively. I3 ∈ R3×3 is the
identity matrix, ω � [ω1,ω2,ω3]

T ∈ R3 is the angular ve-
locity of the spacecraft, and ω× is a skew symmetric matrix of
ω and has the following form:

ω×
�

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Remark 1. J(t) may change or be uncertain over time due to
fuel consumptions or onboard mission; therefore, J(t)

should be viewed as uncertain item or unknown item so that
it could not be used directly in control design. It is rea-
sonable to assume the invertible J(t) in the form
J(t) � J0 + ΔJ(t), in which J0is the nominal inertia matrix
and ΔJ(t) is the uncertainty. Compared to the above-
mentioned references, both J0 and ΔJ(t) are unknown here,
which is the most relaxed and simple condition.

Assumption 1. q and ω are available in feedback control
design. In practical, angles and angular velocities can be
measured with relative sensors.

Assumption 2. )e external disturbances d(t) ∈ R3×1 are
bounded.

)e control objective is to make the aircraft track the
desired attitude dynamics when the thrusters are constrained.

)e torques generated by the constrained thrusters can
be described as follows:

u � sat u0(  � sat u01( , . . . , sat u03(  
T
,

sat u0i(  �
u0i, u0i


≤ uimax,

uimax, otherwise,

⎧⎨

⎩ i � 1, . . . , 3,
(5)

where u0 is the thruster torque without limitation. )e
function sat(·) is used to describe that the control torques
generated by the thrusters are limited. uimax indicates the
maximum value of the control torque generated by the
thruster.

According to [5, 29], the saturation function can be
expressed as

u � sat u0(  � ς u0( u0, (6)

with

ς u0(  � diag ς1 u01( , . . . , ςn u0n(  ,

ςi u0i(  �

uimax

u0i

sign u0i( , u0i


> uimax,

1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

i � 1, . . . , n,

(7)

Obviously, the coefficient ςi( u0i ) ∈ ( 0, 1 ] denotes the
saturation degree of u0i.

Similar to [5], the desired attitude motion is supposed to
be generated by

_qdυ �
1
2

q×
dυ + qd0I3( ωd, (8)

_qd0 � −
1
2
qT

dυωd, (9)

where qd � [qdυ; qd0] ∈ R4×1 is the desired unit quaternion
vector of the spacecraft, satisfying qT

dυqdυ + q2d0 � 1, where
qdυ � [qd1, qd2, qd3]

T and qd0 are the vector part and scalar
component, respectively. ωd � [ωd1,ωd2,ωd3]

T ∈ R3×1 is the
desired angular velocity of the spacecraft. As in [3, 5],
ωd and _ωd are assumed to be bounded.

)e goal of the attitude tracking control is to design the
controller so that the attitude in equations (1)–(3) tracks the
desired attitude in equations (8)-(9), that is, to achieve
q⟶ qd and ω⟶ ωd. To analyse the attitude tracking
problem, as in [3, 5], we define attitude orientation error
qe � [qeυ; qe0] ∈ R4×1 and angular velocity error
ωe � [ωe1,ωe2,ωe3]

T ∈ R3×1 as follows:

qeυ � qd0qυ − q×
dυqυ − q0qdυ, (10)

qe0 � qT
dυqυ + q0qd0, (11)

ωe � ω − Cωd, (12)

where C � (q2e0 − qT
eυqeυ)I3 + 2qeυqT

eυ − 2qe0q×
eυ is a rotation

matrix, and note that ‖C‖ � 1 and _C � −ω×
e C.

From equations (1)–(12), the attitude orientation error
qe and angular velocity error ωe can be derived as follows:

J(t) _ωe � −ω×J(t)ω + Fς u0( u0

+ d(t) + J(t) ω×
e Cωd − C _ωd( ,

(13)

_qe �
1
2

q×
eυ + qe0I3

−qT
ev

⎡⎣ ⎤⎦ωe. (14)

It has been proved that through equations (10)–(12), the
aim of q⟶ qd and ω⟶ ωd would be achieved by sta-
bilizing systems (13)-(14) in [29].

