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Releasing evolving networks which contain sensitive information could compromise individual privacy. In this paper, we study
the problem of releasing evolving networks under differential privacy. We explore the possibility of designing a differentially
private evolving networks releasing algorithm. We found that the majority of traditional methods provide a snapshot of the
networks under differential privacy over a brief period of time. As the network structure only changes in local part, the amount of
required noise entirely is large and it leads to an inefficient utility. To this end, we propose GHRG-DP, a novel differentially private
evolving networks releasing algorithm which reduces the noise scale and achieves high data utility. In the GHRG-DP algorithm,
we learn the online connection probabilities between vertices in the evolving networks by generalized hierarchical random graph
(GHRG) model. To fit the dynamic environment, a dendrogram structure adjusting method in local areas is proposed to reduce
the noise scale in the whole period of time. Moreover, to avoid the unhelpful outcome of the connection probabilities, a Bayesian
noisy probabilities calculating method is proposed. 'rough formal privacy analysis, we show that the GHRG-DP algorithm is
ε-differentially private. Experiments on real evolving network datasets illustrate that GHRG-DP algorithm can privately release
evolving networks with high accuracy.

1. Introduction

As more and more individual information in social network
is published, releasing network data might pose threats to
individual’s privacy. To protect the privacy of individual
information, network data should be sanitized before re-
leasing. Differential privacy has been proposed to address
such problem. Unlike the anonymization-based private al-
gorithms (e.g., k-anonymity [1] and l-diversity [2]), differ-
entially private algorithms are randomized algorithms.
Differentially private networks releasing algorithms protect
the essential structural information and ensure that the
connection relationship of each participant is insensitive.

In the differentially private static network literature, the
standard technique is to add noise to the output of an
otherwise non-private algorithm. However, small changes of
the network structure should cause a lot of impact point to
query answers and it leads to a large amount of perturbation
noise. 'us, synthetic network generation methods are used
to substitute these standard methods. Roughly speaking,
such synthetic network generation methods involve two

steps: (1) using the real network to learn the parameters for a
model of the network; (2) using the learned model to draw
synthetic network from its probability distribution. 'ese
synthetic network generation methods could “dilute” the
impact of small changes of the network structure by cap-
turing the connection probabilities between vertices.

However, the interactions between vertices are often
dynamic in nature, and how the network changes deserves to
be taken into account. Given a sequence of evolving net-
works, the standard technique of differential privacy is to
add noise to each snapshot of the evolving networks. In this
way, each snapshot of the evolving networks satisfies dif-
ferential privacy individually and turns the static differential
privacy algorithm into a “dynamic” version. However, this
kind of method suffers from poor performance. 'e root
cause is it leads to a large amount of repetitive perturbation
noise. We observe, in practice, the network structure be-
tween sequent snapshot changes within a local area. 'e
remaining part of the network is almost unchanged and
adding repetitive noise to the same connection probabilities
is inefficient. Furthermore, the connection probabilities
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between vertices of the network may obtain unhelpful
outcomes when the connection probabilities equal 0 or 1.

To this end, we propose a novel differentially private
evolving networks releasing algorithm, called GHRG-DP (i.e.,
differentially private based on generalized hierarchical ran-
dom graph). In particular, we first use generalized hierarchical
random graph (GHRG) model to represent the structure of
evolving networks and utilize a hierarchical structure (called
dendrogram) of the GHRG model to record connection
probabilities between any pair of vertices which have
appeared over a period of time. Unlike the popular hierar-
chical random graph (HRG) model, GHRG allows tree nodes
of dendrogram to have any number of children and quantify
the change of network’s structure. As the network structure
between sequent snapshots changes within a local area, it is
important to design a method to generate a good dendrogram
of each snapshot of evolving networks. We do not directly
generate the best-fitting GHRG by MCMC method, but we
generate the GHRG by adjusting the GHRG of the prior time.
'en, we model each connection probability as a distribution
instead of a point value and add noise to the parameters for
the model of the network instead of adding noise to the point
value of the connection probability. Finally, we compute
connection probabilities’ posterior by Bayesian theory.

