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+is paper investigates a novel adaptive output feedback decentralized control scheme for nonstrict feedback large-scale
interconnected systems with time-varying constraints. A decentralized linear state observer is designed to estimate the un-
measurable states of subsystems. Time-varying barrier Lyapunov functions are designed to ensure outputs are not violating
constraints. A variable separation approach is applied to deal with the nonstrict feedback problem. Moreover, dynamic surface
control and minimal parameter learning technologies are adopted to reduce the computation burden, and there are only two
parameters for every subsystem to be updated online. +e proof of stability is obtained by the Lyapunov method. Finally,
simulation results are given to show the effectiveness of the proposed control scheme.

1. Introduction

Nomatter in practical engineering application or theoretical
research field, the high-precision trajectory tracking control
of the nonlinear system is a very valuable research topic. For
example, the welding robot needs to carry out welding
according to the given trajectory, and the accuracy of the
trajectory tracking control is an important indicator of the
performance of the welding robot. +e drilling guide system
needs to control the well trajectory continuously to ensure
the drilling quality. However, it is very difficult to design the
control scheme of the nonlinear system due to various
uncertainties [1–3]. Because the fuzzy logic system has been
proved to have universal approximation property, it has
become one of the effective measures to solve the uncertainty
problem [4]. In [5], an adaptive fuzzy quantized tracking
control scheme was proposed for the stochastic nonlinear
uncertain strict feedback system. In [6], a direct model
reference adaptive fuzzy control was discussed for a class of
networked SISO nonlinear uncertain systems. In [7], for the
nonlinear system with parametric uncertainties and

unknown modelling errors, a robust adaptive control
scheme was presented. In [8], an adaptive dynamic surface
asymptotic tracking control was proposed for the uncertain
nonlinear system. In [9], for the nontriangular stochastic
uncertain nonlinear system with unmeasured states, an
adaptive robust control was studied. In [10], for the pure-
feedback nonlinear system with time-varying delay and
unknown dead zone, an adaptive fuzzy tracking control was
investigated. However, none of the above literature has
solved the output constraint problem of the uncertain
nonlinear system.

Output constraint is a very important engineering
problem. If the system outputs exceed the given range, it will
cause control performance degradation, equipment damage,
and even endanger the safety of operators and environment.
+erefore, in recent years, the output constraint problem has
become a hot research issue, and a large number of valuable
research results have emerged. When the relevant states
approach the boundary, the barrier Lyapunov function tends
to infinity, so as long as the function value is bounded, the
correlation states can be kept in the given constraints.
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Because of the above property, the barrier Lyapunov
function becomes an effective measure to solve the problem
of constraints. In [11], by using a barrier Lyapunov function,
an indirect adaptive fuzzy control was designed for the
output-constrained nonlinear system. In [12], an adaptive
neural network control was proposed for the nonlinear
system with full-state constraints. In [13], for a class of
nonlinear pure-feedback full-state constraint systems, an
adaptive control based on barrier Lyapunov functions was
studied. In [14], an adaptive fuzzy backstepping output
constrain tracking control was proposed for the uncertain
nonlinear system in strict feedback form. In [15], by
adopting barrier Lyapunov functions, an adaptive neural
network control was presented for nonlinear state-con-
strained systems with input delay. In [16, 17], adaptive full-
state constraint control methods were discussed for sto-
chastic nonlinear systems based on barrier Lyapunov
functions. All of the above literature studies considered the
static constraint problem, and then the time-varying con-
straint is more suitable for practical engineering. In [18], an
adaptive fuzzy control was proposed for the nontriangular
system with time-varying error constraint. In [19], for the
uncertain nonlinear system with time-varying prescribed
performance, a fuzzy adaptive control based on the observer
was presented. In [20], a fuzzy state observer-based adaptive
control for the strict feedback system with time-varying
constraint was studied. However, for the time-varying
output constraints of large-scale interconnected systems,
there are no relevant research results.

In practical engineering, many electromechanical sys-
tems consist of many subsystems, such as multirobot co-
operative control system, offshore platform, drilling system,
and aerospace. Because a large-scale interconnected system
has the coupling effect between subsystems, the design of its
controller is very difficult. +erefore, the research on the
control scheme of large-scale systems has obvious practical
value and theoretical significance. In [21, 22], decentralized
H∞ performance control methods were studied for switched
and nonswitched large-scale systems, respectively. In
[23, 24], based on the observer and backstepping technology,
adaptive decentralized control methods were presented for
uncertain large-scale systems with unmeasured states. In
[25], for the switched uncertain large-scale system with dead
zones, an adaptive output decentralized tracking control
scheme was proposed. However, the output constraints of
large-scale systems are not considered in the above litera-
ture. Although the control problem of large-scale systems
with output constraints has been studied in [26], the system
is in strict feedback form, and there are no corresponding
research results about the control scheme of nonstrict
feedback large-scale systems with time-varying output
constraints.

Based on the above results, this paper studies an adaptive
output feedback decentralized control for the nonstrict
feedback large-scale system with unmeasurable states and
time-varying output constraints. Compared with the existed
works, there are two contributions in this paper: (1) for the
first time, the output feedback control problem of nonstrict
feedback large-scale systems with time-varying constraints is

studied.+e proposed control scheme is quite different from
the existed results. +e proposed control scheme can not
only solve the output feedback tracking control problem for
a class of uncertain large-scale systems in nonstrict feedback
form but also ensure all the outputs are not violating the
time-varying constraints. Moreover, time-varying constraint
relaxes the initial conditions of the system. (2) +e control
method which is proposed in this paper does not need
n-order differentiable and bounded conditions of input
signals and the monotonically increasing condition of un-
known functions, which are common in the existing liter-
ature [27, 28]. Because of using the dynamic surface control,
the “complexity explosion” problem is avoided. Moreover,
each subsystem has only two adaptive parameters, and the
number of parameters does not increase with the increase of
system’s order.