In order to stabilize systems (13)-(14), as in [5, 6], the
sliding surface can be selected as follows:

S � ωe + Kqev, (15)

where K � diag[k1, k2, k3] and ki > 0 is a positive-designed
constant.

Differentiating equation (15) and then multiplying by
J(t), we can obtain the following:
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_S � J− 1
−ω×Jω + Fς u0( u0 + d(t) + J ω×

e Cωd − C _ωd(  +
1
2
JK q×

eυ + qe0I3( ωe . (16)

In Section 3, the control u0 will be designed such that
limt⟶∞S � 0. According to Lemma 2.1 in [5], limt⟶∞S �

0 can guarantee limt⟶∞ωe � 0 and limt⟶∞qev � 0.

2.2. Input to State Stability

Lemma 1 (see [29]). Consider the system _x � f(t, x, u);
there exists a C1 function V: R+ × Rn⟶ R+ so that for all
x ∈ Rn and u ∈ Rm, it satisfies

c1(|x|)≤V(t, x)≤ c2(|x|),

|x|≥ χ(|u|)⟹
zV

zt
+

zV

zx
f(t, x, u)≤ − c3(|x|),

(17)

where c1, c2, and χare class κ∞ functions and c3 is a class κ
function.0en, the system is input to state stable (ISS), and for
all t0 and t such that 0≤ t0 ≤ t, the following is satisfied:

|x(t)|≤ β x t0( 


, t − t0  + c sup
t0 ≤ τ ≤ t

|u(τ)| , (18)

where β(·) is a class κL function and c � c−1
1 c2ρ is a class κ

function.

3. Compound Control for Attitude Tracking

)e first case considered here is the spacecraft with only
three thrusters. Actually, there always exist two types of
thruster faults in the practical spacecraft system. )erefore,
partial effectiveness loss fault and additive fault are con-
sidered here. )e second case considered is the spacecraft
with more than three thrusters; however, some of it might
experience losing power totally.

3.1. Spacecraft with Only 0ree 0rusters. As the spacecraft
has only three thrusters, F in equation (1) would be I3. When
partial effectiveness loss fault and additive fault happen, the
attitude dynamics should be described as follows:

J(t) _ω � −ω×J(t)ω + δ(t)u + A(t) + d(t), (19)

where δ(t) � diag[δ1, δ2, δ3]
T ∈ R3×3; δi ∈ ( 0, 1 ] denotes

thruster effectiveness; and when δi � 1 denotes that the
thruster works normally, while δi ∈ (0, 1)indicates that the
thruster loses its effectiveness partially. A(t) � diag[A1(t),

A2(t), A3(t)] ∈ R3×3 indicates the additive fault, and it is
bounded.

)en, the sliding surface dynamics would be described
by

_S � J− 1
−ω×Jω + δ(t)u + A(t) + d(t) + J ω×

eCωd − C _ωd(  +
1
2
JK q×

eυ + qe0I3( ωe . (20)

According to the active disturbance rejection concept in
[23–26], equation (35) could be changed to the following:

_S � G + B0ς u0( u0, (21)

where B0 ∈ R3×3 is a nonsingular matrix selected by the
designer and G is the general uncertain item:

G � J− 1
−ω×Jω + δ(t)u + A(t) + d(t) + J ω×

e Cωd − C _ωd(  +
1
2
JK q×

eυ + qe0I3( ωe  − B0ς u0( u0. (22)

It contains the unknown inertia matrix, external dis-
turbance, and the uncertainties produced by thruster fault.
To facilitate analysis, B0 is chosen as a diagonal matrix.

As in [4, 24–26], in order to deal with G, the extended
state observer (ESO) for equation (21) can be constructed as
follows:
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E � Z1 − S,

_Z1 � Z2 − β1gc1(E) + B0ς u0( u0,
_Z2 � −β2gc2(E),

⎧⎪⎪⎨

⎪⎪⎩

gc1(E) � E1, E2, E3 
T
,

gc2(E) �

E1



α1 sign E1( 

E2



α1 sign E2( 

E3



α1 sign E3( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 0≤ α1 ≤ 1,

(23)

where E � [E1, E2, E3]
T ∈ R3×1 is the estimation error of the

ESO, Z1 ∈ R3×1 and Z2 ∈ R3×1 are the observer output, and
β1 > 0, β2 > 0, and 1/4β21 > β2 > ‖ _G‖are the observer gains. It
has been proved in [4, 25] that for appropriate values of
β1, β2, gc1(·), andgc2(·), the observer output Z2 approaches
G and Z1 approaches S.

