
Research Article
Pose-Guided Part-Based Adaptive Pyramid Features for Occluded
Person Reidentification

Xiaobing Lin , Jilin Li , Zengxi Huang , and Xiaoqin Tang

School of Computer and Software Engineering, Xihua University, Chengdu 610039, China

Correspondence should be addressed to Zengxi Huang; huangzx001@mail.xhu.edu.cn

Received 6 November 2020; Revised 7 December 2020; Accepted 16 December 2020; Published 29 December 2020

Academic Editor: Jianbing Ma

Copyright © 2020 Xiaobing Lin et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reidentifying an occluded person across nonoverlapping cameras is still a challenging task. In this work, we propose a novel pose-
guided part-based adaptive pyramid neural network for occluded person reidentification. Firstly, to alleviate the impact of
occlusion, we utilize pose landmarks to generate pose-guided attention maps.,e attention maps will help the model focus on the
nonoccluded regions. Secondly, we use pyramid pooling to extract multiscale features in order to address the scale variation
problem.,e generated pyramid features are thenmultiplied by attentionmaps to achieve pose-guided adaptive pyramid features.
,irdly, we propose a pose-guided body part partition scheme to deal with the alignment problem. Accordingly, the adaptive
pyramid features are divided into partitions and fed into individual fully connected layers. In the end, all the part-based matching
scores are fused with a weighted sum rule for person reidentification. ,e effectiveness of our method is clearly validated by the
experimental results on two popular occluded and holistic datasets, i.e., Occluded-DukeMTMC and the Market-1501.

1. Introduction

Person reidentification (Re-ID) aims to retrieve a probe
person/pedestrian from nonoverlapping cameras [1–3]. It
has become increasingly popular in the community due to its
application potentials in video surveillance, smart retailing,
activity analysis, and so on. Although person Re-ID has
achieved a great progress in the recent years, it is still a
challenge to reidentify a person who is partially occluded.
For example, in the surveillance scenario, a person may be
occluded by walls, transformations, and other pedestrians on
the road.

,e occlusions lead to not only the loss of target in-
formation but also the interference of occluded information
[4–6]. ,e holistic person Re-ID methods that only consider
the global person feature are easily misled by the occluded
body part. As shown in Figure 1, the holistic methods may
mistakenly match a person when a person image in another
view shares similar obstacle with the probe person image.
,erefore, it is significant to seek efficient ways to solve this
occluded reidentification problem. One well-known solu-
tion is to use part-based models. Part-based models perform

part-to-part matching and are much more robust to oc-
clusions than the holistic models [7, 8]. However, they
partition a person into a fixed number of parts and heavily
depend on precise person detection.

In the recent years, there is a trend to leverage external
cues like person mask and pose estimation for occluded
person Re-ID [9–12]. Mask-guided models use person
mask to help remove the background clutters, including the
occluded body parts, and then perform matching using the
clean body parts. A major limitation of mask-guided
models is that currently even the state-of-the-art person
mask segmentation models perform inferiorly in the sce-
narios with person occlusion, especially when the target
person is occluded by other persons [13, 14]. On the other
hand, owing to the advancement of [5, 6] pose estimation
models, pose-guided models have attracted considerable
attention recently [4, 5].,e pose-guided models utilize the
skeleton as an external cue to effectively relieve the part
misalignment problem by locating each part using person
landmarks.

In this paper, we propose a novel pose-guided part-based
adaptive neural network for occluded person
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reidentification. Firstly, we use the human pose estimator
[40] to generate pose landmarks, which are then used to
create pixel-wise attention maps. Compared with mask-
guided methods [14–17], the pose-guided method can better
detect pedestrian’s location in a crowd. And then, we use
pyramid pooling to extract multiscale features in order to
address the scale variation problem. To adapt the pyramid
features, we also generate multiscale attention maps. ,e
pyramid features are finally multiplied by the attention maps
with the corresponding scales to achieve pose-guided
adaptive pyramid features.

In the matching stage, we propose a pose-guided dy-
namic body part partition scheme to deal with the alignment
problem, in which the human parts are defined dynamically
based on pose landmarks. In the end, all the part-based
matching scores are fused with a weighted sum rule for
reidentification. Experimental results on occluded and ho-
listic Re-ID datasets, i.e., Occluded-DukeMTMC and the
Market-1501, validate the effectiveness of our proposed
method.

,e main contributions of our work are summarized as
follows: (1) we propose a pose-guided part-based adaptive
pyramid neural network (PPAPN) that uses the pose-guided
attention map and pyramid pooling so as to deal with the
occlusion and scale problems; (2) we propose a pose-guided
dynamic body part partition scheme to tackle the alignment
problem; and (3) we compare the proposed method with
many well-known methods on two popular occluded and
holistic Re-ID datasets; the experimental results validate that
our proposed method is effective.