To make the GHRG-DP satisfy differential privacy, we
first sample a GHRG by a Markov chain Monte Carlo
(MCMC) method by exponential mechanism while satis-
fying differential privacy. 'en, we adjust the GHRG by
exponential mechanism while satisfying differential privacy
as well. 'irdly, we add Laplace noise to the parameters for
the model of the network. 'rough formal privacy analysis,
we prove that GHRG-DP satisfies ε-differential privacy. In
summary, we present several contributions:

(1) We introduce generalized hierarchical random
graph model as an effective means of encoding the
evolving networks and propose a method to adjust
the GHRG model which is suitable for evolving
networks.

(2) We develop a novel differentially private evolving
networks releasing algorithm, GHRG-DP. To ensure
that the releasing evolving networks under differ-
ential privacy do not incur excessive noise, we
propose a method by adding noise to the parameters
for the model of the network.

(3) 'rough privacy analysis and experiments on real
evolving network datasets, we prove that GHRG-DP
algorithm can privately release evolving networks
with high accuracy.

'e rest of our paper is organized as follows. Section 2
provides a literature review. Section 3 introduces necessary
background on differential privacy and hierarchical random
graph model. Section 4 identifies the weakness of applying
differentially private static network releasing algorithm to
evolving networks. In Section 5, we describe our GHRG-DP
algorithm in detail. Section 6 gives the privacy analysis.
Section 7 reports the experimental results. Section 8 con-
cludes the paper.

2. Related Work

Many existing works about social network differential pri-
vacy focus on social network analysis. 'ese methods output
some network statistics under differential privacy such as
degree distribution, subgraph number, and clustering co-
efficient. In particular, Dwork et al. [3] proposed a differ-
entially private method to answer the queries by adding
noise to outcome directly. Hay et al. [4] proposed a dif-
ferentially private method in a postprocessing phase and
computed the consistent input most likely to have produced
the noisy output. Hay et al. [5] used this method to estimate
the degree distribution. Nissim et al. [6] introduced the
concept of smooth sensitivity to protect individuals’ privacy
by adding a small amount of random noise to the released
statistics, such as triangle count of a network. Zhang et al. [7]
analyzed the released statistics through a ladder function and
reduced the sensitivity effectively. Cheng et al. [8] presented
a two-phase differentially private frequent subgraph mining
algorithm called DFG. In DFG, frequent subgraphs are
privately identified in the first phase, and the noisy support
of each identified frequent subgraph is calculated in the
second phase. Ding et al. [9] published the triangle counts
satisfying the node-differential privacy with the triangle
count distribution and the cumulative distribution. Sun et al.
[10] formulated a decentralized differential privacy scheme
named DDP, which requires that each participant considers
not only their own privacy but also that of their neighbors
involved in their ELV. Wang et al. [11] studied the problem
of differential privacy for weighted network through the
probability model.

Differentially private social network releasing algorithm
also draws attention. Sala et al. [12] introduced a differen-
tially private graph model called Pygmalion. Pygmalion
extracts a graph’s detailed structure into dK-graph, intro-
duces noise into the resulting dataset, and generates a
synthetic graph. Lu andMiklau [13] proposed algorithms for
privately estimating the parameters of exponential random
graph models (ERGMs) of a network. Based on the idea of
stochastic Kronecker graph model, Mir and Wright [14]
used maximum likelihood estimation to privately estimate
the parameters. Xiao et al. [15] proposed a differentially
private network publishing method, HRG-MCMC, witch
computes an estimator of a given graph in the hierarchical
random graph (HRG) model in a differentially private
manner and samples possible HRG structures in the model
space via Markov chain Monte Carlo (MCMC) witch sat-
isfies the exponential mechanism. Qin et al. [16] investigated
techniques to ensure local differential privacy of individuals
while collecting structural information and generating
representative synthetic social graphs. Chen et al. [17]
presented a method for publishing differentially private
synthetic attributed graphs, which is able to preserve the
community structure of the original graph without sacri-
ficing the ability to capture global structural properties.