2. Problem Description and Preliminaries

+e nonstrict feedback large-scale system considered in this
paper has M interconnected subsystems. kth
(k � 1, 2, . . . M) subsystem is shown as follows:

_xk,1 � xk,2 + fk,1 xk( 􏼁 + hk,1 y􏼐 􏼑,

_xk,2 � xk,3 + fk,2 xk( 􏼁 + hk,2 y􏼐 􏼑,

⋮

_xk,nk− 1 � xk,nk
+ fk,nk− 1 xk( 􏼁 + hk,nk− 1 y􏼐 􏼑,

_xk,nk
� uk + fk,nk

xk( 􏼁 + hk,nk
y􏼐 􏼑,

yk � xk,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xk � [xk,1, xk,2, . . . , xk,nk
]T ∈ Rnk is the state vector,

and only xk,1 can be measured. y � [y1, . . . , yM] ∈ RM is the
output vector of the large-scale system. fk,l(xk) and hk,l(y)

(1≤ k≤M, 1≤ l≤ nk) are unknown smooth functions, and
hk,l(y) represents the coupling effect between M subsystems
of the large-scale system. uk ∈ R is the actual control input of
the kth subsystem. In practical engineering, the mathe-
matical models of the two-stage chemical reactor, air traffic
control, spring connected two-stage inverted pendulum, and
other large-scale systems can be expressed as (1) [22, 29–31].

Assumption 1 (see [23, 24]). For 1≤ k≤M and 1≤ l≤ nk,
there exists unknown smooth function Zk,l,i(yi) such that

hk,l y􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
≤ 􏽘

M

i�1
yiZk,l,i yi( 􏼁􏼐 􏼑

2
. (2)

Assumption 2 (see [23, 24]). +ere exists unknown smooth
function fk,l(xk) such that fk,l(xk) � xk,1fk,l(xk), where
l � 1, 2, . . . , nk.

Assumption 3 (see [32, 33]).+e reference signal yk,d(t) and
its first derivative are bounded.

Control objective: the control objective is to design an
adaptive output feedback decentralized control scheme to
keep all the outputs yk(t) of the subsystems tracking desired
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trajectories yk,d(t), respectively. Moreover, the tracking
errors can be kept as small as possible, and all the signals of
the closed system are bounded.

3. Fuzzy Logic System and Observer Design

A fuzzy logic system can be written as 􏽢f(x | θ) � θTξ(x),
where ξ(x) is the fuzzy basis function vector and θ ∈ RN is
the adjustable weight parameter vector.

Lemma 1 (see [34, 35]). If f(x) is a continuous function
defined on the compact set Ω, then for any given small
constant ε> 0, there exists a fuzzy logic system such that
supx∈Ω|f(x) − θTξ(x)|≤ ε.

In order to estimate the unmeasured states, we design a
linear state observer for the kth subsystem as follows [23]:

_􏽢xk,1 � 􏽢xk,2 − ℓk,1 􏽢xk,1 − yk􏼐 􏼑,

_􏽢xk,2 � 􏽢xk,3 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑,

⋮
_􏽢xk,nk− 1 � 􏽢xk,nk

− ℓk,nk− 1 􏽢xk,1 − yk􏼐 􏼑,

_􏽢xk,nk
� uk − ℓk,nk

􏽢xk,1 − yk􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where 􏽢xk,l(l � 1, 2, . . . , nk) is the estimation of xk,l.
ℓk,1, . . . , ℓk,nk

are the observer design parameters. Define
observer error vector as 􏽥x k � xk − 􏽢x k, where
xk � [xk,1, xk,2, . . . , xk,nk

]T and 􏽢x k � [􏽢xk,1, 􏽢xk,2, . . . , 􏽢xk,nk
]T.

Then, from (1) and (3), we can have
_􏽥x k � Ak􏽥x k + Fk + Hk, (4)

where Ak �

− ℓk,1
⋮ I(nk− 1)×(nk− 1)

− ℓk,nk
0 0

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, Fk � [fk,1(xk), . . . ,

fk,nk
(xk)]T, and Hk � [hk,1(y), . . . , hk,nk

(y)]T. We can
choose appropriate parameters ℓk,1, . . . , ℓk,nk

to ensureAk is a
Hurwitz matrix, that is, for any given positive definite matrix
Qk � QT

k > 0, there exists a positive definite matrix
Pk � PT

k > 0 such that

A
T
k Pk + PkAk � − Qk. (5)

Choose the Lyapunov function candidate as [23]

V0 � 􏽘
M

k�1
􏽥x

T
k Pk􏽥x k. (6)

Then, we can obtain the time derivative of V0:

_V0 � − 􏽘
M

k�1
􏽥x

T
k Qk􏽥x k + 􏽘

M

k�1
2􏽥x

T
k Pk Fk + Hk( 􏼁. (7)

According to Yang’s inequalities, we have

2􏽥x
T
k PkFk ≤ 􏽥x k

����
����
2

+ Pk

����
����
2

􏽘

nk

j�1
fk,j xk( 􏼁􏼐 􏼑

2
. (8)

Based on Assumption 2, fk,j(xk) satisfies

fk,j xk( 􏼁 � ykfk,j xk( 􏼁, (9)

where fk,j(xk) is an unknown nonlinear function which can
be approximated by a fuzzy logic system.

From (8) and (9), we have

Pk

����
����
2

􏽘

nk

j�1
fk,j xk( 􏼁􏼐 􏼑

2
� Pk

����
����
2

􏽘

nk

j�1
y
2
k fk,j xk( 􏼁􏼐 􏼑

2

� yk Pk

����
����
2

􏽘

nk

j�1
yk fk,j xk( 􏼁􏼐 􏼑

2
.