,e rest of paper is organized as follows. Some related
works are reviewed at first. ,e structure of our proposed
PPAPN and implementation details are presented in the
next. Furthermore, we present the detail of the experimental
results. And, the conclusions of our work are described in
the end.

2. Related Works

2.1. Person Reidentification. Person reidentification aims to
match a probe pedestrian image in candidate pedestrian
images across disjoint cameras [1–3]. In recent years, deep
learning algorithms [18–23] for person reidentification in-
dicate distinct superiority on matching accuracy. Most of
these methods pay attention to extract distinguishable fea-
tures from holistic pedestrian images [7–9, 22–25]. ,e

methods in [5–7, 9, 24–26] employ the part-based features
leaning method and significantly improve the global-based
person Re-ID method performance on the holistic person
Re-ID datasets. However, they do not take occlusions into
considerations. Besides, human pose estimation and land-
mark detection having achieve impressive progress, several
recent works in Re-ID employ these tools to acquire aligned
subregion of person images [6, 7, 24, 25]. However, the
occlusion cannot be ignored especially in the crowd scenes
like school or metro station.

2.2. Occluded Person Reidentification. Occluded person Re-
ID [26–28] aims to retrieval occluded probe images in oc-
cluded gallery pedestrian images in disjoint cameras. Due to
the images suffer from occluded noise, occluded person Re-
ID is a more challenging task than holistic person Re-ID. To
solve this problem, Zhuo et al. [26] defined the problem of
occluded reidentification for the first time; they employed
multitask losses that lead the model to distinguish simulated
occluded samples and nonoccluded samples, in this way to
learn a robust feature representation from occluded person
images. In this following works, the model employs a
cosaliency network to endeavor to pay attention to the
person visible part. More recently, Miao et al. [5] utilized
semantic key-points to extract the useful information from
the occluded person images. And, they used a predefined
threshold of key-points confidence to determine whether the
part is occluded or not. He et al. [29] used a spatial transform
module to transform the holistic image to align with the
partial ones and then calculated the distance of the aligned
pairs.

2.3. Partial Person Reidentification. Compared with oc-
cluded person Re-ID [30], partial ones often occur due to
imperfect detection and outliers of camera views. Like
occluded person Re-ID, partial person Re-ID aims to
retrieval partial probe images to gallery holistic images.
Zheng et al. [30] proposed a local matching strategy based
on dictionary learning and called it ambiguity-sensitive
matching classifier (AMC), and they introduced a sliding
window matching (SWM) model to solve global-part-
based matching problems. He et al. [28] proposed a
matching model based on sparse reconstruction learning
and called it deep spatial feature reconstruction (DSR).
DSR can automatically match images of different sizes,
thus avoiding the time-consuming spatial alignment step.
He et al. [29] further proposed a spatial feature recon-
struction model, which generates multiscale features by a
fully convolutional network to deal with the scale change
of feature maps. Sun et al. [31] proposed a visibility-aware
part model (VPM) in [7], which perceives visible areas by
self-supervised learning to avoid the noise effect of the
occluded regions.

3. Methodology

As shown in Figure 2, the proposed pose-guided part-based
adaptive pyramid neural network (PPAPN) consists of three

Query Retrieval result

Figure 1: Illustration of occluded person Re-ID. Red and green
rectangles indicate error and correct match results.
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components: backbone with pyramid pooling, a pose-guided
adaptive pyramid features module, and a pose-guided body
part partition. Firstly, the backbone with pyramid pooling
could match multiscales of person images in occluded
scenarios and get multiscale pyramid features. Secondly, we
use the human pose estimator OpenPose [32] to generate
pose landmarks, which is used to create pose-guided at-
tention maps of pedestrians. And then, we multiply the
features from pyramid pooling by pose-guided attention
maps which have the corresponding scales to achieve pose-
guided adaptive pyramid features. Finally, pose-guided body
part partition splits the pose-guided pyramid adaptive
features into three local region features for the matching
stage, and all the part-based matching scores are fused with a
weighted sum rule for reidentification.

