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Inspired by the work of Adcock, Landsman, and Shushi (2019) which established the Stein’s lemma for generalized skew-elliptical
random vectors, we derive Stein type lemmas for location-scale mixture of generalized skew-elliptical random vectors. Some
special cases such as the location-scale mixture of elliptical random vectors, the location-scale mixture of generalized skew-normal
random vectors, and the location-scale mixture of normal random vectors are also considered. As an application in risk theory, we
give a result for optimal portfolio selection.

1. Introduction and Motivation

Since Stein [1] provides an expression E[h(X)(X − μ)] for
normal random variable X, where h(x) is an almost dif-
ferentiable function, and a number of scholars have gen-
eralized the formula. For example, Landsman [2] gives
Stein’s lemma for 2-dimensional elliptical distributions;
Landsman and Nešlehová [3] and Landsman et al. [4] derive
Stein’s lemma for multivariate elliptical distributions;
Landsman et al. [5] establish Stein-type inequality for
symmetric generalized hyperbolic distributions; Adcock
et al. [6] derive Stein’s lemma for generalized skew-elliptical
distributions. (e result has been applied in statistics, in-
surance, and finance. For example, Landsman et al. [5] and
Landsman et al. [7] apply this lemma in risk theory.

In the study by Kim and Kim [8], the class of normal
mean-variance mixture distributions is introduced. (e
random vector X is said to be an n-dimensional normal
mean-variance mixture variable if X � μ +Θγ + Θ(1/2)AZ,
where Z ∼ Nk(0, Ik), the k-dimensional normal random
vectors with the identity covariance matrix; A is an n × k

matrix; Θ is a scalar random variable that follows a

nonnegative distribution with the density π(θ), independent
of Z; and the following are sontant vectors in Rn:

μ � μ1, μ2, . . . , μn( 􏼁
T
,

γ � c1, c2, . . . , cn( 􏼁
T
.

(1)

(ese specification implies that conditionally,
X|Θ � θ ∼ Nn(μ + θγ, θΣ), where Σ � AAT. Inspired by
this, we consider a class of location-scale mixture of gen-
eralized skew-elliptical distributions, which is generalization
of the class of normal mean-variance mixture distributions.
In this paper, we generalize Stein’s lemma by Adcock et al.
[6] to the case of location-scale mixture of generalized skew-
elliptical random vectors.

(e rest of the paper is organized as follows. Section 2
introduces the definitions and properties of the location-
scale mixture of generalized skew-elliptical distributions.
In Section 3, we derive three Stein-type lemmas. In Section
4, we give several special cases. An optimal portfolio se-
lection (a three-fund theorem) for location-scale mixture
of generalized skew-elliptical random vectors is given in
Section 5.
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2. Mixture of Generalized Skew-
Elliptical Distributions

In this section, we introduce the class of location-scale
mixture of generalized skew-elliptical (LSMGSE) distribu-
tions and some of its properties.

Let Y be an n-dimensional generalized skew-elliptical
random vector and denoted by Y ∼ GSEn(μ, Σ, gn, π(·)). If
its probability density function exists, the form will be (see
[6])

fY(y) �
2
���
|Σ|

√ gn

1
2
(y − μ)

TΣ− 1
(y − μ)􏼚 􏼛π Σ− (1/2)

(y − μ)􏼐 􏼑, y ∈ Rn
,

(2)

where

fX(x) :�
1
���
|Σ|

√ gn

1
2
(x − μ)

TΣ− 1
(x − μ)􏼚 􏼛, x ∈ Rn

, (3)

is the density of n-dimensional elliptical random vector
X ∼ En(μ,Σ, gn). Here, μ is an n × 1 location vector, Σ is an
n × n scale matrix, and gn(u), u≥ 0, is the density generator
of X. π(x), x ∈ Rn, is called the skewing function satisfying
π(− x) � 1 − π(x) and 0≤ π(x)≤ 1. (e characteristic
function of X takes the form φX(t) � exp itTμ􏼈 􏼉

ψ((1/2)tTΣt), t ∈ Rn, with function ψ(t): [0,∞)⟶ R,
called the characteristic generator (see [9]). Suppose A be an
n × n matrix and b be an n × 1 vector. (en,

AY + b ∼ GSEn Aμ + b,ATΣA, gn, π(·)􏼐 􏼑. (4)

To establish Stein’s lemma for n-dimensional generalized
skew-elliptical distributions, we use the cumulative gener-
ator Gn(u). It takes the following form (see [7] or [10]):

Gn(u) � 􏽚
∞

u
gn(v)dv. (5)

Let X∗ ∼ En(μ, Σ, Gn) be an elliptical random vector
with generator Gn(u), whose density function (if it exists) is

fX∗(x) �
− 1

ψ′(0)
���
|Σ|

√ Gn

1
2
(x − μ)

TΣ− 1
(x − μ)􏼚 􏼛, x ∈ Rn

.