(10)

Based on Assumption 1, we obtain

􏽘

M

k�1
2􏽥x

T
k PkHk ≤ 􏽘

M

k�1

1
λ

􏽥x k

����
����
2

+ 􏽘
M

k�1
λ Pk

����
����
2

Hk

����
����
2

≤
1
λ

􏽘

M

k�1
􏽥x k

����
����
2

+ λ 􏽘
M

k�1
􏽘

nk

l�1
􏽘

M

i�1
yiZk,l,i yi( 􏼁􏼐 􏼑

2

≤
1
λ

􏽘

M

k�1
􏽥x k

����
����
2

+ λ􏽘
M

i�1
􏽘

nk

l�1
􏽘

M

k�1
yiZk,l,i yi( 􏼁􏼐 􏼑

2

≤
1
λ

􏽘

M

k�1
􏽥x k

����
����
2

+ λ 􏽘
M

k�1
􏽘

M

i�1
􏽘

nk

l�1
y
2
k yiZk,l,i yi( 􏼁􏼐 􏼑

2

≤
1
λ

􏽘

M

k�1
􏽥x k

����
����
2

+ 􏽘
M

k�1
y
2
k 􏽘

M

i�1
􏽘

nk

l�1
λ Zk,l,i yi( 􏼁􏼐 􏼑

2
,

(11)

where λ> 0 is the design parameter and λ �

λmax1≤k≤M(‖Pk‖)2.
Substituting equations (8)–(11) into (7) results in

_V0 ≤ 􏽘
M

k�1
− 􏽥x

T
k Qk􏽥x k + 1 +

1
λ

􏼒 􏼓 􏽥x k

����
����
2

+ y
2
k 􏽘

M

i�1
􏽘

nk

l�1
λ Zi,l,k yk( 􏼁􏼐 􏼑

2
+ yk Pk

����
����
2

􏽘

nk

j�1
yk fk,j xk( 􏼁􏼐 􏼑

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ 􏽘
M

k�1
− 􏽥x

T
k Qk􏽥x k + 1 +

1
λ

􏼒 􏼓 􏽥x k

����
����
2

+ yk yk 􏽘

M

i�1
􏽘

nk

l�1
λ Z

s
i,l,k yk( 􏼁􏼐 􏼑

2
+ Pk

����
����
2

􏽘

nk

j�1
yk fk,j xk( 􏼁􏼐 􏼑

2
+ 􏽘

M

i�1
yk Zi,1,k yk( 􏼁􏼐 􏼑

2⎡⎢⎢⎣ ⎤⎥⎥⎦ − 􏽘
M

i�1
y
2
k Zi,1,k yk( 􏼁􏼐 􏼑

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(12)
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Let Φk(xk) � yk􏽐
M
i�1􏽐

nk

l�1λ(Zi,l,k(yk))2 + ‖Pk‖2􏽐
nk

j�1yk

(fk,j(xk))2 + 􏽐
M
i�1yk(Zi,1,k(yk))2. By using fuzzy system

􏽢fk(xk | θk) � θT
k ξk(xk) to approximate Φk(xk), there exists

optimal parameter vector

θ ∗k � argmin
θk∈Ωk

sup
xk∈Uk

􏽢fk xk

􏼌􏼌􏼌􏼌 θk􏼐 􏼑 − Φk xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦, (13)

where Ωk and Uk are the compact set of θk and xk, re-
spectively. +en, the minimal error can be written as

εk xk( 􏼁 � Φk xk( 􏼁 − 􏽢fk xk

􏼌􏼌􏼌􏼌 θ∗k􏼐 􏼑, (14)

where |εk(xk)|≤ ε∗k and ε∗k is an unknown positive constant.
From (13) and (14), we can obtain

_V0 ≤ 􏽘
M

k�1
− λmin Qk( 􏼁 − 1 −

1
λ

􏼒 􏼓 􏽥x k

����
����
2

􏼚

+ yk θ∗T
k ξk xk( 􏼁 + εk xk( 􏼁􏽨 􏽩 − 􏽘

M

i�1
y
2
k Zi,1,k yk( 􏼁􏼐 􏼑

2⎫⎬

⎭,

(15)

where λmin(Qk) is the minimal eigenvalue of matrix Qk.

4. Adaptive Control Law Design

Define the tracking error zk,1, virtual error zk,l, virtual
control law αk,l− 1, and first-order filters as

zk,1 � yk − yk,d,

zk,l � 􏽢xk,l − ωk,l− 1,

υk,l− 1 _ωk,l− 1 + ωk,l− 1 � αk,l− 1,

ωk,l− 1(0) � αk,l− 1(0),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

where l � 2, . . . , nk. υk,l− 1 is the time constant of the filter,
that is, by letting αk,l− 1 pass through a filter that has the time
constant υk,l− 1, we can obtain ωk,l− 1.

Step 1. Define ωk,0 � yk,d. From (16), we have

υk,1 _ωk,1 + ωk,1 � αk,1,

ωk,1(0) � αk,1(0).
(17)

Define ek,1 as the first filter output error; then, we can
obtain ek,1 � ωk,1 − αk,1 and _ωk,1 � − (ek,1/υk,1).

+e time derivative of zk,1 is as follows:
_zk,1 � xk,2 + fk,1 + hk,1 − _ωk,0

� zk,2 + ek,1 + αk,1 + 􏽥xk,2 + fk,1 xk( 􏼁 + hk,1 y􏼐 􏼑 − _yk,d.

(18)

By using fuzzy system 􏽢Fk(xk |φk) � φT
k ζk(xk) to ap-

proximate fk,1(xk) and defining φ∗k as the optimal pa-
rameter vector, we have

φ∗k � argmin
φk∈Ωk

sup
xk∈Uk

􏽢Fk xk

􏼌􏼌􏼌􏼌φk􏼐 􏼑 − fk,1 xk( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦, (19)

where Ωk is the compact set of φk. +en, the minimal ap-
proximation error is as follows:

δk xk( 􏼁 � fk,1 xk( 􏼁 − 􏽢Fk xk

􏼌􏼌􏼌􏼌φ∗k􏼐 􏼑, (20)

where |δk(xk)|≤ δ ∗k , and δ ∗k is an unknown positive
constant.

Define

kk,a(t) � yk,d(t) − kk,c1(t),

kk,b(t) � kk,c1(t) − yk,d(t),

qk zk,1􏼐 􏼑 �
1, zk,1 > 0,

0, zk,1 ≤ 0.
􏼨

(21)

Choose the Lyapunov function candidate as

V1 � V0 + 􏽘
M

k�1

qk zk,1􏼐 􏼑

2
log

k2
k,b(t)

k2
k,b(t) − z2

k,1

⎡⎣

+
1 − qk zk,1􏼐 􏼑

2
log

k2
k,a(t)

k2
k,a(t) − z2

k,1
+
1
2
e
2
k,1

+
1

2ck,1
􏽥ϖ2k,1 +

1
2ck,2

􏽥ϖ2k,2􏼣,

(22)

where ck,1 > 0 and ck,2 > 0 are design parameters, ϖ∗k,1 �

θ∗T
k θ∗k , ϖ∗k,2 � φ∗T

k φ∗k , and ϖk,1 and ϖk,2 are estimations of
ϖ∗k,1 and ϖ∗k,2, respectively. Define 􏽥ϖk,1 � ϖ∗k,1 − ϖk,1 and
􏽥ϖk,2 � ϖ∗k,2 − ϖk,2.

