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+e target of the clustering analysis is to group a set of data points into several clusters based on the similarity or distance. +e
similarity or distance is usually a scalar used in numerous traditional clustering algorithms. Nevertheless, a vector, such as data
gravitational force, contains more information than a scalar and can be applied in clustering analysis to promote clustering
performance. +erefore, this paper proposes a three-stage hierarchical clustering approach called GHC, which takes advantage of
the vector characteristic of data gravitational force inspired by the law of universal gravitation. In the first stage, a sparse
gravitational graph is constructed based on the top k data gravitations between each data point and its neighbors in the local
region. +en the sparse graph is partitioned into many subgraphs by the gravitational influence coefficient. In the last stage, the
satisfactory clustering result is obtained by merging these subgraphs iteratively by using a new linkage criterion. To demonstrate
the performance of GHC algorithm, the experiments on synthetic and real-world data sets are conducted, and the results show
that the GHC algorithm achieves better performance than the other existing clustering algorithms.

1. Introduction

Clustering is one of the major unsupervised learning
techniques and has been applied in many fields such as
pattern recognition [1], image processing [2, 3], community
detection [4, 5], bioinformatics [6, 7], information retrieval
[8, 9], and so on. +e main task of clustering is to classify a
dataset into some nonoverlapping clusters based on a
suitable similarity metric so that the elements in the same
cluster are similar, while any elements from different clusters
are dissimilar. A range of various clustering methods have
been proposed and classified as partition-based, hierarchical,
grid-based, density-based, model-based clustering, and so
on.

K-means [10] and its successors [2, 11] are typical
partition-based clustering approaches. +ey need to be
specified the number of clusters in advance. Each data point
of the dataset is assigned to its closest cluster according to the

Euclidean distances among data points.+e new centroids of
clusters are repeated to be calculated until the elements are
consistently assigned to the same cluster. +en, the cluster
centers have stabilized and will remain the same forever.
However, these approaches are not able to detect non-
spherical clusters because an element is always assigned to
the nearest center. Numerous studies have been done to
overcome the drawback of K-means type algorithms, par-
ticularly by using density distribution. In density-based
clustering, clusters which have arbitrary shape are consid-
ered as the dense regions separated by sparse region in data
space [12]. DBSCAN [13] is the most representative density-
based clustering algorithm that needs to be specified a
density threshold, discards the points with densities lower
than this threshold as noises, and assigns to different clusters
disconnected regions of high density. DP [14] is a novel
algorithm that efficiently discovers the centers of clusters by
finding the density peaks. It assumes that cluster centers are
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surrounded by neighbors with lower local density and are at
a relatively large distance from any points with a higher local
density. Furthermore, hierarchical clustering is a significant
method of cluster analysis which seeks to build a hierarchy of
clusters. +e hierarchical clustering algorithms can be di-
vided into two categories including agglomerative and di-
visive algorithms. Agglomerative hierarchical clustering
algorithm starts with every single element in a dataset. +en
it aggregates the closest clusters with a linkage criterion in
each iteration until all elements form one cluster. +e di-
visive hierarchical clustering algorithm starts with the
dataset considered a single cluster which is separated into
many subclusters until every element forms a cluster. +e
other differences among hierarchical clustering approaches
are determined by the diverse choices of similarity criteria
and the linkage criteria. BIRCH is one of the most effective
hierarchical clustering methods [15]. It constructs a tree data
structure with the cluster centroids being read off the leaf,
which can be either the final cluster centroids or can be
provided as input to another clustering algorithm. In ad-
dition, there are many multistage hierarchical clustering
algorithms, such as Chameleon [16], which is a represen-
tative approach and can detect the arbitrary shape of the
cluster effectively. In the first stage, Chameleon uses a graph-
partitioning algorithm to cluster the data items into several
relatively small subclusters. In the second stage, it is to find
the genuine clusters by repeatedly combining these sub-
clusters based on its selections on both interconnectivity and
closeness. +ese classical clustering approaches usually only
utilize one kind of internal evaluation function to determine
clustering quality [17]. Many scholars focused on the study
of multiobjective clustering to overcome the defect of
conventional clustering algorithms. Peng et al. [18] proposed
fuzzy multiobjective clustering based on PSO to obtain well-
separated, connected, and compact clusters. Saha and
Maulik [19] proposed the multiobjective clustering based on
incremental learning for categorical data. Moreover, lots of
clustering algorithms, such as DenPEHC [20], GHFHC [21],
Muenc [22], and so on, were also put forward to improve the
clustering performance. Meanwhile, new gravity-based
clustering approaches were also proposed, such as the LGC
algorithm, which would be discussed in Section 2.

It is an important task to design a new clustering al-
gorithm because every algorithm has its own advantages and
disadvantages. In conventional clustering algorithms, the
similarity or distance is usually scalar, which only contains
the partial information among data points. To obtain more
information among data points, the vector can be adopted to
represent the similarity of two data points. Data gravitational
force, which is like the universal gravitational force, is
employed to cluster data points. +en, we propose a novel
hierarchical clustering based on the sparse gravitational
graph in which the vertex denotes each object of a data set,
and the edge denotes that data gravitation force exists be-
tween its two vertices. In the clustering process, a weighted
graph firstly is constructed based on universal gravitation.
+en the graph is divided into several subgraphs based on
the gravitational influence coefficients between each vertex
and its adjacent vertices. Finally, it is iterative to merge two

subgraphs based on a new linkage measure until the genuine
clusters are found.