Many existing works also focus on ensuring dynamic
network data privacy. Bhagat et al. [18] analyzed the privacy
risks of publishing multiple instances of the same network
independently and proposed methods to perform group-
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based anonymization. Tai et al. [19] introduced the concept
of k2-degree anonymity, which limits the probability of a
vertex being re-identified to 1/k. Krzysztof Juszczyszy
measured the transitions during network evolution by link
prediction. Medforth and Wang [20] proposed an ano-
nymization method to solve “degree-tail” attack. Macwan
and Patel [21] proposed an anonymization approach to
preserve the user identity from all the published time-series
datasets of a social network. Yue et al. [22] proposed an
efficient and adaptive general graph anonymization
framework for incremental data publication. 'ey proposed
an anonymization process restart issue (APRI) and designed
an activated function to determine whether an anonym-
ization process should be restarted at a certain time in order
to solve the problem of high time complexity and large
information loss in the incremental data publication. Zhiyuli
et al. [23] attempted to model the hierarchical and dynamic
features of social networks by designing a damping-based
sampling algorithm corresponding to a local search-based
incremental learning algorithm, which can easily be ex-
tended to large-scale scenarios.

Most existing differentially private graph models do not
fit evolving network. In this work, we develop a differentially
private network publishing method for evolving network.

3. Background

3.1. Hierarchical Random Graph. Suppose the input net-
work dataset is a simple undirected graph G � (V, E), where
V is the set of vertices and E⊆V × V is the set of edges.
Claustet et al. [24] proposed the hierarchical random graph
(HRG) model. HRG uses a hierarchical structure and
connection probabilities between any pair of vertices to
denote a graph G. 'e hierarchical structure is represented
by a dendrogram T. 'e dendrogram is a binary tree which
has n leaf nodes corresponding to the n vertices. Each in-
ternal node r represents a connection probability
pr � Er/Nr. In particular, Nr � nLr · nRr, where nLr and nRr

denote the numbers of leaves of left subtrees Lr and right
subtrees Rr, respectively. Er is the number of edges between
the leaves of Lr and Rr.

Given a graph G, we use the likelihood of the HRG to
measure how much it matches G. 'e likelihood can be
calculated as follows:

L T, pr (  � 
r∈T

p
Er

r 1 − pr( 
Nr− Er , (1)

where h(pr) � − prlogpr − (1 − pr)log(1 − pr) is the
Gibbs–Shannon entropy function. A higher likelihood
corresponds to a better representation of the network’s
structure.

3.2. Generalized Hierarchical Random Graph. Peel and
Clauset [25] introduced the generalized hierarchical random
graph (GHRG)model in 2014. It also defines a couple of data
structures (T, pr ) in formal. Unlike the popular HRG
model, the GHRG allows the nodes in the dendrogram to
have two or more child nodes. It models community

structure at all scales and provides accurate fits to social
networks. In the dynamic evolving systems, the GHRG could
improve the interpretability for varying a network’s
structure.

3.3. Differential Privacy. Given a graph G, differential pri-
vacy ensures that the outputs are approximately the same
even if any edge is arbitrarily added or deleted in the graph.
'us, the presence or absence of any edge has a negligible
effect on the outputs. We define two graphs G1 � (V1, E1)

and G2 � (V2, E2) to be neighbors if they satisfy V1 � V2,
E1 ⊂ E2, and |E2| � |E1| + 1. ε-differential privacy is defined
as follows.

Definition 1. (ε-differential privacy [3]). A randomized al-
gorithmA is ε-differential privacy if for any two neighboring
graphs G1 and G2, and for any output O ∈Range(A),

pr A G1(  ∈ O ≤ e
ε
pr A G2(  ∈ O . (2)

Differential privacy is based on the concept of global
sensitivity of a function f. It is used to measure the maximum
change in the outputs of f when any edge in the graph is
changed. 'e global sensitivity of f is defined as
Δf � maxG1 ,G2

‖f(G1) − f(G2)‖1.
Differential privacy can be achieved by Laplace mech-

anism and exponential mechanism. 'e Laplace mechanism
is mainly used for functions whose outputs are real values.
Differential privacy can be achieved by adding properly
noise drawn randomly from Laplace distribution to the true
answer.