Let ςk,a � (zk,1(t)/kk,a(t)), ςk,b � (zk,1(t)/kk,b(t)), and
ςk � qkςk,b + (1 − qk)ςk,a; then, we can have

V1 � V0 + 􏽘
M

k�1

1
2
log

1
1 − ς2k

+
1
2
e
2
k,1 +

1
2ck,1

􏽥ϖ2k,1 +
1

2ck,2
􏽥ϖ2k,2􏼢 􏼣.

(23)

Now, we can infer that _V1 satisfies

_V1 � _V0 + 􏽘
M

k�1

ςk _ςk

1 − ς2k
+ ek,1 _ek,1 −

1
ck,1

􏽥ϖk,1 _ϖk,1 −
1

ck,2
􏽥ϖk,2 _ϖk,2􏼢 􏼣.

(24)

Because we have
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ςk _ςk

1 − ς2k
�

qkςk,b + 1 − qk( 􏼁ςk,a

1 − ς2k
qk _ςk,b + 1 − qk( 􏼁_ςk,a􏼐 􏼑,

_ςk,b �
_zk,1kk,b(t) − zk,1

_kk,b(t)(t)

k2
k,b(t)

,

_ςk,a �
_zk,1kk.a(t) − zk,1

_kk,a(t)

k2
k,a(t)

,

_V1 � _V0 + 􏽘
M

k�1

qkςk,b + 1 − qk( 􏼁ςk,a

1 − ς2k
qk _ςk,b + 1 − qk( 􏼁_ςk,a􏼐 􏼑 + ek,1 _ek,1 −

1
ck,1

􏽥ϖk,1 _ϖk,1 −
1

ck,2
􏽥ϖk,2 _ϖk,2􏼢 􏼣

� _V0 + 􏽘
M

k�1

qkςk,b

1 − ς2k
_ςk,b +

1 − qk( 􏼁ςk,a

1 − ς2k
_ςk,a + ek,1 _ek,1 −

1
ck,1

􏽥ϖk,1 _ϖk,1 −
1

ck,2
􏽥ϖk,2 _ϖk,2􏼢 􏼣

� _V0 + 􏽘
M

k�1

qkςk,b

kk,b 1 − ς2k,b􏼐 􏼑
_zk,1 −

zk,1
_kk,b

kk,b

􏼠 􏼡 +
1 − qk( 􏼁ςk,a

kk,a 1 − ς2k,a􏼐 􏼑
_zk,1 −

zk,1
_kk,a

kk,a

􏼠 􏼡 + ek,1 _ek,1 −
1

ck,1
􏽥ϖk,1 _ϖk,1 −

1
ck,2

􏽥ϖk,2 _ϖk,2
⎡⎢⎣ ⎤⎥⎦.

(25)

Let μk � (qk/k2k,b − z2
k,1) + ((1 − qk)/k2

k,a − z2
k,1), and we

can have

_V1 � _V0 + 􏽘
M

k�1
μkzk,1 _zk,1 − qk

zk,1
_kk,b

kk,b

− 1 − qk( 􏼁
zk,1

_kk,a

kk,a

􏼠 􏼡 + ek,1 _ek,1 −
1

ck,1
􏽥ϖk,1 _ϖk,1 −

1
ck,2

􏽥ϖk,2 _ϖk,2􏼢 􏼣

� _V0 + 􏽘
M

k�1
μkzk,1 zk,2 + ek,1 + αk,1 + 􏽥xk,2 + fk,1 xk( 􏼁 + hk,1 y􏼐 􏼑 − _yk,d − qk

zk,1
_kk,b

kk,b

− 1 − qk( 􏼁
zk,1

_kk,a

kk,a

􏼠 􏼡􏼢

+ ek,1 _ek,1 −
1

ck,1
􏽥ϖk,1 _ϖk,1 −

1
ck,2

􏽥ϖk,2 _ϖk,2􏼣.

(26)

According to Yang’s inequalities and Assumption 1, we
have

􏽘

M

k�1
μkzk,1hk,1 y􏼐 􏼑≤ 􏽘

M

k�1

μ2kz2
k,1

4
+ 􏽘

M

k�1
hk,1 y􏼐 􏼑􏼐 􏼑

2
≤ 􏽘

M

k�1

μ2kz2
k,1

4
+ 􏽘

M

k�1
􏽘

M

i�1
y
2
k Zk,1,i yk( 􏼁􏼐 􏼑

2
. (27)

Substituting (15) and (27) into (26), we obtain

_V1 ≤ 􏽘
M

k�1
− λmin Qk( 􏼁 − 1 −

1
λ

􏼒 􏼓 􏽥x k

����
����
2

+ yk θ∗T
k ξk xk( 􏼁 + εk xk( 􏼁􏽨 􏽩 +

μ2kz2
k,1

4
􏼨 􏼩

+ 􏽘
M

k�1
μkzk,1 zk,2 + ek,1 + αk,1 + 􏽥xk,2 + φ∗T

k ζk xk( 􏼁 + δk xk( 􏼁 − _yk,d − qk

zk,1
_kk,b

kk,b

− 1 − qk( 􏼁
zk,1

_kk,a

kk,a

􏼠 􏼡􏼢

+ ek,1 _ek,1 −
1

ck,1
􏽥ϖk,1 _ϖk,1 −

1
ck,2

􏽥ϖk,2 _ϖk,2􏼣.