+ere are three highlights in this paper as follows. At
first, the sparse gravitational graph is defined based on the
data gravitationmodel. Meanwhile, a newmeasure is used to
extract more valuable information between each vertex and
its adjacent vertices in the sparse gravitational graph. Sec-
ondly, a new linkage measure which makes the best of the
data gravitation’s characteristics is proposed to merge the
subclusters iteratively. +irdly, a novel three-stage gravity-
based hierarchical clustering method named GHC is pro-
posed. +e GHC algorithm can be used to detect arbitrary
clusters effectively and achieves an excellent clustering
performance on the synthetic and real-life data sets in this
study.

+e remainder of the paper is organized as follows. In
Section 2, the related work of gravity-based clustering is
reviewed. +e novel gravity-based hierarchical clustering
(GHC) is proposed and analyzed in detail in Section 3. In
Section 4, the experiments on the synthetic and real-world
data sets are conducted and discussed. In Section 4, the
conclusions are drawn.

2. Related Work of Gravity-Based Clustering

Using gravity theory in clustering is not a new idea. Nu-
merous gravity-based clustering algorithm, which simulates
the process of the attraction and merging of objects by their
gravity force, has been studied. Usually, these algorithms
consider each data point as an object and assign a mass to it
in feature space. Wright [23] proposed the first version of
gravitational clustering, which updates the position of each
data point at each iteration and aggregates the data points
into clusters when they are close. Yung [24] employ the
gravitational clustering approach to segment color images.
Each pixel with a unit mass maps to a location (as a particle)
in RGB space. +e mass of a particle is the total number of
pixels mapped to it. +e gravity causes the particles to move
in the space under constraint. +e particles are clustered
when they move to the same location in RGB space. Wang
et al. [25] proposed two novel clustering approaches based
on the local gravitation model. In this model, each data item
is considered as an object with mass and associated with a
local resultant force (LRF) generated by its neighbors in the
local region. +e clustering process is realized by using the
differences among the LRFs of the data points close to the
cluster centers and at the boundary of the clusters. Bahro-
loloum et al. [26] proposed another approach that finds the
best positions of the cluster centroids determined by
employing the law of gravity. In the approach, the data
points and cluster centroids are considered as fixed celestial
objects and movable objects, respectively. +e celestial ob-
jects apply a gravity force to the movable objects and change
their positions in the feature space.+e best cluster centroids
are obtained until the sum of the forces on each centroid
approaches zero. Mohammed Alswaitt et al. [27] proposed a
modification over a gravity-based data clustering algorithm.
+e modified algorithm adopts the dependence of the agent
on velocity and an initialization step of centroid positions to

2 Mathematical Problems in Engineering



impose a balance between exploitation ability and explo-
ration ability of gravity-based clustering approach. Besides, a
serial of approaches based on gravity theory and Newton’s
second law of motion was proposed by Gómez et al. [28],
Kundu [29], and Sanchez et al. [30]. In these approaches,
points of the same cluster will move toward the direction of
their cluster center. Inspired by the phenomena of gravi-
tation and the black hole, Hatamlou [31] proposed a new
heuristic optimization approach called the black hole
algorithm. Other heuristic algorithms inspired by gravita-
tional phenomena have been designed for clustering. For
instance, a heuristic gravitational search algorithm (GSA)
was proposed by Rashedi et al. [32] and was applied in
solving wind-hydro-thermal CO problem by Shukla and
Singh [33]. Yin et al. [34] designed a hybrid data clustering
algorithm based on GSA.

To the best of our knowledge, each data point of a dataset
is considered a movable object with mass in the most
existing gravity-based clustering algorithms. Data points can
move around in feature space in the influence of the law of
gravity and merge into several clusters when they move close
enough to each other. In our approach, we establish the data
gravitation model and utilize the relation between each data
point and its neighbors which exert the largest gravitational
forces on it to group a dataset into many subclusters. And
then, two subclusters with the largest resultant gravity force
are merged. To boost the effectiveness of clustering, we
define the sparse gravitational graph based on the data
gravitation model, which can be divided into many sub-
graphs based on the relation between each vertex and its
adjacent vertexes. Next, subgraphs can be repeatedly merged
to form a larger subgraph until the terminal condition is
satisfied.

3. Data Gravitation Model

Newton’s law of universal gravitation states that every point
mass attracts every other point mass with force acting along
the line through those points, which is proportional to the
product of their masses and inversely proportional to the
square of the distance between them. +e gravitational force
can be calculated as follows:

P
⇀

ij � κ
σiσj

δ2ij
􏽢δij, (1)

where P
⇀

ij denotes the gravitational force exerted on point
mass i by point mass j, σi and σj are the masses of the two
points, respectively, δij is the distance between point mass i
and point mass j, 􏽢δij

is the unit vector from point mass i to j,
and κ is the gravitational constant.