Theorem 1. (Laplace mechanism [3]). For any function
f: G⟶ Rd with sensitivity Δf, the algorithm

A(G) � f(G) +〈Lap1(Δf/ε), . . . , Lapd(Δf/ε)〉, (3)

satisfies ε-differential privacy, where Lapi(Δf/ε) are i.i.d.
Laplace variables with scale parameter Δf/ε.

6e exponential mechanism is mainly used for functions
whose outputs are not real numbers. 6e main idea is to
sample the output data O from the output space O according
to the utility function u. 6e global sensitivity of u is
Δu � maxO,G1 ,G2

|u(G1, O) − u(G2, O)|.

Theorem 2. (exponential mechanism [26]). Given a graph G
and a utility function u: (G × O)⟶ R, the arithmetic A
whose output is with probability proportional to
exp(ε · u(G, O)/2Δu) satisfies ε-differential privacy.

Theorem 3. (sequential composition [27]). If each arithmetic
Ai provides εi-differential privacy, a sequence of
(A1(D),A2(D), . . . ,A3(D)) over the same database D
provides 

n
i�1 εi-differential privacy.

4. A Straightforward Approach

In this section, we present a straightforward approach to
public evolving networks under differential privacy. 'e
main idea of this straightforward approach is to add noise to
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every snapshot of the evolving network and let the graph of
every timestamp satisfy differential privacy. In particular, we
first identify the hierarchical random graph (HRG) that best
fits Gt. Gt presents the snapshot of evolving networks at time
t. And then, we generate Gt from the identified HRG. Recall
that an HRG consists of a dendrogram T and associated
probabilities set pr . According to the HRG-MCMC
method in [15], we can sample a good dendrogram T by
means of Markov chain Monte Carlo (MCMC) procedure
which satisfies exponential mechanism. For the associated
probabilities set, we add noise to them directly to generate
pr . At last, we generate Gt from pr  and dendrogram T.
To satisfy differential privacy, the acceptance ratio paccept is

paccept � min 1,
exp ε1logL T′( /2Δu( 

exp ε1logL(T)/2Δu( 
 , (4)

where Δu is the global sensitivity of the utility function. It is
worth noting that the generating Gt process of timestamp are
independent of each other.

4.1. Privacy Analysis of Straightforward Approach. Firstly, at
every timestamp, MCMC procedure under exponential
mechanism satisfies ε1− differential privacy, and the sensitivity
is Δu � logNmax + log (1 + 1/(Nmax − 1))Nmax − 1 � O(log n).
When n is evenNmax � n2/4, andNmax � (n2 − 1)/4 when n is
odd. 'en, generating pr  satisfies ε2− differential privacy.
Hence, based on the sequential composition, the method in
each timestamp satisfies (ε1 + ε2)− differential privacy. When
the time span is t, the straightforward approach satisfies
t(ε1 + ε2)− differential privacy.

4.2. 6e Disadvantage of Straightforward Approach.
However, the straightforward approach produces poor re-
sults. Firstly, as we observe, the structure of evolving net-
work changes a little most of the time. 'e structure and the
dendrogram of a snapshot are similar to a contiguous
snapshot. 'e straightforward approach samples dendro-
gram T via MCMC procedure in each timestamp, respec-
tively. It results in a lot of repetitive computation and
drastically reduces the utility of the results. 'en, the as-
sociated probability pr may lead to calculation impairments
when we calculate the likelihood function. Consider the case
where zero connections Er � 0, or all connections Er � Nr;
we have pr � 0 or 1; thus the likelihood drops to 0 and results
in an unhelpful outcome.