(28)
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Based on ξT
k (·)ξk(·)≤ 1 and Yang’s inequalities, we can

infer inequalities (29)–(31):

yk θ∗T
k ξk xk( 􏼁 + εk xk( 􏼁􏽨 􏽩

≤ zk,1 θ∗T
k ξk xk( 􏼁 + εk xk( 􏼁􏽨 􏽩 + yk,d θ∗T

k ξk xk( 􏼁 + εk xk( 􏼁􏽨 􏽩

≤
z2

k,1ϖ
∗
k,1

4τk

+
z2

k,1

4
+

y2
k,d

2
+ ϖ∗k,1 + 2ε∗2k + τk,

(29)

μkzk,1 φ∗T
k ζk xk( 􏼁 + δk xk( 􏼁􏽨 􏽩≤

μ2kz2
k,1ϖ
∗
k,2

4τk

+
μ2kz2

k,1

4
+ δ∗2k + τk,

(30)

μkzk,1􏽥xk,2 ≤
1
λk

􏽥x k

����
����
2

+ λk

μ2kz2
k,1

4
, (31)

where τk > 0 and λk > 0 are design parameters.
Substituting (29)–(31) into (28) results in

_V1 ≤ 􏽘
M

k�1
− λmin Qk( 􏼁 − 1 −

1
λ

−
1
λk

􏼠 􏼡 􏽥x k

����
����
2

􏼨 􏼩

+ 􏽘
M

k�1
μkzk,1 zk,2 + ek,1 + αk,1 +

zk,1ϖ∗k,1

4τkμk

+
μkzk,1ϖ∗k,2

4τk

+
1 + 2μk + μkλk( 􏼁zk,1

4
− _yk,d − qk

zk,1
_kk,b

kk,b

− 1 − qk( 􏼁
zk,1

_kk,a

kk,a

􏼠 􏼡􏼢

+ ek,1 _ek,1 −
1

ck,1
􏽥ϖk,1 _ϖk,1 −

1
ck,2

􏽥ϖk,2 _ϖk,2 +
y2

k,d

2
+ ϖ∗k,1 + 2ε∗2k + δ∗2k + 2τk􏼣,

(32)

where yk,d � maxt∈[0,+∞] yk,d(t)􏽮 􏽯 is a constant. +en, (32)
can be rearranged as

_V1 ≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛

+ 􏽘
M

k�1
μkzk,1 zk,2 + ek,1 + αk,1 +

zk,1ϖk,1

4τkμk

+
μkzk,1ϖk,2

4τk

+
1 + 2μk + μkλk( 􏼁zk,1

4
− _yk,d − qk

zk,1
_kk,b

kk,b

− 1 − qk( 􏼁
zk,1

_kk,a

kk,a

􏼠 􏼡􏼢

+
1

ck,1
􏽥ϖk,1

ck,1z
2
k,1

4τk

− _ϖk,1􏼠 􏼡 +
1

ck,2
􏽥ϖk,2

ck,2μ2kz2
k,1

4τk

− _ϖk,2􏼠 􏼡 + ek,1 _ek,1 + dk,1􏼣,

(33)

where πk,1 � λmin(Qk) − 1 − (1/λ) − (1/λk) and dk,1 �

(y2
k,d/2) + ϖ∗k,1 + 2ε∗2k + δ∗2k + 2τk.
Now, we can choose αk,1, ϖk,1, and ϖk,2 as follows:

αk,1 � − ck,1zk,1 + c
⌢

k,1zk,1 −
zk,1ϖk,1

4τkμk

−
μkzk,1ϖk,2

4τk

−
1 + 2μk + μkλk( 􏼁zk,1

4
+ _yk,d,

(34)

_ϖk,1 �
ck,1z

2
k,1

4τk

− 2σk,1ϖk,1, (35)

_ϖk,2 �
ck,2μ2kz2

k,1

4τk

− 2σk,2ϖk,2, (36)

where ck,1 > 0, c
⌢

k,1 �

������������������������

( _kk,b/kk,b)2 + ( _kk,a/kk,a)2 + βk

􏽱

, and
σk,1 > 0 and σk,2 > 0 are design parameters. βk is a positive
design constant.

Substituting (34)–(36) into (33) results in

_V1 ≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛 + 􏽘
M

k�1
− ck,1μkz

2
k,1 + μkzk,1zk,2 + μkzk,1ek,1 +

2σk,1

ck,1
􏽥ϖk,1ϖk,1 +

2σk,2

ck,2
􏽥ϖk,2ϖk,2 + ek,1 −

ek,1

υk,1
− _αk,1􏼠 􏼡 + dk,1􏼢 􏼣

≤ 􏽘

M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛 + 􏽘

M

k�1
− ck,1μkz

2
k,1 + μkzk,1zk,2 + μkzk,1ek,1 +

2σk,1

ck,1
􏽥ϖk,1ϖk,1 +

2σk,2

ck,2
􏽥ϖk,2ϖk,2 −

e2k,1

υk,1
+ e

2
k,1 +

1
4
ψ2

k,1 + dk,1􏼢 􏼣,

(37)
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where ψk,1 is the maximum absolute value of _αk,1.
According to Yang’s inequalities, there exist (38)–(40):

2σk,1

ck,1
􏽥ϖk,1ϖk,1 ≤ −

σk,1

ck,1
ϖ2k,1 +

σk,1

ck,1
ϖ∗2k,1, (38)

2σk,2

ck,2
􏽥ϖk,2ϖk,2 ≤ −

σk,2

ck,2
ϖ2k,2 +

σk,2

ck,2
ϖ∗2k,2, (39)

μkzk,1ek,1 ≤ μkz
2
k,1 +

μk

4
e
2
k,1. (40)

Substituting (38)–(40) into (37) results in

_V1≤􏽘

M

k�1
− πk,1 􏽥xk

����
����
2

􏼚 􏼛

+ 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 +μkzk,1zk,2 + 1+

μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1􏼢

− 􏽘
2

i�1

σk,i

ck,i

ϖ2k,i + 􏽘
2

i�1

σk,i

ck,i

ϖ∗2k,i +
1
4
ψ2

k,1 + dk,1
⎤⎦.

(41)

Substituting the following inequality

−
σk,i

2ck,i

􏽥ϖ2k,i ≥ −
σk,i

ck,i

ϖ2k,i −
σk,i

ck,i

ϖ∗2k,i , (42)

into equation (41) results in

_V1≤􏽘
M

k�1
− πk,1 􏽥xk

����
����
2

􏼚 􏼛

+ 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 +μkzk,1zk,2 + 1+

μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1􏼢

− 􏽘

2

i�1

σk,i

2ck,i

􏽥ϖ2k,i + 􏽘

2

i�1

2σk,i

ck,i

ϖ∗2k,i +
1
4
ψ2

k,1 + dk,1
⎤⎦.