Similar to the gravitational force, it is assumed that data
gravitation exists among any two data points in data space.
+e data gravitation can be given as follows:

F
⇀

ij �
mimjg dij􏼐 􏼑􏽢dij, dij > 0,

0, dij � 0,

⎧⎨

⎩ (2)

where g(x) is a decreasing function of x (g(x) � x− 2), mi

and mj are, respectively, the masses of the data points i and j,

dij is the distance between the two data points, 􏽢dij is the unit
vector from data point i to j. +e mass of data point i can be
defined by

mi � 1 + 􏽘
j≠i

Z dij − c􏼐 􏼑, (3)

where Z(dij − c) � 1 if dij < c and Z(dij − c) � 0 otherwise,
and c(c≥ 0) is a cutoff distance. In other words, mi equals
the number of points from which the distances to point i are
less than c. Especially, the mass of a data point is equal to 1
when c � 0. Moreover, we assume that the gravitational
forces exerted on a data point are the top k gravitational
forces between it and other data points. +erefore, the
gravitational resultant force (GRF) of data point i can be
obtained as follows:

F
⇀

i � 􏽘
j∈Ωi

F
⇀

ij � mi 􏽘
j∈Ωi

mjg dij􏼐 􏼑􏽢dij, (4)

where Ωi is the set of neighboring data points which exert
the top k gravitational forces on data point i. +e gravita-
tional force between two data points changes with the cutoff
distance c because their masses are related to c. +en GRF of
a data point also changes with c according to equation (4).
For example, Figure 1 shows the gravitational force and GRF
when c is specified to different values in a 2D data set
x1, x2, x3, x4, x5􏼈 􏼉. In Figure 1(a), the mass of each data point
is 1 when c � 1. It can be noticed that the GRF of the data
point x1 is directed towards the data points x2 and x4. It
indicates that the data points x2 and x4 provide more in-
fluence on x1. In Figure 1(b), the masses of x1, x2, x3, x4, and
x5 are 4, 1, 2, 3, and 3, respectively.+eGRF of the data point
x1 is directed towards the data points x4 and x5. It indicates
that the data points x4 and x5 provide more influence on x1.
+en the gravitational influence coefficient (GIC) is intro-
duced to represent the relationship between the RGF of a
data point and the gravitational forces exerted on it by other
data points. +e GIC of data points i and j is defined as
follows:

GICi
j � cos 􏽢Fi,

􏽢Fij􏼐 􏼑 �
􏽢Fi · 􏽢Fij

􏽢Fi

����
���� × 􏽢Fij

�����

�����
, (5)

where F
⇀

i is the resultant force of data point i, F
⇀

ij is the
gravitation force exerted on data point i by its neighboring
data point j. GICi

j ranges from − 1 to 1. +e bigger the GICi
j,

the point j provides more influence on data point i. Intui-
tively, the gravitational influence coefficient can be adopted
to realize the data cluster analysis. +e data point i and j are
grouped into a cluster if there are the bigger GICi

j and GICj
i

than a threshold. Otherwise, they are clustered into different
clusters. In this way, a course clustering method can be
obtained.

4. The Proposed Gravity-Based Hierarchical
Clustering Algorithm

+ough the course clustering algorithm based on the data
gravitation model can be employed to cluster a dataset, its
clustering performance is not good. +erefore, a novel
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hierarchical clustering algorithm (GHC) is proposed based on
sparse gravitational graph which can make the algorithm
implement easily and perform effectively.+e time complexity
of GHC algorithm is analyzed at the end of this section.

4.1. Sparse Gravitational Graph. Let X � x1, x2, . . . , xn􏼈 􏼉

denote a data set with n data points, in which each data point
xi(0≤ i≤ n) has υ features. +e sparse gravitational graph
G � (V, E) is composed of vertices V � X in which the
weight of each xi is calculated by equation (3) and the set of
edges E � (xi, xj) | xi, xj ∈ V􏽮 􏽯 in which the weight of each
edge (xi, xj) is ‖􏽢Fij‖ calculated by equation (2). +e smaller
the value of k, the sparser the graph. Figure 2 shows the
different gravitational graphs of a dataset when various
parameters are specified. Figures 2(a) and 2(c) show the
graph when k � 3, while Figures 2(b) and 2(d) show when
k � 5. Meanwhile, the weights of vertexes and edges all will
be influenced by the value of c.

+e vertex xi is not only influenced by the vertex xj but
also by its other adjacent vertices in the sparse gravitational
graph, though the relationship of two vertexes xi and xj can
be described by the gravitational force between them simply.
Considered the influence of each vertex to its adjacent
vertex, the gravitational influence coefficient can also be
introduced into the gravitational graph to describe the in-
fluence between two vertices. Two vertices i and j can be
grouped into the same cluster if their GICj

i and GICi
j are

larger than the threshold θ. +e edges between two vertices
in the same cluster are retained in the graph, while the edges
of which the vertices belonged to different clusters are re-
moved from the graph. +en the gravitational graph will be
partition into many subgraphs. However, these subgraphs
are not the final clustering results.

4.2. Gravity-Based Hierarchical Clustering Algorithm.
+ough the gravitational graph can be partition into many
subgraphs which denote different subclusters, the

performance of the clustering is poor. But these subgraphs
can be considered as the intermediate results of clustering.
+erefore, a new hierarchical clustering algorithm is pro-
posed based on the intermediate results of partitioning the
gravitational graph. +e proposed clustering approach
consists of the following three stages.