5. GHRG-DP Algorithm in Description

We propose a differentially private evolving networks re-
leasing method, called GHRG-DP. 'is method is based on
generalized hierarchical random graph and can solve the
deficiency discussed in Section 4. Our solution is composed
of two schemes: (1) we propose a dendrogram construction
method for evolving network, called dendrogram con-
struction based on adjustment (DCBA) (see Section 5.1).
DCBA samples a dendrogram Tt

sample by MCMC process at t
time. To achieve differential privacy, we employ the

exponential mechanism during the MCMC process. 'en,
we propose a dendrogram structure adjustment method. We
structure a dendrogram Tt+1

sample of t+ 1 time by adjusting the
structure of Tt

sample locally. (2) Given the graph Gt and the
dendrogram Tt

sample, we propose a noisy probability calcu-
lation method based on Bayesian theory (see Section 5.2). In
this method, pr will not be a single numerical value, but a
distribution. 'us, we could quantify the uncertainty of pr

and avoid pr equal to 0 or 1.'en, we calculate the posteriori
distribution of pr by Bayesian theory. To achieve differential
privacy, we add noise to the parameters or hyperparameters
to achieve the noisy probability pr . At last, we place edges
to Gt with probability pr and get a privatized synthetic
graph.

5.1. Dendrogram Construction Method: DCBA. Given
evolving graphs G{ }1n, we measure how plausible this den-
drogram is to represent the graph Gt by the logarithm of the
likelihood. 'is log-likelihood can be computed by Bayes
theorem. In fact, we find that the structures of adjacent
dendrogram are similar. For example, in dataset AS-733
[28], the log-likelihood of dendrograms in adjacent time
changes less than 0.05. 'us, we could get Tt+1

sample through
adjusting Tt

sample locally and reduce the amount of noise we
need to add.

To this end, we propose a locally dendrogram structure
adjustment algorithm, called DCBA (dendrogram con-
struction based on adjustment). 'e main idea of DCBA is
structuring the dendrogram by GHRG model to satisfy the
dynamic. When the structure of Gt+1 changes a little
compared to Gt, we could get Tt+1

sample through adjusting
Tt
sample locally. Otherwise, we should sample a new Tt+1

sample
through theMCMC algorithmwhich satisfies the differential
privacy. In DCBA, we adjust the structure of dendrogram
locally in order to simplify process of structuring the den-
drogram. In particular, when a new vertex s is added to Gt+1,
based on the GHRG model, we could first, respectively,
insert s into Tt

sample as the brother node of each leaf node and
get a candidate set of dendrogram. For example, Figure 1
gives an example of the candidate set of dendrogram. 'en,
we compute the log-likelihood of each candidate. Finally, we
choose the dendrogram which has the maximum log-like-
lihood value to be Tt+1

sample.
'e DCBA algorithm is shown in Algorithm 1. Given the

evolving graphs G{ }1n, we first judge the change situation of
the graph structure at time t+ 1 through change-point de-
tection method (line 1). We use the method from [25] to
detect the change point and choose threshold. Next, when
the change of the graph structure is greater than the
threshold, we should sample the dendrogram renewedly
through MCMC which simulates the exponential mecha-
nism (lines 2–10). Let the utility function be
u(T) � log L(T), where Δu is the sensitivity of the utility
function. On the contrary, when the change of the graph
structure is less than the threshold, we should adjust the
structure of dendrogram locally. We get a candidate set of
dendrogram and compute the log-likelihood of each can-
didate (lines 12–15). Finally, we choose the dendrogram
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through the exponential mechanism (line 17). Let the utility
function be u′(Tcandidate) � log L(Tcandidate) and we sample
Tcandidate with probability proportional to
exp(ε3 · log L(Tcandidate)/ 2Δu′)/Tcandidate′∈T exp(ε3 · log L(

Tcandidate′)/2Δu′). T is the entire candidate set of the new
dendrogram. It is easy to know that the global sensitivity
Δu′ < 1 and we set it as 1.

5.2. Noisy Probability Calculation Method: PCBD. 'e noisy
connection probability computing algorithm PCBD is
shown in Algorithm 2. To avoid connection probability pr to
be 0 or 1, we model pr as a distribution and prevent its

expected value from becoming 0 or 1. When the Beta dis-
tribution has hyperparameters as α� β� 1, it corresponds to
a uniform distribution. So, we treat the uniform distribution
with the parameter pr as the Beta distribution with
hyperparameters α� β� 1. In addition, the Beta distribution
is conjugate with the Binomial distribution. When the
conjugate prior distribution is the Beta distribution, the
posteriori distribution is still the Beta distribution. And
when the conjugate prior distribution is the uniform dis-
tribution with the parameter pr, the posteriori distribution is
the Beta distribution as well. We could get the likelihood
through Bayesian theory:

Dendrogram in time t

Possible dendrogram
in candidate set a�er

node s is added in time
t + 1

s s s

Figure 1: An example of the candidate set of dendrogram produced by GHRG.