(43)

Step 2. Define zk,2 � 􏽢xk,2 − ωk,1 and zk,3 � 􏽢xk,3 − ωk,2. From
(16), we have

υk,2 _ωk,2 + ωk,2 � αk,2;

ωk,2(0) � αk,2(0).
(44)

Define ek,2 as the filter output error; then, we have ek,2 �

ωk,2 − αk,2 and _ωk,2 � − (ek,2/υk,2).
+e time derivative of zk,2 is as follows:

_zk,2 � 􏽢xk,3 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1

� zk,3 + αk,2 + ek,2 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1.
(45)

Choose the Lyapunov function candidate as

V2 � V1 + 􏽘
M

k�1

1
2
z
2
k,2 +

1
2
e
2
k,2􏼔 􏼕. (46)

+e time derivative of V2 is as follows:

_V2 � _V1 + 􏽘
M

k�1
zk,2 _zk,2 + ek,2 _ek,2􏼐 􏼑

� _V1 + 􏽘
M

k�1
zk,2 zk,3 + αk,2 + ek,2 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1􏼐 􏼑􏽨

+ ek,2 _ek,2􏽩

≤ _V1 + 􏽘
M

k�1
zk,2 zk,3 + αk,2 + ek,2 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1􏼐 􏼑􏽨

−
e2k,2

υk,2
+ e

2
k,2 +

1
4
ψ2

k,2􏼣,

(47)

where ψk,2 is the maximum absolute value of _αk,2.
According to Yang’s inequalities, we have

_V2 ≤ _V1 + 􏽘

M

k�1
zk,2 zk,3 + αk,2 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1􏼐 􏼑􏽨

+ z
2
k,2 +

1
4
e
2
k,2 −

e2k,2

υk,2
+ e

2
k,2 +

1
4
ψ2

k,2􏼣

≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛 + 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 + μkzk,1zk,2􏽨

+ 1 +
μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 − 􏽘

2

i�1

σk,i

2ck,i

􏽥ϖ2k,i

+ 􏽘
2

i�1

2σk,i

ck,i

ϖ∗2k,i +
1
4
ψ2

k,1 + dk,1⎤
⎦

+ 􏽘
M

k�1
zk,2 zk,3 + αk,2 − ℓk,2 􏽢xk,1 − yk􏼐 􏼑 − _ωk,1􏼐 􏼑􏽨

+ z
2
k,2 +

5
4

−
1
υk,2

􏼠 􏼡e
2
k,2 +

1
4
ψ2

k,2􏼣.

(48)

Design αk,2 as follows:

αk,2 � − ck,2zk,2 − μkzk,1 + ℓk,2 􏽢xk,1 − yk􏼐 􏼑 −
ωk,1 − αk,1

υk,1
,

(49)

where ck,2 > 0 is the design parameter.
Substituting (49) into (48) leads to
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_V2 ≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛 + 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 + μkzk,1zk,2 + 1 +

μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 − 􏽘

2

i�1

σk,i

2ck,i

􏽥ϖ2k,i + 􏽘
2

i�1

2σk,i

ck,i

ϖ∗2k,i +
1
4
ψ2

k,1 + dk,1
⎡⎣ ⎤⎦

+ 􏽘
M

k�1
zk,2zk,3 − μkzk,2zk,1 − ck,2 − 1􏼐 􏼑z

2
k,2 +

5
4

−
1
υk,2

􏼠 􏼡e
2
k,2 +

1
4
ψ2

k,2􏼢 􏼣

≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛 + 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 − ck,2 − 1􏼐 􏼑z

2
k,2 + zk,2zk,3 + 1 +

μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 +

5
4

−
1
υk,2

􏼠 􏼡e
2
k,2􏼢

− 􏽘
2

i�1

σk,i

2ck,i

􏽥ϖ2k,i + 􏽘
2

i�1

2σk,i

ck,i

ϖ∗2k,i + 􏽘
2

i�1

1
4
ψ2

k,i + dk,1⎤
⎦.

(50)

Step lth (l � 3, . . . , nk − 1): define zk,l � 􏽢xk,l − ωk,l− 1 and
zk,l+1 � 􏽢xk,l+1 − ωk,l. We have

υk,l _ωk,l + ωk,l � αk,l;

ωk,l(0) � αk,l(0).
(51)

Define the filter output error as ek,l; then, we obtain ek,l �

ωk,l − αk,l and _ωk,l � − (ek,l/υk,l).
+e time derivative of zk,l is as follows:

_zk,l � 􏽢xk,l+1 − ℓk,l 􏽢xk,1 − yk􏼐 􏼑 − _ωk,l− 1

� zk,l+1 + αk,l + ek,l − ℓk,l 􏽢xk,1 − yk􏼐 􏼑 − _ωk,l− 1.
(52)

Choose the Lyapunov function candidate as

Vl � Vl− 1 + 􏽘
M

k�1

1
2
z
2
k,l +

1
2
e
2
k,l􏼔 􏼕. (53)

+e time derivative of Vl is as follows:

_Vl � _Vl− 1 + 􏽘
M

k�1
zk,l _zk,l + ek,l _ek,l􏼐 􏼑

� _Vl− 1 + 􏽘

M

k�1
zk,l zk,l+1 + αk,l + ek,l − ℓk,l 􏽢xk,1 − yk􏼐 􏼑􏼐􏽨

− _ωk,l− 1􏼑 + ek,l _ek,l􏽩.

(54)

Design αk,l as follows:

αk,l � − ck,lzk,l − zk,l− 1 + ℓk,l 􏽢xk,1 − yk􏼐 􏼑 −
ωk,l− 1 − αk,l− 1

υk,l− 1
,

(55)

where ck,l > 0 is the design parameter.
Using the same recursive method in Step 2, we can get

_Vl ≤ 􏽘
M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛

+ 􏽘

M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 − 􏽘

l

i�2
ck,i − 1􏼐 􏼑z

2
k,i + zk,lzk,l+1

⎡⎣

+ 1 +
μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 + 􏽘

l

i�2

5
4

−
1
υk,i

􏼠 􏼡e
2
k,i − 􏽘

2

i�1

σk,i

2ck,i

􏽥ϖ2k,i

+ 􏽘

2

i�1

2σk,i

ck,i

ϖ∗2k,i + 􏽘

2

i�1

1
4
ψ2

k,i + dk,1
⎤⎦.