During the first stage, the data set is mapped into a sparse
gravitational graph which is similar to the k-NN graph.
Firstly, the data set is preprocessed by using feature trans-
formation and dimension reduction technique. And then,
the mass of each data point is calculated by equation (3), and
the gravitational force between two vertices is computed by
equation (2).+e initial gravitational graph is constructed, in
which the weights of vertex and edge are the corresponding
mass and force. +e procedure of constructing sparse
gravitational graph is presented in Algorithm 1.

During the second phase, the gravitational graph is
partitioned into many small connected subgraphs based on
the gravitational influence coefficient among vertices. If the
GICi

j and GICi
j are greater than the threshold θ, the edge

(xi, xj) is retained in the graph. Otherwise, the edge would
be removed from the graph. +e process of the second stage
is described in Algorithm 2.

In the last stage, the genuine clusters are found by
emerging subgraphs iteratively. +e core of merging the
subgraphs is to define the linkage criterion between two
clusters. +e linkage criterion determines the similarity
among the subgraphs. +e common linkage criteria are
complete linkage, single linkage, mean average linkage,
centroid linkage, minimum energy linkage, graph degree
linkage, and so on. Different from the above linkage criteria,
a novel linkage measure is defined to determine the simi-
larity of two subgraphs based on the vector property of
gravitational forces. It is called as gravitational merging
coefficient (GMC) and obtained by combining the gravi-
tational forces between two subgraphs. Mathematically,
GMC is formulated as follows:
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Figure 1: +e gravitational resultant force of a data point and the gravitational forces between it and other data points when the cutoff
distance c is set to different values. (a) c � 1 and k � 4. (b) c � 2.4 and k � 4.
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GMC Ci, Cj􏼐 􏼑 �
1

Ni · Nj

􏽘
s∈Ci,t∈Cj

F
⇀
st

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (6)

where Ci is the ist subgraph, Cj is the jst subgraph, Ni is the
number of vertexes inCi, andNj is the number of vertexes in
Cj. It each iteration, the two subgraphs with the biggest

GMC are merged into a new subgraph. +e clustering
process is terminated until the end conditions are met. +e
processing steps are presented in Algorithm 3.

+e overall procedure of GHC is presented in
Algorithm 4. To illustrate the GHC algorithm, the main
clustering steps are shown in Figure 3. Figure 3(a) shows the
first stage of GHC when c � 0.8 and k � 3. +e artificial data
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Figure 2: +e different sparse gravitational graph when (a) c � 0, k � 3. (b) c � 0, k � 5. (c) c � 0.8, k � 3. (d) c � 0.8, k � 5.

Input: X: the data set. k: the number of data points with top k gravitational force. c: the cutoff distance used to determine the mass
of each point.
Output: G: the sparse gravitational graph.

(1) Scale the data set X using a feature transformation technique;
(2) Calculate the Euler distance dij between any two data points i and j in the data set X;
(3) Calculate the mass mi of any data point i in the data set X by equation (3);
(4) Calculate the data gravitational force F

⇀
ij between any two data points i and j in the data set X;

(5) Initialize the sparse gravitational graph G � (V, E). And set V � X and E � { };
(6) for each data point x in X do
(7) Assign the mass of x as the weight of the corresponding vertex in V;
(8) Select data points y1, y2, . . . , yk with the top k data gravitation exerted on data point x;
(9) for i � 1to k do
(10) Insert the edges (x, yi) into the set E;
(11) Assign the data gravitational force of x and yi as the weight of the edge (x, yi);
(12) end
(13) Calculate the gravitational resultant force of data point x by equation (4) as the corresponding vertex in V;
(14) end
(15) return the sparse gravitational graph G;

ALGORITHM 1: CreateGravGraph (X, k, c).

Mathematical Problems in Engineering 5



set with 25 data points is mapped into a gravitation graph by
Algorithm 1. Figure 3(b) shows the second stage of GHC
when θ � 0.5. +e gravitational graph is partitioned into
many subgraphs by Algorithm 2. Figures 3(c) and 3(d) show
the third stage of GHC. +e subgraphs with highest GMC is
merged by using Algorithm 3. Figure 3(c) shows the
gravitational graph after six iterations. Figure 3(d) shows the
clustering result after twelve iterations. Obviously, the data
set is grouped into two clusters correctly.

4.3. Complexity Analysis. +e time complexity can be de-
fined as the sum of the complexities of each stage of GHC
algorithm. For the first stage, each data point needs to
calculate the masses, find its neighbors with the top k
gravitational forces, and then construct the gravitational
graph. Considering a data set with n data points, the time
complexity of Algorithm 1 is O(n2log(n)). During the
second stage, the GRF of each data point is calculated, and
the gravitation graph is divided into some subgraphs. +us,

Input: G: the sparse gravitational graph. θ: the threshold of gravitational influence coefficient.
Output: G′: the separated gravitational graph.

(1) G′� G;

(2) for each vertex v in the graph G′ do
(3) Search the adjacent vertices u1, u2, . . . , ut of the vertex v;
(4) for i � 1 to t do
(5) Calculate the GICi

j of the vertex ui for the vertex v by equation (5);
(6) Calculate the GICui

v of the vertex v for the vertex ui by equation (5);
(7) if GICv

ui
< θ or GICui

v < θ then
(8) Remove the edge (v, ui) from the edge set E of G′;
(9) end
(10) end
(11) end
(12) return G′;

ALGORITHM 2: PartGravGraph (G, θ).

Input: G: the original sparse gravitational graph. G′: the separated gravitational graph.
Output: G″: the merged gravitational graph.