With the uncertainties G estimated by the ESO, the
sliding control law can be designed as

u � sat u0( ,

u0 � −B−1
0 τS + σsig(S)

r
  − B−1

0 ρ
S

‖S‖
η + Z2

����
���� ,

(24)

_ρ � p0ρ
3
‖S‖ η + Z2

����
���� , ρ(0)> 0, (25)

with τ � diag[τ1, τ2, τ3], τi > 0, σ � diag[σ1, σ2, σ3], σi > 0,
and sig(S)r � [|S1|

rsign(S1), . . . , |S3|
rsign(S3)]

T, r ∈ (0, 1),
where p0 > 0 and η> 0 are positive constant parameters
chosen by the designer. Z2 is the state of ESO equation (23),
which can approach G.

Theorem 1. Consider a spacecraft system with partial ef-
fectiveness loss fault and additive fault; meanwhile, the
thrusters are limited, which is stated in equation (19). If
control scheme (24) is implemented, then the control objec-
tives q⟶ qd and ω⟶ ωd would be achieved.

Proof. Construct the Lyapunov function as follows:

Vs �
1
2
STS +

1
2p0

ρT
ρ, (26)

where ρ � ρ − ρ− 1 and p0 > 0 is a designed constant. In view
of equation (21), its time derivative can be given as follows:

_Vs � ST _S +
1
p0

ρT
ρ− 2 _ρ � ST G + B0ς u0( u0(  +

1
p0

ρT
ρ− 2 _ρ.

(27)

Owing to both B0 and ς(u0) being diagonal matrices and
combining with equation (24), equation (27) can be
expressed as follows:

_Vs � ST G + ς u0( B0u0(  +
1

p0
ρT

ρ− 2 _ρ

� −ST ς u0( τS + ς u0( σsign(S)
r

( 

+ STG − STς u0( ρ
S

‖S‖
η + Z2

����
����  +

1
p0

ρT
ρ− 2 _ρ

� − 
3

i�1
ςi u0i( τiS

2
i − 

3

i�1
ςi u0i( σi Si



r+1

+ STG −
ρ η + Z2

����
���� 

‖S‖


3

i�1
ςi u0i( S

2
i +

1
p0

ρT
ρ− 2 _ρ.

(28)

As in [30], sinceςi( u0i ) ∈ ( 0, 1 ], then according to the
density property of the real number, there would exist a
constant ρ satisfying

0< ρ≤ min
1≤i≤3

ςi u0i( ( ≤ 1. (29)

According to equation (29), it yields

_Vs ≤ − ρ 
3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠

+ STG −
ρ η + Z2

����
���� 

‖S‖


3

i�1
ςi u0i( S

2
i +

1
p0

ρT
ρ− 2 _ρ.

(30)

According to equation (25), it is not difficult to note that
ρ(0)> 0 ensures that ρ is always larger than zero. )erefore,
the following can be further obtained:

_Vs ≤ − ρ 
3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠ + STG

− ρ
ρ η + Z2

����
���� 

‖S‖


3

i�1
S
2
i +

1
p0

ρT
ρ− 2 _ρ

≤ − ρ 

3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠ + STG − ρρ η + Z2

����
���� ‖S‖

+
1

p0
ρT

ρ− 2 _ρ.