(56)

Step nkth: define zk,nk
� 􏽢xk,nk

− ωk,nk− 1, and we can get the
time derivative of zk,nk

as follows:

_zk,nk
� uk − ℓk,nk

􏽢xk,1 − yk􏼐 􏼑 − _ωk,nk− 1. (57)

Choose the Lyapunov function candidate as

Vnk
� Vnk− 1 + 􏽘

M

k�1

1
2
z
2
k,nk

􏼔 􏼕. (58)

Now, we can have the time derivative of Vnk
as follows:

_Vnk
� _Vnk− 1 + 􏽘

M

k�1
zk,nk

_zk,nk
􏼐 􏼑

� _Vnk− 1 + 􏽘
M

k�1
zk,nk

uk − ℓk,nk
􏽢xk,1 − yk􏼐 􏼑 − _ωk,nk− 1􏼐 􏼑􏽨 􏽩.

(59)

Choose the final control law as

uk � − ck,nk
zk,nk

− zk,nk− 1 + ℓk,nk
􏽢xk,1 − yk􏼐 􏼑 −

ωk,nk− 1 − αk,nk− 1

υk,nk− 1
,

(60)

where ck,nk
> 0 is the design parameter.
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Substituting (60) into (59) results in

_Vnk
≤ 􏽘

M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛

+ 􏽘
M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 − 􏽘

nk

i�2
ck,i − 1􏼐 􏼑z

2
k,i

⎡⎣

+ 1 +
μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 + 􏽘

nk

i�2

5
4

−
1
υk,i

􏼠 􏼡e
2
k,i − 􏽘

2

i�1

σk,i

2ck,i

􏽥ϖ2k,i

+ 􏽘
2

i�1

2σk,i

ck,i

ϖ∗2k,i + 􏽘

nk− 1

i�1

1
4
ψ2

k,i + dk,1⎤
⎦.

(61)

Define

H � 􏽘

2

i�1

σk,i

ck,i

ϖ∗2k,i + 􏽘

nk− 1

i�1

1
4
ψ2

k,i + dk,1. (62)

Substituting (62) into (61) leads to

_Vnk
≤ 􏽘

M

k�1
− πk,1 􏽥x k

����
����
2

􏼚 􏼛

+ 􏽘

M

k�1
− ck,1 − 1􏼐 􏼑μkz

2
k,1 − 􏽘

nk

i�2
ck,i − 1􏼐 􏼑z

2
k,i

⎡⎣

+ 1 +
μk

4
−

1
υk,1

􏼠 􏼡e
2
k,1 + 􏽘

nk

i�2

5
4

−
1
υk,i

􏼠 􏼡e
2
k,i

− 􏽘
2

i�1

σk,i

2ck,i

􏽥ϖ2k,i + H⎤⎦.

(63)

5. Stability Analysis

Define Lyapunov function of the closed-loop system as
V
⌢

� Vnk
, and we can have

_
V
⌢_

� _Vnk
. Let the design parameters

satisfy

ck,i − 1> 0, i � 1, 2, . . . , nk,

1 +
μk

4
−

1
υk,1
< 0,

5
4

−
1
υk,i

< 0, i � 2, . . . , nk − 1.

(64)

Define

Ck � min
2πk,1

λmax Pk( 􏼁
, 2 ck,i − 1􏼐 􏼑, 2σk,1, 2σk,2,􏼨

2
1
υk,1

− 1 −
μk

4
􏼠 􏼡, 2

1
υk,i

−
5
4

􏼠 􏼡􏼩,

(65)

where i � 2, . . . , nk.

Define C � mink�1,...,M Ck􏼈 􏼉, and (75) can be rearranged
as

V
⌢
≤ − CV

⌢
+ H. (66)

+en, we have

e
Ct _

V
⌢
≤ (− CV

⌢
+ H)e

Ct
, (67)

d
dt

V
⌢

e
Ct

􏼒 􏼓≤He
Ct

, (68)

V
⌢

e
Ct

− V
⌢

(0)≤
H

C
e

Ct
− 1􏼐 􏼑, (69)

0≤V
⌢

(t)≤V
⌢

(0)e
− Ct

+
H

C
1 − e

− Ct
􏼐 􏼑≤V

⌢
(0) +

H

C
. (70)

From (70), we can get that all the signals of the closed
system, such as xk,i(t), 􏽢xk,i(t), zk,i(t), ak,i(t), and uk(t), are
semiglobally uniformly ultimately bounded (SGUUB).
Moreover, the observer error satisfies

‖􏽥x k‖≤
��������������������������

(2V
⌢

(0)e− Ct + (H/C))/λmin(Pk)

􏽱

, and the tracking

error satisfies ‖zk,1‖≤
����������������

2V
⌢

(0)e− Ct + (H/C)

􏽱

.

6. Comparisons with Some Previous Results

Comparisons with previous results will be given in this
section.

(1) +e control methods in [11–20, 34] can deal with
only nonlinear system (71) without interconnected
subsystems:

_xi � xi+1 + fi(x),

_xn � u(t) + fn(x),

y � x1,

⎧⎪⎪⎨

⎪⎪⎩
(71)

where x � [x1, x2, . . . , xn]T and i � 1, 2, . . . , n − 1. y is
the only output of the system and is only affected by x,
fi(x), and u(t). +erefore, there is no coupling effect
hk,l(y) between subsystems.
+e control methods in [22, 25, 26] deal with large-scale
systems in strict feedback form while not in nonstrict
feedback structure (72):

_xk,1 � xk,2 + fk,1 xk,1􏼐 􏼑 + hk,1 y􏼐 􏼑,

_xk,2 � xk,3 + fk,2 xk,1, xk,2􏼐 􏼑 + hk,2 y􏼐 􏼑,

⋮
_xk,nk− 1 � xk,nk

+ fk,nk− 1 xk,1, . . . , xk,nk− 1􏼐 􏼑 + hk,nk− 1 y􏼐 􏼑,

_xk,nk
� uk + fk,nk

xk,1, . . . , xk,nk
􏼐 􏼑 + hk,nk

y􏼐 􏼑,

yk � xk,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(72)

where fk,i(xk,1, . . . , xk,i)(i � 1, 2, . . . , n) are the func-
tions of partial state variables, and large-scale system
(72) has a strict lower triangle structure.
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However, the control method in this paper is designed
for nonstrict feedback large-scale systems (73) that are
more complex compared with (71) and (72):