(1) Search out the connected subgraphs G1, G2, . . . , Gp in the gravitational graph G′;
(2) Calculate the GMC(Gi, Gj) of the connected subgraphs Gi and Gj by equation (6);
(3) Select the connected subgraphs Gs and Gt which have the largest GMC(Gs, Gt);
(4) for each vertex v in Gs do
(5) for each vertex u in Gs do
(6) if the edge (v, u) in G then
(7) Insert the edge (v, u) into G′;
(8) end
(9) end
(10) end
(11) return G″ � G′;

ALGORITHM 3: MergeGravGraph (G, G′).

Input: X: the data set. c: the cutoff distance. k: the number of data points with top k gravitational force. θ: the threshold of
gravitational influence coefficient. numClasses: the number of the final clusters.
Output: labels: the.

(1) G �CreateGravGraph (X, k, c);
(2) G′� PartGravGraph (G, θ);
(3) Calculate the number numClusters of the connected subgraphs in the graph G′;
(4) while numClusters> numClasses do
(5) G′�MergeGravGraph (G, G′);
(6) Calculate the number numClusters of the connected subgraphs in the graph G′;
(7) end
(8) Assign cluster label for each subgraph in G′;
(9) return the cluster labels labels;

ALGORITHM 4: GHC algorithm.

6 Mathematical Problems in Engineering



the time complexity of Algorithm 2 is O(κn) where κ is the
mean number of adjacent vertexes and n is the number of
vertexes in gravitational graph. Usually, κ is much smaller

than n. During the third stage, it is required to calculate
GMC of any two subgraphs and merge two subgraphs which
have the largest GMC. +e worst case time complexity of
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Figure 3: Clustering stages in the 2D dataset. (a)+e gravitational graph mapped from the dataset with 26 elements in 2D space. +e size of
vertex denotes the mass of the mapped data points. +e width of edge denotes the magnitude of gravity force. (b) +e gravitational graph
partitioned into lots of subgraphs by Algorithm 2. (c) +e graph by merging the subgraphs six times using Algorithm 3. (d) +e graph by
merging the subgraphs twelve times using Algorithm 3 (the bigger the vertex is, the bigger the mass is; the wider the edge, the bigger the
gravitational force between two vertexes).

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: +e flowchart of the power-driven grey model.
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Algorithm 3 is O(kn2). +erefore, the worst case time
complexity of GHC algorithm is O(n2log(n)).

5. Experiments

5.1. Performance Metrics. In this study, four clustering
performance metrics, such as Purity [27], Rand Index (RI)
[35], Fmeasure [35], and Normalized Mutual Information
(NMI) [36], are used to evaluate the performance of clus-
tering algorithms. Given a dataset X � x1, x2, . . . , xn􏼈 􏼉 with
p categories and n data points, the set P � p1, p2, . . . , pp􏽮 􏽯

denotes the real classes in which Pj(1≤ j≤p) is the subset of
X. +e clustering result is the set Q � Q1, Q2, . . . , Qq􏽮 􏽯 in
which Qi(1≤ i≤ q) also is the subset of X. Purity is the
external evaluation criterion of cluster quality. +e purity of
a cluster Qi with ni data points is defined as follows:

P Qi( 􏼁 �
1
ni

max
j

n
j
i􏼐 􏼑, (7)

where n
j

i is the number of the data points in jth class that are
assigned to ith cluster. +e overall purity of a clustering
result is defined as

Purity � 􏽘

q

i�1

ni

n
P Qi( 􏼁. (8)

In general, larger Purity denotes better clustering result.
Rand Index is calculated as follows:

RI �
a + b

n2 − n
, (9)

where RI ∈ [0, 1], a is the number of pairs of data items in X
that are in the same subset ofQ and in the same subset of P, b
is the number of pairs of data items in X that are in different
subsets of Q and in different subsets of P. Fmeasure is like RI
with the exception that true negatives are not taken into
account. Mathematically, Fmeasure is calculated as follows:

Fmeasure �
2a + b

2a + b + c
, (10)

where c is the number of pairs of data items in X that are in
different subsets of Q and in the same subset of P. +e
normalized mutual information (NMI) is also adopted in
this paper. +e NMI is computed as

NMI(P, Q) �
2H(P, Q)

H0(P) + H0(Q)
,

H(P, Q) � − 􏽘

p

i�1
􏽘

q

j�1

Pi ∩Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

n
log

n Pi ∩Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

H0(P) � − 􏽘

p

i�1

Pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
log

Pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
,

H0(Q) � − 􏽘

q

j�1

Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

n
log

Qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

n
.

(11)

+e larger NMI denotes a better performance of clustering.

5.2. Parameter Settings. To investigate the performance of
GHC, the experiments are performed on the synthetic
datasets shown in Figure 4 and real-life datasets tabulated in
Table 1. Six well-known clustering algorithms, such as K-
means [10], K-means++ [37], Spectral Clustering (SC) [38],
DBSCAN [13], Birch [39], and LGC [25], are employed to
compare with GHC algorithm.