(31)

According to equation (25) and ρ � ρ + ρ− 1in equation
(31), it yields
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_Vs ≤ − ρ 

3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠ + STG − ρ + tρ− 1

 ρ η + Z2
����

���� ‖S‖ +
1

p0
ρT

ρ− 2
p0ρ

3
‖S‖ η + Z2

����
���� 

≤ − ρ 
3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠ + STG − η‖S‖ − Z2

����
����‖S‖≤ − ρ 

3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠

− η‖S‖ +‖S‖ ‖G‖ − Z2
����

���� ≤ − ρ 
3

i�1
τiS

2
i + 

3

i�1
σi Si



r+1⎛⎝ ⎞⎠ − η‖S‖ +‖S‖ G − Z2

����
����

≤ − ρ
3

i�1
σi Si



r+1

− η‖S‖ − ρmin
i

τi‖S‖
2

+‖S‖ G − Z2
����

����.

(32)

)en, ‖G − Z2‖ can be viewed as the disturbance input of
the closed loop system consisting of equations (20), (23), (24),
and (25). When ‖S‖≥ χ(‖G − Z2‖), with χ(‖G− Z2‖) �

1/ρminiτi‖G − Z2‖, equation (32) is smaller than zero.
)erefore, the closed loop system is ISS. Based on Lemma 1, it
is easy to conclude that the estimation error ‖G − Z2‖ by ESO
will affect that whether the dynamic of the sliding mode
converges to the sliding surface S � 0. According to the
principle of ESO, it is shown that Z2 can only converge into a
residual set of G, which means that ‖G − Z2‖ will converge
into a small residual set of zero. )at is to say, the dynamic of
the sliding mode will be restricted to the neighborhood of the
sliding surface. Fortunately, this neighborhood can be re-
duced to any small size by selecting the ESO parameters
β1, β2, gc1(·),  andgc2(·) and the controller parameters
τ, σ, and η. Furthermore, τ and σ determine the speed of
convergence and the final error. According to equation (24),
the bigger the parameters τ and σ are, the faster the speed
converging to zero and the smaller the approach error is. □

Remark 2. Obviously, χ(‖G − Z2‖) � 1/ρminiτi‖G − Z2‖ is a
class κ∞ function, so Lyapunov function (26) satisfies
Lemma 1; that is to say, the closed loop system is ISS.

Remark 3. In order to ensure the stability for the dynamic of
the sliding mode and the ability to approach the selected
sliding surface, ρ(0) and τi should satisfy ρ(0)τi > 1. )e
reason is that _Vs ≤ − ρminiτi‖S‖2 + ‖S‖2 + ‖G − Z2‖

2/4, and
ρ is designed as an incremental function.

Remark 4. B0 determines the effectiveness of the active
disturbance rejection. Although B0 can be selected as an
arbitrary diagonal matrix, the closer B0 is to the real value, the
better the effect of the active disturbance rejection.

Remark 5. As S crosses the zero, the controller in equation
(24) will be discontinuous, which will result in chattering.
)erefore, the bounded layer should be introduced to
eliminate the chattering. As in [5], equation (24) can be
modified as follows:

u0 � −B−1
0 τS + σsig(S)

r
  − B−1

0 ρ
S

‖S‖ + ε
η + Z2

����
���� , (33)

where ε> 0 is the bounded layer, and it should be selected to
be small enough.

3.2. Spacecraft with More than 0ree 0rusters. When the
spacecraft has more than three thrusters, some of which
might suffer from total fault, then the attitude dynamics
would be described as follows [2]:

J(t) _ω � −ω×J(t)ω + FΓu + d(t), (34)

where Γ � diag[Γ1, . . . , Γn] ∈ Rn×n denotes the work status of
the thrusters. Γi � 0 means that the thruster has either totally
failed or been shut down purposely.

Correspondingly, sliding surface dynamics (16) would be
described by

_S � J− 1
−ω×Jω + FΓu + d(t) + J ω×

e Cωd − C _ωd( 

+
1
2
JK q×

eυ + qe0I3( ωe.

(35)

Firstly, we can choose B0 as B0 �

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

3×n

.

According to the active disturbance rejection concept in
[23–26], equation (35) could be changed to the following:

_S � G + B0ς u0( u0, (36)

where G is the total uncertain item, which can be written as
follows:

G � J− 1
−ω×Jω + FΓu + d(t) + J ω×

e Cωd − C _ωd( 

+
1
2
JK q×

eυ + qe0I3( ωe − B0ς u0( u0.
(37)

It contains the unknown inertia matrix, external dis-
turbance, and uncertainties produced by thrusters fault.