(6)

Let Y∗ ∼ GSEn(μ, Σ, Gn, π(·)) be a generalized skew-
elliptical random vector.

We call Z ∼ LSMGSEn(μ, Σ, β, Θ, gn, π(·)) as an
n-dimensional LSMGSE distribution with location param-
eter μ, positive definite scale matrix Σ, and skew function
π(·), if

Z � μ + Θβ +Θ(1/2)Σ(1/2)Y, (7)

where β ∈ Rn and Y ∼ GSEn(0, In, gn, π(·)). Assume that Y
is independent of nonnegative scalar random variableΘ. We
have

Z|Θ � θ ∼ GSEn μ + θβ, θΣ, gn, π(·)( 􏼁. (8)

3. Main Result

In this section, we consider a random vector

Z ∼ LSMGSEn μ,Σ, β,Θ, gn, π(·)( 􏼁, (9)

with location parameter μ, positive definite scale matrix Σ,
and skew function π(·) as (7).

Let ϖ: Rm⟶ R, 1≤m≤ n, be an almost everywhere
differentiable function, and we write

∇ϖ z(1)􏼐 􏼑 �
zϖ z(1)􏼐 􏼑

zz1
,
zϖ z(1)􏼐 􏼑

zz2
, . . . ,

zϖ z(1)􏼐 􏼑

zzn

⎛⎝ ⎞⎠

T

. (10)

We derive a Stein-type lemma for location-scale mixture
of generalized skew-elliptical random vectors below. Par-
tition Z � (ZT

(1), Z
T
(2))

T, where Z(1) � (Z1, Z2, . . . , Zm)T

and Z(2) � (Zm+1, Zm+2, . . . , Zn)T. μ � (μT
(1), μ

T
(2))

T and μ �

(μT
(1), μ

T
(2)) are also of similar partition.

Theorem 1. Let Z ∼ LSMGSEn(μ, Σ, β, Θ, gn, π(·)) be an
n-dimensional location-scale mixture of generalized skew-
elliptical random vector defined as (7). Assume that function
ϖ satisfies E[∇1ϖ(S∗(1))]<∞. 5en,

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩

� Eθ Cov(M) E ∇ϖ S∗(1)􏼐 􏼑􏽨 􏽩 + 2E ϖ M∗(1)􏼐 􏼑∇π􏽨􏽨􏽮

(θΣ)
− (1/2) M∗ − μ − θβ( 􏼁􏼐 􏼑􏽩􏽩􏽯

+ Eθ E ϖ S(1)􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯,

(11)

where

S � ST
(1), S

T
(2)􏼐 􏼑

T
� Z|Θ � θ ∼ GSEn μ + θβ, θΣ, gn, π(·)( 􏼁,

M � MT
(1), M

T
(2)􏼐 􏼑

T
∼ En μ + θβ, θΣ, gn( 􏼁,

S∗ � S∗(1)T, S∗(2)T􏼐 􏼑
T
∼ GSEn μ + θβ, θΣ, Gn, π(·)( 􏼁,

M∗ � M∗(1)T, M∗(2)T􏼐 􏼑
T
∼ En μ + θβ, θΣ, Gn( 􏼁.