+e well-tuned parameter settings of the GHC algorithm
and the competitive algorithms are tabulated for each data
set in Table 2. For K-means, K-means++, and SC, the pa-
rameter τ is the number of classes in each data set. For SC
algorithm, the parameter σ2 is sought from the set {0.01, 0.1,
0.5, 1, 1.5, 2, 5, 10, 20, 70, 80, 100, 150} and the one with the
best RI value is selected. +ere are two parameters eps (e)
and min-samples (m) of DBSCAN. +e parameter e is
chosen from the interval from 0.1 to 1 with an increment of
0.1. +e parameterm is chosen from the set {4, 5, 6, 8, 10, 15,
20}. +e parameters pairing (e, m) with the best RI value are
considered as the well-tuned parameters. Birth has two
tunable parameters threshold (t) and branching-factor (b)
[39]. +e parameter t is varied from 0.1 to 1 with an in-
crement of 0.1. +e parameter b is chosen from the set {10,
20, 40, 50, 60, 100, 150, 200}. +e parameter pairing (t, b)
with the best RI value is selected for each data set. For the
three parameters IM (i), kn (n), and cFactor (f ) of LGC
algorithm, the value of i is chosen from the set {5, 8, 10, 20,
30, 40, 50, 60, 70, 80, 150, 250}, the value of n is chosen from
the set {4, 5, 7, 10, 15, 20}, and the value of f is varied from 0
to 1 with increment 0.1. +e parameters pair (m, n, f ) with
the best RI value is chosen for each dataset.

To demonstrate the performance of GHC algorithm,
the three parameter c, θ, and k are, respectively, equal to
0.2, 0.1, and 6 for all synthetic data sets. For all the real-
world data sets, the pair (c, θ, k) with the best RI value is
chosen for each real-world dataset. +e tunable pa-
rameter c is varied from − 1 to 10 with an increment 0.1.
+e parameter θ is chosen from − 1 to 1 with an interval
0.1. +e parameter k is chosen from the set {4, 5, 6, 10}.
For all nondeterministic approaches, we run these al-
gorithms 100 times on each data set and adopt the av-
erage of each performance criterion to evaluate the
performance of GHC algorithm. For all deterministic
approaches, the performance metrics are taken by run-
ning only once.

Table 1: Characteristics of the real-world datasets obtained from
UCI repository.

Dataset Number
of instances Number of attributes Number of classes

BTissue 103 9 6
Ecoli 336 8 8
Iris 150 4 3
Wine 178 13 3
PID 768 8 2
BSTC 748 4 2
Glass 214 9 6
Cancer 699 9 2
SControl 600 60 6
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Table 2: Well-tuned parameter configurations for different synthetic and real-world datasets.

Dataset K-means K-means++ SC DBSCAN Birth LGC GHC
τ τ τ σ2 m e t b i n f c θ k

Figure 4(a) 2 2 2 10 5 0.3 0.1 10 40 7 0.3 0.2 0.1 6
Figure 4(b) 7 7 7 20 20 0.2 0.5 10 30 10 0.3 0.2 0.1 6
Figure 4(c) 4 4 4 10 10 0.2 0.5 20 20 5 0.1 0.2 0.1 6
Figure 4(d) 5 5 5 70 4 0.1 0.4 40 20 10 0.1 0.2 0.1 6
Figure 4(e) 5 5 5 10 4 0.1 0.8 10 30 4 0.7 0.2 0.1 6
Figure 4(f ) 3 3 3 20 10 0.2 0.1 10 20 10 0.1 0.2 0.1 6
Figure 4(g) 4 4 4 10 10 0.2 0.1 20 20 4 0.1 0.2 0.1 6
Figure 4(h) 2 2 2 10 10 0.3 0.1 100 20 4 0.1 0.2 0.1 6
Figure 4(i) 2 2 2 10 10 0.2 0.1 40 20 4 0.1 0.2 0.1 6
Figure 4(j) 2 2 2 80 5 0.2 0.4 10 5 4 0.3 0.2 0.1 6
BTissue 6 6 6 5 4 0.7 0.2 10 5 10 0.3 0.3 0.1 4
Ecoli 8 8 8 0.01 8 0.9 0.7 20 8 4 0.5 0.2 0.5 4
Iris 3 3 3 0.5 4 0.7 0.5 20 5 7 0.9 0.4 0 4
Wine 3 3 3 0.01 5 0.5 1 40 5 5 0.3 0.1 0.1 4
PID 2 2 2 0.5 10 0.2 0.2 20 20 4 0.9 0.1 0.1 6
BSTC 2 2 2 150 6 0.8 0.8 10 70 4 0.9 0.1 0.1 5
Glass 6 6 6 0.05 4 0.9 0.6 20 20 7 0.3 0 0.3 5
Cancer 2 2 2 0.01 4 0.9 0.7 50 30 4 0.7 0 0 6
SControl 6 6 6 150 10 10 0.5 30 5 4 0.9 0 0.3 5

Table 3: Performance comparison on the synthetic datasets.