And then, it is interesting to find that the sliding dy-
namics can be stabilized with a slight modification to the
above controller, as follows:
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u � sat u0( ,

u0 � −BT
0 τS + σsig(S)

r
  − BT

0 ρ
S

‖S‖
η + Z2

����
���� ,

(38)

_ρ � p0ρ
3
‖S‖ η + Z2

����
���� , ρ(0)> 0, (39)

where all the control parameters are defined as before. )e
stability of the closed loop system can be analyzed by using
the same Lyapunov function. Combining controller (38) and
adaptive law (39), the derivative of the Lyapunov function
can be given as follows:

_Vs � STG − STB0ς u0( BT
0 τS + σsig(S)

r
 

− STB0ς u0( BT
0 ρ

S
‖S‖

η + Z2
����

���� 

+
1
p0

ρT
ρ− 2

p0ρ
3
‖S‖ η + Z2

����
���� .

(40)

Note that the multiplication of a vector and a diagonal
matrix in equation (40) satisfies the following:

STB0ς u0(  � ςdiag STB0 with ς � ς1, . . . , ςn . (41)

)en, it is not difficult to calculate the right side of
equation (40) and it can be expressed as

_Vs � − 

3

i�1
ςi u0i( τiS

2
i − 

3

i�1
ςi u0i( σi Si



r+1

+ STG −
ρ η + Z2

����
���� 

‖S‖


3

i�1
ςi u0i( S

2
i + ρT

ρ‖S‖ η + Z2
����

���� . (42)

According to equation (39), ρ is a positive parameter.
Combining equation (29), we can obtain the following:

_Vs ≤ − ρ
3

i�1
τiS

2
i − ρ 

3

i�1
σi Si



r+1

+ STG −
ρ η + Z2

����
���� 

‖S‖
ρ

3

i�1
S
2
i + ρT

ρ‖S‖ η + Z2
����

���� ≤ − ρ
3

i�1
τiS

2
i − ρ

3

i�1
σi Si



r+1

+ STG

−
ρ η + Z2

����
���� 

‖S‖
ρ + tρ− 1

  

3

i�1
S
2
i + ρT

ρ‖S‖ η + Z2
����

���� ≤ − ρ
3

i�1
τiS

2
i − ρ

3

i�1
σi Si



r+1

+ ‖S‖ ‖G‖ − Z2
����

���� .

(43)

Consider ‖G − Z2‖ as the disturbance input of the closed
loop system consisting of equations (35), (23), (38), and (39).
When ‖S‖≥ χ(‖G − Z2‖), with χ(‖G − Z2‖) � 1/ ρminiτi‖G−

Z2‖, equation (43) is less than zero. )erefore, the entire
closed-loop system is ISS for ‖G − Z2‖, and the following
theorem can be established.

Theorem 2. Consider a spacecraft system; meanwhile, the
thrusters are limited, which is stated in equation (34). If
control scheme (38) is implemented, then the control objec-
tives q⟶ qd and ω⟶ ωd would be achieved.

Remark 6. Similar to Remark 5, in order to eliminate the
chattering, equation (38) can be modified as follows:

u0 � −BT
0 τS + σsig(S)

r
  − BT

0 ρ
S

‖S‖ + ε
η + Z2

����
���� , (44)

where ε> 0 is the bounded layer and it should be selected to
be small enough.

4. Simulation Results

To verify the effect of the scheme proposed above, several
simulations on a spacecraft under various conditions are
conducted. )e limit of thrusters is selected as
uimax ≤ 5N · m. )e initial values for the spacecraft are se-
lected as q(0) � [0.3, −0.2, −0.3, 0.8832]T and ω(0) �

[0, 0, 0]T rad/s . )e initial values for the desired unit qua-
ternion is set to qd(0) � [0, 0, 0, 1]T. )e unknown nominal
inertial matrix and its uncertainties are chosen as

J0 �

20 1.2 0.9

1.2 17 0.4

0.9 1.4 15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ kg · m2
,

ΔJ � diag[sin(0.1t), 2sin(0.2t), 3sin(0.3t)] kg · m2
,

(45)

and the disturbances are selected as

d(t) �

0.1sin(0.1t)