(12)
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Proof. Using tower property of expectations, we obtain

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩 � EΘ E ϖ Z(1)􏼐 􏼑(Z − μ) |Θ􏽨 􏽩􏽨 􏽩. (13)

while

E ϖ Z(1)􏼐 􏼑(Z − μ) |Θ � θ􏽨 􏽩 � E ϖ Z(1) |Θ � θ􏼐 􏼑(Z − μ |Θ � θ)􏽨 􏽩

� E ϖ Z(1) |Θ � θ􏼐 􏼑((Z |Θ � θ) − (μ + θβ) + θβ)􏽨 􏽩

� E ϖ Z(1) |Θ � θ􏼐 􏼑((Z |Θ � θ) − (μ + θβ))􏽨 􏽩 + E ϖ Z(1)|Θ � θ􏼐 􏼑θβ􏽨 􏽩

� E ϖ S(1)􏼐 􏼑(S − (μ + θβ))􏽨 􏽩 + E ϖ S(1)􏼐 􏼑θβ􏽨 􏽩

� Cov(M) E ∇ϖ S∗(1)􏼐 􏼑􏽨 􏽩 + 2E ϖ M∗(1)􏼐 􏼑∇π (θΣ)
− (1/2) M∗ − μ − θβ( 􏼁􏼐 􏼑􏽨 􏽩􏽨 􏽩

+ E ϖ S(1)􏼐 􏼑􏽨 􏽩θβ,

(14)

where the last equality have used (4), (8), and (eorem 3 by
Adcock et al. [6]. (erefore, we obtain (11), which completes
the proof of (eorem 1. □

Remark 1. From formula (8), we find that E[ϖ(Z(1))(Z −

μ) |Θ] is a special case of (eorem 3 by Adcock et al. [6].
(e following theorems give two special forms of Stein-

type lemmas for location-scale mixture of generalized skew-
elliptical random vectors.

Theorem 2. Let Z ∼ LSMGSEn(μ, Σ, β, α, gn, π(·)) be an
n-dimensional location-scale mixture of generalized skew-
elliptical random vector with

Z � μ + V
− 1β + V

− (1/2)Σ(1/2)Y, (15)

where V ∼ beta(α, 1). Assume the function ϖ satisfies
E[∇1ϖ(S∗(1))]<∞. 5en,

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩 � Ev Cov(M) E ∇ϖ S∗(1)􏼐 􏼑􏽨 􏽩􏽨􏽮

+ 2E ϖ M∗(1)􏼐 􏼑∇π v
− 1Σ􏼐 􏼑

− (1/2)
M∗ − μ − v

− 1β􏼐 􏼑􏼒 􏼓􏼔 􏼕􏼕􏼛

+ Ev E ϖ S(1)􏼐 􏼑􏽨 􏽩v
− 1β􏽮 􏽯,

(16)

where

S � ST
(1), S

T
(2)􏼐 􏼑

T
� Z|V � v ∼ GSEn μ + v

− 1β, v
− 1Σ, gn, π(·)􏼐 􏼑,

M � MT
(1), M

T
(2)􏼐 􏼑

T
∼ En μ + v

− 1β, v
− 1Σ, gn􏼐 􏼑,

S∗ � S∗(1)T, S∗(2)T􏼐 􏼑
T
∼ GSEn μ + v

− 1β, v
− 1Σ, Gn, π(·)􏼐 􏼑,

M∗ � M∗(1)T, M∗(2)T􏼐 􏼑
T
∼ En μ + v

− 1β, v
− 1Σ, Gn􏼐 􏼑.

(17)

Proof. Letting Θ � V− 1 in (eorem 1, we directly obtain
(16). (is completes the proof of (eorem 2. □

Remark 2. Letting π(·) � (1/2) in (eorem 2, we obtain a
Stein-type lemma for location-scale mixture of elliptical
random vectors:

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩 � Ev Cov(M)E ∇ϖ M∗(1)􏼐 􏼑􏽨 􏽩􏽮 􏽯

+ Ev E ϖ M(1)􏼐 􏼑􏽨 􏽩v
− 1β􏽮 􏽯.

(18)

Theorem 3. Let Z ∼ LSMGSEn(μ, Σ, β, Θ, gn, π(·)) be an
n-dimensional location-scale mixture of generalized skew-
elliptical random vector defined as (7). Assume the function ϖ
satisfies E[∇1ϖ(S∗)]<∞. 5en,

E[ϖ(Z)(Z − μ)]

� Eθ Cov(M) E ∇ϖ S∗( 􏼁􏼂 􏼃 + 2E ϖ M∗( 􏼁∇π (θΣ)
− (1/2)

􏼐􏽨􏽨􏽮

M∗ − μ − θβ( 􏼁􏼁􏼃􏼃􏼉

+ Eθ E[ϖ(S)]θβ􏼈 􏼉.