Dataset K-means K-means++ SC DBSCAN Birch LGC GHC

Figure 4(a)

0.8 0.8 0.99 0.99 1 1 1
0.89 0.89 0.99 1 1 1 1
0.81 0.81 0.99 0.99 1 1 1
0.55 0.55 0.95 0.98 1 1 1

Figure 4(b)

0.92 0.92 1 0.99 0.97 0.99 1
0.93 0.93 1 0.99 0.96 0.99 1
0.79 0.79 0.99 0.97 0.92 0.97 0.99
0.86 0.86 0.99 0.96 0.92 0.97 0.99

Figure 4(c)

0.89 0.89 1 1 0.91 1 1
0.85 0.85 1 1 0.9 1 1
0.81 0.81 1 1 0.85 1 1
0.76 0.76 1 1 0.81 1 1

Figure 4(d)

0.77 0.76 0.99 0.99 0.84 1 1
0.74 0.73 0.99 1 0.83 1 1
0.53 0.53 0.99 0.99 0.69 1 1
0.61 0.6 0.98 0.97 0.76 1 1

Figure 4(e)

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Figure 4(f )

0.86 0.86 0.99 1 1 1 1
0.9 0.9 0.99 1 1 1 1
0.81 0.81 0.99 1 1 1 1
0.72 0.73 0.99 1 1 1 1

Figure 4(g)

0.96 0.96 1 1 1 1 1
0.96 0.96 1 1 1 1 1
0.92 0.92 1 1 1 1 1
0.9 0.9 1 1 1 1 1

Figure 4(h)

0.5 0.5 1 1 0.51 1 1
0.5 0.5 1 1 0.58 1 1
0.5 0.5 1 1 0.54 1 1
0 0 1 1 0.02 1 1
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5.3. Experiments on Synthetic Datasets. In order to investi-
gate the performance of the proposed approaches, a series of
experiments on twelve synthetic datasets shown in Figure 3
are performed by using the proposed GHC and the other
existing algorithms.+e performance results are tabulated in

Table 3. In Table 3, the first column denotes the used dataset,
whereas the first row denotes the used algorithms. +e digits
in the other fields of the table are the evaluation results. For
Purity, RI, Fmeasure, and NMI, their values range from 0 to
1. +e higher values denote the algorithm has a better

Table 3: Continued.

Dataset K-means K-means++ SC DBSCAN Birch LGC GHC

Figure 4(i)

0.75 0.75 1 1 0.86 1 1
0.85 0.85 1 1 0.93 1 1
0.75 0.75 1 1 0.86 1 1
0.39 0.39 1 1 0.69 1 1

Figure 4(j)

0.5 0.5 0.77 0.59 0.5 0.53 1
0.52 0.52 0.87 0.72 0.53 0.64 1
0.52 0.52 0.79 0.63 0.56 0.48 1
0 0 0.52 0.21 0 0.13 1

For each dataset, the numbers in the first row are RI, those in the second row are Purity, those in the third row are Fmeasure, and those in the forth row are
NMI.

Table 4: Performances of different clustering approaches on UCI datasets tested.

Dataset K-means K-means++ SC DBSCAN Birch LGC GHC

BTissue

0.71 0.6 0.65 0.66 0.7 0.73 0.78
0.43 0.39 0.34 0.42 0.52 0.5 0.57
0.36 0.31 0.25 0.44 0.44 0.39 0.47
0.36 0.29 0.14 0.46 0.53 0.43 0.54

Ecoli

0.81 0.81 0.86 0.77 0.9 0.88 0.91
0.82 0.83 0.79 0.62 0.8 0.82 0.86
0.54 0.53 0.71 0.64 0.83 0.79 0.82
0.61 0.61 0.6 0.47 0.73 0.64 0.7

Iris

0.88 0.88 0.88 0.77 0.82 0.89 0.97
0.89 0.89 0.89 0.68 0.86 0.93 0.97
0.82 0.82 0.82 0.73 0.72 0.82 0.95
0.76 0.76 0.75 0.66 0.67 0.75 0.9

Wine

0.72 0.72 0.56 0.34 0.93 0.62 0.95
0.7 0.7 0.53 0.4 0.96 0.66 0.97
0.58 0.58 0.45 0.51 0.9 0.58 0.93
0.43 0.43 0.12 0 0.82 0.42 0.88

PID

0.55 0.55 0.54 0.55 0.57 0.56 0.6
0.66 0.66 0.65 0.65 0.7 0.68 0.73
0.63 0.63 0.7 0.71 0.49 0.58 0.66
0.03 0.03 0 0 0.08 0.05 0.11

BSTC

0.6 0.6 0.63 0.63 0.61 0.64 0.64
0.76 0.76 0.76 0.76 0.77 0.76 0.77
0.71 0.71 0.77 0.76 0.7 0.78 0.78
0.02 0.02 0 0.01 0.05 0 0.02

Glass

0.68 0.68 0.71 0.63 0.71 0.58 0.72
0.59 0.59 0.59 0.49 0.6 0.68 0.64
0.5 0.5 0.41 0.43 0.48 0.49 0.45
0.42 0.42 0.37 0.32 0.41 0.34 0.4

Cancer

0.92 0.92 0.93 0.89 0.87 0.95 0.94
0.96 0.96 0.96 0.94 0.96 0.97 0.97
0.93 0.93 0.94 0.9 0.87 0.95 0.94
0.74 0.73 0.77 0.72 0.6 0.82 0.79

SControl

0.84 0.85 0.7 0.17 0.87 0.89 0.89
0.64 0.64 0.23 0.17 0.67 0.93 0.67
0.61 0.63 0.19 0.28 0.71 0.52 0.75
0.69 0.71 0.01 0 0.82 0.68 0.85

For each dataset, the numbers in the first row are rand index, those in the second row are purity, those in the third row are Fmeasure, and those in the forth
row are NMI.
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performance on the dataset. Although the synthetic datasets
are easy to be clustered intuitively, not all the clustering
algorithms achieve remarkable performance in this study.
Overall, CHC, DBSCAN, and LGC algorithms obtain more
competitive advantages than the other algorithms.+e GHC
algorithm obtains good clustering results on all synthetic
datasets while DBSCAN and LGC algorithms only achieve
the worse performances on a few datasets.