0.2sin(0.2t)

0.3sin(0.3t)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦N · m.
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)e ESO parameters are designed as β1 � 70,β2 � 30
andα1 � 0.25. And, the initial states of ESO are set to
Z1(0) � Z2(0) � 0 0 0 

T. )e parameters of the control
law in equations (24), (25), (38), and (39) are selected as
K � 2I3, τ � 50I3, σ � 0.01I3, r � 0.3, p0 � 1, η � 20, and
ε � 0.1. )e initial value for adaptive law is set to ρ(0) � 0.1.

In order to verify the performance of ESO, the desired
angular velocity is set to a sinusoidal signal, such as ωd(t) �

[0.5sin(πt/100), 0.5sin(2πt/100) , 0.5sin(3πt/100)] rad/s.

4.1. Simulation for Spacecraft with Only 0ree 0rusters.
In this section, it is assumed that thrusters have partial
effectiveness loss fault and additive fault, such as δi(t) �

0.8 + 0.1sin(t) and Ai(t) � 10 + 10sin(t).
Simulation results are given to show the performance of

control law (24). Figure 1 demonstrates the attitude qua-
ternion tracking error. )e attitude quaternion tracking
error curve indicates that the proposed control law achieves
the desired attitude tracking in 5 s. )e spacecraft has
achieved the desired angular velocity in 5 s from the angular
tracking error curve exhibited in Figure 2. From Figures 1
and 2, the validity of the conclusion of )eorem 1 can be
verified such that control law (24) can make the spacecraft
converge to the desired attitude and angular velocity in spite
of the saturation, uncertainties, and disturbances.

From the sliding surface depicted in Figure 3, it could be
drawn that the dynamic of sliding mode converge into the
neighborhood of the sliding surface S � 0 very quickly.
According to equation (15), as S is equal to 0, ωe � −Kqev,
which is exactly reflected in Figures 1 and 2. )e control
torques produced by three thrusters are illustrated in Fig-
ure 4. )ey are limited by uimax � 5N · m . )e adaptive law
depicted in Figure 5 shows that although the parameter ρ
cannot converge to a certain constant, its change is very
slow. However, the dynamic of the sliding mode just only
converges into the neighborhood of the sliding surface S � 0
and not converges to S � 0. )e performance of ESO is
illustrated in Figure 6, which verifies that the total influence
produced by the absolutely unknown inertial matrix, ex-
ternal disturbance, and actuator fault can be well estimated
via ESO.

4.2. Simulation for Spacecraft withMore than0ree0rusters.
In this section, three thrusters with fading fault and the other
three with totally failed fault are assumed, which is depicted
as follows [2]:

Γ � diag[0.5, 0.7, 0.7, 0, 0, 0] ∈ Rn×n
. (46)

Assume that the six thrusters are distributed as

F �

1 0 0 0.2 0.1 0.3

0 1 0 0.6 0.5 0.3

0 0 1 0 0.2 0.4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (47)

For the simulation purposes, the system’s initial states,
inertial matrix and its uncertainties, disturbances, and other
parameters are all the same as above.

Figure 7 demonstrates the attitude quaternion tracking
error. )e attitude quaternion tracking error curve indicates
that the proposed control law achieves the desired attitude
tracking in 5 s. )e spacecraft has achieved the desired
angular velocity in 5 s from the angular tracking error curve
exhibited in Figure 8. From Figures 7 and 8, the validity of
the conclusion of )eorem 2 could be verified such that
control law (38) can make the spacecraft converge to the
desired attitude and angular velocity in spite of the satu-
ration, uncertainties, and disturbances.

From the sliding surface depicted in Figure 9, it could be
drawn that the dynamic of sliding mode converge into the
neighborhood of the sliding surface S � 0 very quickly.
According to equation (15), as S is equal to 0, ωe � −Kqev,
which is exactly reflected in Figures 7 and 8. )e control
torques produced by six thrusters are illustrated in Figure 10.
)ey are limited by uimax � 5N · m. From Figure 10, it is
obviously deduced that three thrusters show totally failed
fault which is consistent with equation (46).