(19)
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Proof. Letting ϖ(z(1)) � ϖ(z) in (eorem 1, we obtain (19).
(is completes the proof of (eorem 3. □

Remark 3. Letting π(·) � (1/2) in (eorem 3, we obtain a
Stein-type lemma for location-scale mixture of elliptical
random vectors:

E[ϖ(Z)(Z − μ)] � Eθ Cov(M)E ∇ϖ M∗( 􏼁􏼂 􏼃􏼈 􏼉 + Eθ E[ϖ(M)]θβ􏼈 􏼉.

(20)

4. Special Cases

In this section, we consider several special cases including
the location-scale mixture of elliptical distribution, the lo-
cation-scale mixture of generalized skew-normal distribu-
tion, the location-scale mixture of skew-normal distribution,
and the location-scale mixture of normal distribution.

Example 1. Letting π(·) � (1/2) in (eorem 1, Stein-type
lemma for location-scale mixture of elliptical random vector
is given by

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩 � Eθ Cov(M)E ∇ϖ M∗(1)􏼐 􏼑􏽨 􏽩􏽮 􏽯

+ Eθ E ϖ M(1)􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯.
(21)

Remark 4. We find that (21) can be regarded as a special
analogue case of Vanduffel and Yao [11].

Example 2. Suppose Y ∼ GSNn(μ, Σ, π(·)) is an n-dimen-
sional generalized skew-normal random vector with prob-
ability density function (pdf) as follows:

fY(y) �
2

���
|Σ|

√
(2π)n/2 exp −

1
2
(y − μ)

TΣ− 1
(y − μ)􏼚 􏼛π γTΣ− (1/2)

(y − μ)􏼐 􏼑,

(22)

y ∈ Rn, where γ � (c1, c2, . . . , cn)T and function
π(·): R⟶ R. Letting Gn(u) � gn(u) � (2π)− (n/2) exp − u{ }

and

π Σ− (1/2)
(y − μ)􏼐 􏼑 � π γTΣ− (1/2)

(y − μ)􏼐 􏼑, (23)

in (eorem 1. Assuming that function ϖ satisfies
E[∇1ϖ(S(1))]<∞, Stein-type lemma for location-scale
mixture of generalized skew-normal random vector
Z ∼ LSMGSNn(μ, Σ, β, Θ, π(·)) is given by

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩

� Eθ θΣE ∇ϖ S(1)􏼐 􏼑􏽨 􏽩 + 2(θΣ)
1/2γE ϖ M(1)􏼐 􏼑π′􏽨􏽮

γT
(θΣ)

− 1/2
(M − μ − θβ)􏼐 􏼑􏽩􏽯 + Eθ E ϖ S(1)􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯,

(24)

where π′(·) is the derivative of π(·), and

S � ST
(1), S

T
(2)􏼐 􏼑

T
� Z|Θ � θ ∼ GSNn(μ + θβ, θΣ, π(·)),

M � MT
(1), M

T
(2)􏼐 􏼑

T
∼ Nn(μ + θβ, θΣ).

(25)

Example 3. Letting π(·) � Φ(·)(the cdf of a standard normal
distribution) in Example 2, Stein-type lemma for location-
scale mixture of skew-normal random vector is given by

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩

� Eθ θΣE ∇ϖ S(1)􏼐 􏼑􏽨 􏽩􏽮 +

��
2
π

􏽲

(θΣ)
1/2γE ϖ M(1)􏼐 􏼑exp −

1
2

􏼚􏼔

γT
(θΣ)

− (1/2)
(M − μ − θβ)􏼐 􏼑

2
􏼛􏼕􏼛 + Eθ E ϖ S(1)􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯.

(26)

Example 4. Letting π(·) � 1 in Example 2, Stein-type lemma
for location-scale mixture of normal random vector is given
by

E ϖ Z(1)􏼐 􏼑(Z − μ)􏽨 􏽩 � Eθ θΣE ∇ϖ M(1)􏼐 􏼑􏽨 􏽩􏽮 􏽯 + Eθ E ϖ M(1)􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯.

(27)

5. Application in Risk Theory

Considering n risky assets with stochastic returns that are
modelled by the n-dimensional random vector,

Z � Z1, Z2, ..., Zn( 􏼁
T ∼ LSMGSEn μ,Σ, β,Θ, gn, π(·)( 􏼁.