3.1. Backbone and Pyramid Pooling. Our proposal PPAPN
mainly uses ResNet-50 [33] which pretrained on ImageNet
as backbone to extract global feature from given images,
and we make a minor modification on it. Specifically, we
remove the average pooling layer and the fully connected
layer of ResNet-50 to obtain the refined ResNet-50. ,e
detail of the backbone is shown in Table 1; it contains 1
convolutional layer, namely, conv1 and 4 Resblock layers
(conv2_x, conv3_x, conv4_x, and conv5_x).,e output size
of each layer is 384 ×128, 192 × 64, 96× 32, 48×16, and
24 × 8，respectively. And, the last Resblock conv5_x out-
puts the spatial feature map F ∈ Rh×w×c, in which h, w, and
c denotes the height, width, and channel number, re-
spectively. ,en, the feature map F is fed into the pyramid
pooling.

Due to the different distances between pedestrians and
cameras, the detected pedestrians may have various scales.
In the one hand, if we resize the person images to the same
size, it will fail to align their spatial features and bring
errors to their distance measure. In the other hand, if we
employ the original multiscales person image from the
pedestrian detector, the ResNet-50 backbone will output

features of variable sizes. However, the fully connected
layers require fixed size features. In this work, we propose
to use pyramid pooling after the backbone to address the
scale variation problem. ,e pyramid pooling contains
several max-pooling layers with different output size to
generate multiscale pyramid features. ,e main purpose
of each max-pooling layer is to produce a fixed output for
any size of input, while several max-pooling layers could
preserve global information in different scales as much as
possible. Specifically, for any size feature map, firstly, it is
divided into some blocks of several scales, such as a feature
map is divided into 1 × 1, 2 × 2, and 4 × 4 blocks, and then
the maximum pooling is performed on each block to
obtain multiscale pyramid pooling features. In this work,
we divide the feature map into 4 × 2, 12 × 8, and 24 × 8
blocks. As shown in Figure 2, finally, we obtain the basic
multiscale pyramid features which are denoted as
Fpi ∈ F4×2, F12×8, F24×8 , and the output size of the pyra-
mid features is 4 × 2 ×1024, 12 × 8 ×1024, and
24 × 8 ×1024. ,e output features from pooling layers of
small output size obtain the appearance information of a
large local region, such as F4x2; the feature map is divided
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Figure 2: Pipeline of the proposed pose-guided part-based adaptive pyramid neural networks. It consists of three key components:
backbone with pyramid pooling, pose-guided adaptive pyramid features module, and pose-guided body part partition.

Table 1: A refined ResNet-50.

Layer name Output_size Refined ResNet-50
conv1 384×128 7× 7, 64, stride 2

conv2_x 192× 64

3× 3 max pool, stride 2
1 1, 64
3 3, 54
1 1, 256

⎛⎜⎝ ⎞⎟⎠ × 3

conv3_x 96× 32
1 1, 128
3 3, 128
1 1, 512

⎛⎜⎝ ⎞⎟⎠ × 4

conv4_x 48×16
1 1, 256
3 3, 256
1 1, 1024

⎛⎜⎝ ⎞⎟⎠ × 6

conv5_x 24× 8
1 1, 512
3 3, 512
1 1, 2048

⎛⎜⎝ ⎞⎟⎠ × 3
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into 4 × 2 blocks, and it is obvious that each block contains
a larger region than F12×8. On the contrary, the output
features from the pooling layers of large output size obtain
the appearance information from relatively small regions
in the image like F24×8. ,us, the scale variation problem
has been well addressed.

3.2. Pose-Guided Adaptive Pyramid Features Module. In
occlusion person Re-ID, it is necessary to pay more attention
on the features that are more closely related to the pedes-
trians. So, we use pose landmarks to generate attention
maps, which are used to separate the foreground infor-
mation of pedestrians from the occlusion noise and dig out
useful background information, such as pedestrian
attachments.

3.2.1. Pose-Guided Attention Maps Generator. To alleviate
the impact of occlusion, we design a pose-guided attention
maps generator to guide the model extract more useful and
robust features. Firstly, we employ the human pose estimator
OpenPose [32] to detect N pose landmarks from an input
person image, where N is 18 in this work. Each landmark
contains its coordinates and confidence score. Inspired by
[34], we employ a sigmoid form of decay function to better
distinguish between occluded regions and nonoccluded
regions.,e decay function increases with the increase in the
confidence of the landmark, and the sigmoid form is defined
as follows:

S(x) �
1

1 + exp− β(x− α)
,

fd �
s(x) − s(0)

s(1) − s(0)
,

LMj � fd S Cj  .