Input：sampled dendrogram Tt
sample at time t, evolving graphs G{ }1n, privacy parameter ε1, ε3.

Output：sampled dendrogram Tt+1
sample at time t+ 1.

(1) if the result of change-point detection of Gt+1 is true then
(2) Initialize the Markov chain by choosing a random starting dendrogram T0;
(3) for i ∈ Markov chain step do
(4) Randomly pick an internal node r in Ti− 1;
(5) Pick a neighboring dendrogram T′ of Ti− 1 by randomly drawing a configuration of r’s subtrees;
(6) Accept the transition and set Ti � T′ with probability min(1, (exp(ε1log L(T′)/2Δu1)/exp(ε1log L(Ti− 1)/2Δu1)));
(7) end for
(8) if equilibrium is reached then
(9) Return the sampled dendrogram Tt+1

sample � Ti;
(10) end if
(11) else
(12) for each new node s ∈ v, v ∈ Gt+1 and v ∉ Gt  do
(13) for each internal node u whose child nodes are leaves in Tt

sample do
(14) regard s as u’child node and construct a candidate set of the new dendrogram;
(15) compute the log-likelihood of each candidate log L(Tcandidate) ;
(16) end for
(17) sample the new dendrogram with probability proportional to

exp(ε3 · log L(Tcandidate)/2)/Tcandidate′ ∈T exp(ε3 · log L(Tcandidate′ )/2) from the candidate set;
(18) end for
(19) Return the sampled dendrogram Tt+1

sample;
(20) end if

ALGORITHM 1: Dendrogram construction based on adjustment (DCBA).
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p G|T, pr (  � p(G|T, α, β) � 
r

Γ(α + β)

Γ(α)Γ(β)

Γ Er + α( Γ Nr − Er + β( 

Γ Nr + α + β( 
. (5)

Given the evolving graphs in the sliding window
Gt, . . . , Gt+w− 1 , where w is the length of the sliding win-
dow, we could compute the posteriori distribution prMAP by
updating the hyperparameters. prMAP represents the maxi-
mum value of pr using Maximum A Posteriori (MAP). We
update the hyperparameters as follows:

αr
′ � α + 

Gt,...,Gt+w− 1{ }

E
Gt

r ,

βr
′ � β + 

Gt,...,Gt+w− 1{ }

Nr − E
Gt

r .
(6)

'us, we could obtain prMAP from
(Er + αr

′)/(Nr + αr
′ + βr
′). To satisfy the differential privacy,

we add noise to the hyperparameters αr
′ and βr

′ with ap-
plication of the Laplace mechanism. 'e global sensitivity of
PCBD is 2N, where N is the size of the node set which
contains the nodes of all the graphs in the sliding window.
'e reason is that when we insert or delete any edge, the
maximum effect it leads to is N. 'e sanitized hyper-
parameters are αr

′ � αr
′ + lap(2N/ε2) and

βr
′ � βr
′ + lap(2N/ε2), and

prMAP �
Er + αr
′

Nr + αr
′ + βr
′
. (7)

'e PCBD algorithm is shown in Algorithm 2. In
particular, we first get the union set Gt

′ which contains all the
graphs in the sliding window and compute Nr from Gt

′. We
should also compute Er from Gt (lines 1-2). 'en, we
compute the increment of the hyperparameters Δαi and Δβi

usingNr and Er of each graph in the sliding window (lines 3-
4). To satisfy the differential privacy, we add noise to Δαi and
Δβi, and we get Δαi and Δβi (line 5). Next, we update the

hyperparameters αr
′ and β′ and compute prMAP(lines 7-8).

Finally, we use recursion method to compute the noisy
probabilities of internal nodes of all the dendrograms.

5.3.Generationof SyntheticGraph. After getting the sampled
dendrogram Tt

sample and the noisy probabilities prMAP t, for
each pair of nodes i, j ∈ Vt, we could find the common
ancestor r of i, j which is closest to them. 'en, we place an
edge Eij with independent probability prMAP and get the
synthetic graph Gt. Algorithm 3 shows the specific process.