(28)

A risk-free asset bearing a fixed rate of return r> 0 is also
available. Denote by t � (t1, t2, ..., tn)T the vector of pro-
portions that are allocated to the different risky assets. (e
total portfolio return is

Zt � 􏽘
n

i�1
tiZi + 1 − 􏽘

n

i�1
tiZi

⎛⎝ ⎞⎠r. (29)

We define

St � 􏽘
n

i�1
tiSi + 1 − 􏽘

n

i�1
tiSi

⎛⎝ ⎞⎠r,

S∗t � 􏽘

n

i�1
tiS
∗
i + 1 − 􏽘

n

i�1
tiS
∗
i

⎛⎝ ⎞⎠r,

M∗t � 􏽘
n

i�1
tiM
∗
i + 1 − 􏽘

n

i�1
tiM
∗
i

⎛⎝ ⎞⎠r.

(30)

To find an optimal allocation by maximizing the mean
return for a given variance risk tolerance, we assume that the
investor optimizes
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L(t) :� E U Zt( 􏼁􏼂 􏼃, (31)

where U: R⟶ R is a concave utility function (see [11]).

Theorem 4. (5ree-Fund Separation). Suppose L(t) is a
concave continuously differentiable function with t ∈ Rn. 5e
solution to problem (31) is given as

tLSMGSE �
Σ− 1δ1

ψ′(0)Eθ θE U″ S∗tLSMGSE
􏼐 􏼑􏽨 􏽩􏽮 􏽯

+
δ2

Eθ θE U″ S∗tLSMGSE
􏼐 􏼑􏽨 􏽩􏽮 􏽯

,

(32)

where e � (1, 1, ..., 1)T is an n × 1 vector whose elements are
all equal to 1, and

δ1 � Eθ E U′ StLSMGSE
􏼐 􏼑􏽨 􏽩θβ􏽮 􏽯 + E U′ ZtLSMGSE

􏼐 􏼑(μ − re)􏽨 􏽩,

δ2 � Eθ 2θE U′ M∗tLSMGSE
􏼐 􏼑∇π (θΣ)

− (1/2) M∗ − μ − θβ( 􏼁􏼐 􏼑􏽨 􏽩􏽮 􏽯.

(33)

Proof. Letting ∇L(t) � 0, we have

E U′ Zt( 􏼁(Z − re)􏼂 􏼃 � 0,

E U′ Zt( 􏼁(Z − μ)􏼂 􏼃 + E U′ Zt( 􏼁(μ − re)􏼂 􏼃 � 0.
(34)

Using (19), we get
Eθ Cov(M) E ∇U′ S∗t( 􏼁􏼂 􏼃 + 2E U′ M∗t( 􏼁∇π􏼂􏼂􏼈

(θΣ)
− (1/2) M∗ − μ − θβ( 􏼁􏼐 􏼑􏽩􏽩􏽯

+ Eθ E U′ St( 􏼁􏼂 􏼃θβ􏼈 􏼉 + E U Zt( 􏼁(μ − re)􏼂 􏼃 � 0.

(35)

Note that E[zU′(Z∗t )/zZ ∗i ] � E[tiU″(Z
∗
t )] and

Cov(M) � − ψ′(0)θΣ; we have

Eθ − ψ′(0)θΣ E tU″ S∗t( 􏼁􏼂 􏼃 + 2E U′ M∗t( 􏼁∇π􏼂􏼂􏼈

(θΣ)
− (1/2) M∗ − μ − θβ( 􏼁􏼐 􏼑􏽩􏽩􏽯

+ Eθ E U′ St( 􏼁􏼂 􏼃θβ􏼈 􏼉 + E U′ Zt( 􏼁(μ − re)􏼂 􏼃 � 0.

(36)

(erefore, we obtain (32), which completes the proof of
(eorem 4. □

Remark 5. When L(·) is only defined on a convex subset A

of Rn, a solution t to (32) is only optimal when t belongs to
the interior of this set A. Otherwise, the optimum has to be
found on the boundary of A (see [12] or [11]).

Corollary 1. Letting π(·) � 1 in 5eorem 4, we obtain

tLSME �
Σ− 1δ1

ψ′(0)Eθ θE U″ M∗tLSME
􏼐 􏼑􏽨 􏽩􏽮 􏽯

, (37)

where δ1 � Eθ E[U′(MtLSME
)]θβ􏽮 􏽯 + E[U′(ZtLSME

)(μ − re)].
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