Define T � FΓς(u)u; then, the control torques for
spacecraft are illustrated in Figure 11. It can be seen that the
applied moment for spacecraft does not exceed the upper
limit. )e adaptive law depicted in Figure 12 shows that
although the parameter ρ cannot converge to a certain
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constant, its change is very slow. However, the dynamic of
sliding mode just only converges into the neighborhood of
the sliding surface S � 0 and not converges to S � 0. )e
performance of ESO is illustrated in Figure 13, which verifies
that the total influence produced by the absolutely unknown

inertial matrix, external disturbance, and actuator fault can
be well estimated via ESO.

Based on Figures 1–13, it can be concluded that the
proposed scheme has achieved a good performance on at-
titude tracking by using ADRC and SMC.

0 1 2 3 4 5 6 7 8 9 10
0.1

0.1

0.1001

0.1001

0.1002

0.1002

0.1003

Time (s)

ρ̂

ρ̂

Figure 5: Adaptive law of the parameter ρ.

0 1 2 3 4 5 6 7 8 9 10
–5

0

5

0 1 2 3 4 5 6 7 8 9 10
–5

0

5

0 1 2 3 4 5 6 7 8 9 10
–10

0

10

Time (s)

Time (s)

Time (s)

G(1)
Z2(1)

G(2)
Z2(2)

G(3)
Z2(3)

U
nc

er
ta

in
 te

rm
 G

an
d 

its
 es

tim
at

io
n

U
nc

er
ta

in
 te

rm
 G

an
d 

its
 es

tim
at

io
n

U
nc

er
ta

in
 te

rm
 G

an
d 

its
 es

tim
at

io
n

Figure 6: Estimation of general uncertainties by ESO.

10 Mathematical Problems in Engineering



0 1 2 3 4 5 6 7 8 9 10
–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

At
tit

ud
e q

ua
te

rn
io

n 
tr

ac
ki

ng
 er

ro
r

qv,1 – qdv,1
qv,2 – qdv,2

qv,3 – qdv,3
qv,4 – qdv,4

Time (s)

Figure 7: Attitude quaternion tracking error.

0 1 2 3 4 5 6 7 8 9 10
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Time (s)

A
ng

ul
ar

 v
el

oc
ity

 tr
ac

ki
ng

 er
ro

r
(r

ad
/s

)

ω1 – ωd1
ω2 – ωd2
ω3 – ωd3

Figure 8: Angular velocity tracking error.

0 1 2 3 4 5 6 7 8 9 10
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

Time (s)

Sl
id

in
g 

su
rfa

ce

S1
S2
S3

Figure 9: Sliding surface.

Mathematical Problems in Engineering 11



0 1 2 3 4 5 6 7 8 9 10
–5

0

5

�
ru

ste
rs

 1
,2

,3

0 1 2 3 4 5 6 7 8 9 10
–1

0

1

Time (s)

Time (s)

�
ru

ste
rs

 4
,5

,6

sat (u1)
sat (u2)
sat (u3)

sat (u4)
sat (u5)
sat (u 6)

Figure 10: Control input produced by six thrusters.

0 1 2 3 4 5 6 7 8 9 10
–4

–3

–2

–1

0

1

2

3

4

Time (s)

T1
T2
T3

T 
(N

∗
m

)

Figure 11: Control inputs acting on aircraft.

12 Mathematical Problems in Engineering



5. Conclusions

In this paper, the attitude tracking problem for a spacecraft
with uncertainties, external disturbances, actuator failures,
and saturations is considered. )e developed scheme for
attitude tracking does not need to know the structure or
upper bound information of the inertial matrix uncertainties
and external disturbances. Based on ADR concept, the total
uncertainties are attenuated by ESO, and the parameter
adaptive method is used to deal with the thruster saturation
problem; meanwhile, the sliding mode control law ensures
the attitude tracking effect. Moreover, the proposed method

can be well accommodated for the spacecraft with part of
thrusters with total fault and saturation. Several simulation
results have proved the effect of the proposed method.
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