5.4. Experiments on Real-Life Datasets. In order to investi-
gate the performance, the proposed GHC algorithm and
other competitive approaches are adopted to solve the
clustering problems on the real-world datasets tabulated in
3. For each real-life dataset, the well-tuned parameters of all
algorithms also are tabulated in Table 2. +e performance

results are shown in Table 4. In Table 4, the first row denotes
the algorithms while the first column denotes the real-life
datasets used in the experiments. +e digits in other fields of
this table denote the evaluation results for the GHC algo-
rithm and other existing algorithms on each dataset. GHC
algorithm obtains the best values of all evaluation criteria on
the datasets such as BTissue, Iris, and Wine. On the other
datasets, the evaluation results of the GHC algorithm are the
best or close to the best for the four evaluation criteria. In the
overall view, the GHC algorithm outperforms other com-
petitive algorithms on these real-world datasets.

5.5. Discussions. In this subsection, we mainly discuss the
role and impact of parameters to the performance of the
GHC algorithm.+ere are three tunable parameters c, θ, and
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Figure 5: Parameter analysis for the threshold parameter c. (a) BTissue. (b) Ecoil. (c) Iris. (d)Wine. (e) PID. (f ) BTSC. (g) Glass. (h) Cancer.
(i) SControl.
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k, which are required to determine for GHC. +e parameter
c determines the masses of data points, which affects the
force of gravity straightly and controls the structure of the
gravitational graph with the gravity forces varying. +e
second parameter θ controls the number of subgraphs that
the gravitational graph can be partitioned into. +e third
parameter k determines the sparsity and connectivity of the
gravitational graph. In the previous subsection, it can be
noticed that the GHC algorithm performs better than the
state-of-the-art algorithms for all synthetic datasets, though
these parameters are set to fixed values
(c � 0.2, θ � 0.1, k � 6) which maybe are not the optimal
values.

To illustrate the impact of the parameters c, θ, and k, we
conduct a series of experiments on real-world datasets to
analyze the influence of each parameter to the clustering

performance of the GHC algorithm. +e prior knowledge of
the real-world datasets can be used to search the optimal
parameters with the best values of evaluation metrics.
Figure 5 shows that the values of the evaluationmetrics Rand
Index and Purity change when the parameter c varies in a
given interval. +e parameter c varies from 0 to 10 with
increment of 0.1 for all datasets except the SControl dataset
for which it varies from 0 to 250 with increment of 5. It can
be noticed that the performance values fluctuate within an
interval as the parameter c is increased.+e evaluation result
on each dataset will converge to a fixed value when c is
beyond the interval. Because c determines the mass of each
data point by equation (3), the gravitational force between
two data points will be significantly different when c is set to
different values. In essence, the different distribution of data
points’ masses affects the gravitational forces between them
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Figure 6: Parameter analysis for the threshold parameter θ. (a) BTissue. (b) Ecoil. (c) Iris. (d)Wine. (e) PID. (f ) BTSC. (g) Glass. (h) Cancer.
(i) SControl.
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and leads to different clustering performance. Figure 6
shows that the values of the evaluation metrics Rand In-
dex and Purity with the best clustering performance change
as the parameter θ specifies different values, which changes
from − 1 to 1 with increment 0.1. From Figure 6, it can be
noticed that the evaluation values increase on the general
trend as the threshold θ is increasing in most of the real-
world datasets. +e reason is that the data points of different
clusters are divided into the same cluster in the second stage
of the GHC algorithm when the parameter θ is set to a lower
value. In contrast, the performance of the GHC algorithm is
better when the value of parameter θ is set to a high value
because the data points of different clusters can be parti-
tioned into a cluster correctly. Figure 7 shows that the values
of the evaluation metrics Rand Index and Purity with the
best clustering performance change as the parameter k

specifies different values. In general, the performance metric
Purity decreases as the parameter k is increasing. From
Figure 7, there is a single peak at which the value of Rand
Index reaches the maximum when k changes from 1 to 20.
From the above analysis, the GHC algorithm can achieve
good performance when the three parameters are set to the
suitable values for each dataset.

6. Conclusions

In this paper, we propose a novel gravity-based clustering
approach that sufficiently utilizes the vector properties of
gravitational force. To some extent, the data gravitational
force can be considered as a similarity measure which takes
not only density but also distance into account. To illustrate
the performance of GHC algorithm, the experiments with all
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Figure 7: Parameter analysis for the threshold parameter k. (a) BTissue. (b) Ecoil. (c) Iris. (d)Wine. (e) PID. (f ) BTSC. (g) Glass. (h) Cancer.
(i) SControl.
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well-tuned parameters have been conducted on synthetic
datasets and real-life datasets compared with the other fa-
mous clustering algorithms. +e experiments’ results show
that the GHC algorithm is robust and achieves competitive
performance. Of course, it also can be noticed that the time
complexity of the GHC algorithm is high. +e problem can
be improved in the future. Meanwhile, the GHC algorithm
can be applied in more application fields.
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