(1)

We set a threshold α to suppress values less than α; in
this paper, α is fixed at 0.5. As β increases, the decay
function becomes steeper near 0.5. LMj denotes the sig-
moid form resulted the j-th landmark, and Cj is the
confidence score. Similar to [5], we use the landmarks to
generate the pose-guided attention map M consisting of a
2D Gaussian centred on the ground truth location, and it is
defined as follows:

Mj �
1

2πσ2
e

− c2
xj

+ c2
yj /2σ2

× LMj,

M � 
N

j

Mj,

(2)

where Mj denotes the generated pose-guided attention map
of the j-th landmark, j� 1, 2, . . .,N and cxj and cyj denote the
coordinates of the j-th landmark. Each attention map Mj is
set to the same size of h× w. To adapt the multiscale pyramid

features, we also employ bilinear interpolation to get mul-
tiscale pose-guided attention maps
Mi
′ ∈ M4x2, M12×8, M24×8 .

3.2.2. Adaptive Pyramid Features. ,e pose-guided adaptive
pyramid feature module aims to integrate the feature maps
information and the pose information from the target
person. As shown in Figure 2, firstly the feature map F is
pyramid pooled as the multiscale features Fpi. ,en, the
pose-guided attention maps Mi

′, i� 1, 2, 3, multiply the
feature maps Fpi element-wisely and output the pose-guided
adaptive pyramid feature map Fi

′. Since each attention map
Mi
′ has explicitly encoded the information of different re-

gions on the target person, i.e., which region is occluded, the
pose-guided attention maps Mi

′ can focus on nonoccluded
parts of the target person and depress the information from
occluded regions.

Fi
′ � Mi
′ ⊗Fpi. (3)

3.3. Pose-Guided Body Part Partition. Previous methods
[22, 23, 31] horizontal cut the probe images and gallery
images and extract their horizontal features, as demon-
strated in Figure 3(a). Obviously, it is difficult to match the
body parts in the gallery images when the pedestrians’
posture changes, and there is occlusion. So, we propose a
pose-guided body part partition. As shown in Figure 3(b),
we employ the landmarks detected by the human pose
estimator to explicit positioning person body parts, and we
define three body parts (R1, R2, and R3) based on these
landmarks. In order to extract robust features, each adja-
cent part has an overlapping region. Specifically, R1 con-
tains these landmarks p0, p1, p2, p5, p14, p15, p16, p17 , R2
contains these landmarks p1, p2, p5, p3, p4, p6, p7, p8, p11 ,
and R3 contains these landmarks p8, p11, p9, p12, p10, p13 .
,e corresponding body part bounding box
Bi ∈ B1, B2, B3  can be obtained based on the location
coordinates of all body joints.

Bj � xmin − 10, xmax + 10, ymin − 10, ymax + 10 . (4)

Given landmarks from the pose estimator, firstly, we
obtain the original corresponding body parts bounding
box based on the coordinates of body joints. Secondly, to
process the different size of adaptive pyramid features, we
adjust the original corresponding body parts bounding
box matching the adaptive pyramid feature size. We
follow the part alignment pooling [10] method to extract
these part features on query images and gallery images.
We fed the output features from pose-guided body part
partition into the fully connect layer to obtain the partial
features Fpi ∈ F11, F12, F13, F21, F22, F23, F31, F32, F33 ,
Fpi ∈ R256.

For basic discrimination learning, we regard the iden-
tification task as a multiclass classification problem. ,e
learned feature softmax loss is formulated as follows:
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Lweighted � − 
N

s�1
λs × log

e
Fpi


L
i�1 e

Fpi
s.t  λs � 1, (5)

whereN denotes the number of branches; we setN is 9 in our
method. ,e parameter λs(0< λs < 1) is a coefficient to
balance of each branch. L denotes the number of classes in
the training dataset.

4. Experiments

4.1. Datasets and EvaluationMetrics. In our experiments, an
occluded person Re-ID dataset and a holistic person Re-ID
dataset are employed, i.e., Occluded-DukeMTMC [18] and
Market-1501. For performance evaluation, we use the
standard metrics as in the most person Re-ID literature, the
cumulative matching curve (CMC), and the mean Average
Precision (mAP). For the CMC curve, we report the Rank-1
accuracy.

(i) Occluded-DukeMTMC. ,is dataset is a subset of the
DukeMTMC [15] used for person reidentification by
images. It contains 15618 training images, 17661
gallery images, and 2210 occluded query images.

Occluded-DukeMTMC is selected from
DukeMTMC-Re-ID by leaving occluded images and
filtering out some overlap images.

(ii) Market-1501. ,is dataset includes images of 1501
persons captured from 6 different cameras. ,e
pedestrians are cropped with bounding box pre-
dicted by the DMP detector [21].,ewhole dataset is
divided into training set with 12936 images of 751
persons and testing set with 3368 query images and
19732 gallery images of 750 persons.