_xk,1 � xk,2 + fk,1 xk( 􏼁 + hfk,1
y􏼐 􏼑,

_xk,2 � xk,3 + fk,2 xk( 􏼁 + hfk,2
y􏼐 􏼑,

⋮
_xk,nk− 1 � xk,nk

+ fk,nk− 1 xk( 􏼁 + hk,nk− 1 y􏼐 􏼑,

_xk,nk
� uk + fk,nk

xk( 􏼁 + hk,nk
y􏼐 􏼑,

yk � xk,1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(73)

where xk � [xk,1, xk,2, . . . , xk,nk
]T ∈ Rnk . +en,

fk,i(xk,1, . . . , xk,i) is a function of full-state variables.
It is well known that an interconnected large-scale
system comprises some subsystems with obvious
interconnections, which lead to the increasing dif-
ficulty of controller design and stability proof for the
large-scale system. We unable to use the control
methods in [11–20, 34] to control the large-scale
system due to the coupling effect between subsys-
tems. Moreover, when the controller of the nonstrict
feedback large-scale system is designed by the
control methods in [22, 25, 26], the virtual control
signal and adaptive law of each subsystem are the
functions of full-state variables. Consequently, the
algebraic loop problem arises, which makes the
controller design of a nonstrict feedback large-scale
system very difficult. +erefore, the controller design
method of nonstrict feedback large-scale system (73)
considered in this paper is quite different from that
of the controller design methods in
[11–20, 22, 25, 26, 34].

(2) [21–25, 29–31] proposed adaptive control methods
for the large-scale system, but output constraints
were not considered. +ough [32, 33] presented the
control schemes for constrained systems, the system
considered in [32, 33] is not a large-scale system, and
all states should be measurable. +e strict limitation
makes these control methods difficult to realize in
practical applications. +erefore, control methods in
[21–25, 32, 33] cannot be used to control a large-scale
system with unmeasurable state and output con-
straints that is discussed in this paper. To the best of
our knowledge, by far, no results have been reported
on the adaptive control for the nonstrict feedback
large-scale nonlinear system with output constraints
and unmeasured states.

(3) +is proposed adaptive control scheme does not
need n-order differentiable and bounded conditions
of the input signals and a monotonically increasing
condition of unknown functions. However, these
strict assumptions are common in the existing

references [27, 28]. Moreover, this control scheme
has only 2M adaptive parameters, and the number of
parameters does not increase with the increase of
system’s order nk. +erefore, this control scheme not
only conforms to engineering practice but also has a
simple algorithm and requires a small number of
calculations.

7. Simulations

Consider the following nonstrict feedback large-scale system
[23]:

_x1,1 � x1,2 + x2
1,1 1 − cos x1,1x1,2􏼐 􏼑 + x1,2􏼐 􏼑

− 0.2x1,1 sin x1,1x1,2􏼐 􏼑 + y1y2,

_x1,2 � u1 + x1,1x1,2 + x1,1 + y2
1 + y2

2,

y1 � x1,1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

_x2,1 � x2,2 + x2,1 sin x2,1x2,2􏼐 􏼑 − 0.5x2,1 sin x2,1x2,2􏼐 􏼑 + y3
1y

3
2,

_x2,2 � u2 + x2,1x2,2 + y1 − 2y2,

y2 � x2,1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(74)

+e given tracking signals are y1,d � sin(0.5t) and
y2,d � 0.5 sin(t). +e constraints are given as k1,c1 �

− 0.2 × 2− t − 0.05 + y1,d, k1,c1 � 0.2 × 2− t + 0.05 + y1,d,
k2,c1 � − 0.2 × 2− t − 0.05 + y2,d, and k2,c1 � 0.2 × 2− t+

0.05 + y2,d.
Choose the parameters as ℓ1,1 � ℓ1,2 � ℓ2,1 � ℓ2,2 � 10,

c1,1 � 40, c1,2 � 20, c2,1 � 20, c2,2 � 20, λ1 � λ2 � 1,
τ1 � τ2 � 1, c1,1 � c1,2 � 1, c2,1 � c2,2 � 2, σ1,1 � σ1,2 � 0.05,
σ2,1 � σ2,2 � 0.1, and υ1,1 � υ1,2 � υ2,1 � υ2,2 � 0.5.
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Figure 1: Trajectories of y1,d, y1, and the output constraints.
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To show the superiority and validity of the method
proposed in this paper, we compare it with a scheme pro-
posed for large-scale systems without considering the output
constraints [23]. +e design parameters and initial condi-
tions of the two methods are the same. In the simulation,
system 1 is controlled by the method in this paper, whereas
system 2 is controlled by the method without output con-
straints [23].

Figures 1–5 show the simulation results. From
Figures 1–4, we can see that the output (y1,d, y2,d) and the

tracking error (z1,1, z2,1) of system 1 can both be kept within
the constraints, whereas the output and the tracking error of
system 2 violate the constraints. Figure 5 shows control
input signals uk of the two systems, respectively. From the
simulation results, it can be seen that the proposed adaptive
control approach in this paper not only guarantees the
boundedness of all the signals and not violating of output
constraints but also achieves better control performance
than that of the control method without considering output
constraints [23].
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Figure 2: +e tracking error z1,1 and the error constraints.
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Figure 3: Trajectories of y2,d, y2, and the output constraints.
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8. Conclusion

+is paper proposes an adaptive fuzzy dynamic surface
decentralized output feedback control scheme for a class of
large-scale interconnected uncertain nonstrict feedback
systems with time-varying output constraints. By using a
decentralized linear state observer, the unmeasurable states
can be estimated. Based on fuzzy logic systems, the uncertain
nonlinear functions and interconnected influence between
the subsystems can be compensated. +e problems of
nonstrict feedback and time-varying constraints are solved
by variable separation technology and time-varying barrier
Lyapunov function, respectively. +e proposed scheme can
not only achieve good tracking performance but also keep
the output trajectories within the given ranges. Finally, the
stability of the large-scale interconnected system is proved
by using the Lyapunov direct method.
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