4.2. Training Details. We use ResNet-50 [33] as our
backbone and make a minor modification on it: removing
the average pooling layer and fully connected layer and
setting the stride of conv4_1 to 1. We initialize our mode by
the ImageNet [36] pretrained model. In our experiment
setting, we did not force the image resize to a fixed size, but
we augmented by random flipping and random erasing. We
set the batch size to 32 and the training epoch number to 60.
,e base learning rate is initialized at 0.1 and decayed to
0.01 after 40 epochs.,e coefficient λ is empirically set to be
0.2.

Probe Gallery

(a)

Probe Gallery

R1

R2

Partition rules

R3

(b)

Figure 3: (a) PCB [35] divides the person image evenly without overlap. (b) ,e proposed pose-guided body part partition and
examples.
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4.3. Results

4.3.1. Results on Occluded-DukeMTMC. We evaluate our
method PPAPN on Occluded-Re-ID at first. As shown in Ta-
ble 2, six kinds of methods are compared. As we can see, there is
no significant gap between holistic Re-IDmethods. For example,
PCB [31] and Part-Aligned [9] both achieve approximately 43%

Rank-1 score on the Occluded-DukeMTMC dataset, showing
that simply using landmarks information may not significantly
improve occluded Re-ID task. Our method PPAPN achieves
53.6%Rank-1 accuracy and 38.36%mAP,which outperforms all
the competing methods. Compared with the state-of-the-art
method PGFA [5], the PPAPN surpasses it by +2.2% Rank-1
accuracy and +1.06% mAP.

Table 2: ,e person Re-ID results on the Occluded-DukeMTMC dataset.

Method Rank-1 (%) mAP (%)
Part-Aligned [9] 42.8 33.2
PCB [35] 42.6 33.7
DSR [21] 40.8 30.4
SFR [22] 42.3 32.0
Ad-occluded [8] 44.5 32.2
PGFA [5] 51.4 37.3
PPAPN(ours) 53.6 38.36

Table 3: ,e person Re-ID results on the Market-1501 dataset.

Method Rank-1 (%) mAP (%)
SVDNet [24] 82.3 62.4
PAN [37] 82.8 63.4
Pedestrian [30] 82.0 63.0
DSR [21] 83.5 64.2
TripletLoss [4] 84.9 69.1
AFPB [26] 86.5 78.3
PCB [35] 92.3 66.1
MaskReID [20] 90.0 75.3
Pose-transfer [22] 87.7 68.9
PSE [8] 87.7 69.0
PGFA [5] 91.2 76.8
PAPM(ours) 94.2 83.6

Ours

PGFA

Ours

PGFA

Probe Retrieval results

Figure 4: Comparison of the PGFA [5] method and our PPAPNmethod. Green and red numbers indicate correct and error retrieval results.
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4.3.2. Results on Market-1501. Although some occluded Re-
IDmethods obtain improvements on occluded datasets, they
may not get a satisfying performance on holistic datasets;
this is caused by the noise during feature learning and
alignment. In this part, we also evaluate our method PPAPN
on a holistic person Re-ID dataset Market-1501. As shown in
Table 3, our method still outperforms the state-of-the-art
methods in terms of both metrics. ,is result demonstrates
that our pose-guided adaptive skills do not bring negative
effect.

4.3.3. Visualization. Figure 4 shows some retrieval examples
of the PGFA [5] method and our PPAPN method on Oc-
cluded-DukeMTMC.,e top-10 retrieval results are shown.
,e retrieval results show that PGFA is prone to mix the
information of the target person and obstacles, resulting in
retrieving a wrong person with a similar obstacle. On the
contrary, our PPAPN makes no mistakes in the same
situation.

5. Conclusion

In this paper, we propose a novel pose-guided part-based
adaptive pyramid neural network for occluded person rei-
dentification. Our foremost purpose is to let the model focus
on nonoccluded body regions and meanwhile alleviate the
negative impact of occlusion. We utilize pose landmarks to
generate multiscale attention maps. ,e pyramid pooling is
used to extract multiscale features in order to address the
scale variation problem. ,e generated multiscale pyramid
features are then multiplied by attention maps to achieve
pose-guided adaptive pyramid features. ,e last but not the
least, we propose a part-based matching approach to deal
with the alignment problem. ,e human parts are defined
dynamically based on pose landmarks and then the adaptive
pyramid features are divided accordingly, which are fed into
individual fully connected layers. In the end, all the part-
basedmatching scores are fused with a weighted sum rule for
reidentification. Our method is finally evaluated on the
Occluded-DukeMTMC and Market-1501 datasets and is
compared with the state-of-the-art methods. Experimental
results demonstrate that our method can boost the person
Re-ID performance in both occluded and nonoccluded
scenarios.
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