6. Privacy Analysis of GHRG-DP

6.1. Sensitivity Computation of GHRG-DP. We first analyze
the global sensitivity Δu of DCBA algorithm. Δu is the
maximum change in the log-likelihood when any edge of
graph misses. From [15], we know
Δu � maxr∈T|(− Nrh(pr) − (− Nrh(pr

′)))|, where pr � (Er +

αr
′)/(Nr +αr

′ + βr
′),pr
′ � (Er − 1 + αr

′)/(Nr + αr
′ + βr
′).

Theorem 4. Δu � log((w + 1)Nr − w + 1) + (1 + w) log
(1 + w) − (2 + w)log(2 + w) and it is O(log n).

Proof. We first fix Nr and treat Er as variable. Let
f(Er) � h(pr) − h(pr

′), and we have Δu � max|f(Er)|. For
all pr, we have h″(pr)< 0. 'en, we could know h′(pr) �

log(1 − pr) − logpr monotonically decreases. Since
h′(0.5) � 0, we note that h′(pr)> 0 when pr is in (0,0.5), and
h′(pr)< 0 when pr is in (0.5,1]. As h(pr) has symmetric
property, we have Δu � max(− min(Nr · f(Er)),

max(Nr · f(Er))) � max(f(Er)). When pr � 1 or 0, that is,
Er � Nr or 1, f(Er) gets the maximum value. Let Er � 1,
and we have

Δu � Nr h pr(  − h pr
′( 




� Nr prlogpr + 1 − pr( log 1 − pr(  − pr
′logpr
′ + 1 − pr

′( log 1 − pr
′( ( 




� Nr|
Er + αr
′

Nr + αr
′ + βr
′
log

Er + αr
′

Nr + αr
′ + βr
′  + 1 −

Er + αr
′

Nr + αr
′ + βr
′ log 1 −

Er + αr
′

Nr + αr
′ + βr
′  

−
Er − 1 + αr

′

Nr + αr
′ + βr
′
log

Er − 1 + αr
′

Nr + αr
′ + βr
′
− 1 −

Er − 1 + αr
′

Nr + αr
′ + βr
′ log 1 −

Er − 1 + αr
′

Nr + αr
′ + βr
′ 



�
Nr

Nr + αr
′ + βr
′

1 + αr
′( log 1 + αr

′(  + Nr − 1 + βr
′( log Nr − 1 + βr

′(  − αr
′log αr
′ − Nr + βr

′( log Nr + βr
′( 




�
1

w + 1
(w + 1)Nr − w + 1( log (w + 1)Nr − w + 1(  − (w + 1)Nr − w( log (w + 1)Nr − w(  + k( ,

(8)
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where the constant k � (1 + w)log(1 + w) − (2+

w)log(2 + w). Let f(x) � x logx, we havef′(x) � 1 + log x,
and Δu≤ log((w + 1)Nr − w + 1) + k + 1 � O(logNr) �

O(log n). □

6.2. Privacy Proof of GHRG-DP. Based on the sequential
composition property, we prove that GHRG-DP satisfies
ε-differential privacy.

Theorem 5. GHRG-DP satisfies ε-differential privacy.

Proof. We suppose that the length of evolving graphs is T,
and there are m change points. Based on the sequential
composition property, DCBA algorithm satisfies
(mε1 + (T − m)ε3)-differential privacy and PCBD algorithm
satisfies Tε2-differential privacy. In Algorithm 3, we know
that the synthetic graph is generated through sampled
dendrogram and noisy probabilities, and it does not con-
sume any privacy budget. Hence, GHRG-DP satisfies
ε-differential privacy, and ε � (mε1 + (T − m)ε3) + Tε2. □

7. Experimental Results

7.1. Experiment Settings. We make use of two real-world
evolving network datasets in our experiments: AS-caida [28]
and AS-733. 'e dataset contains 122 CAIDA AS graphs,
from January 2004 to November 2007. Each file contains a

full AS graph derived from a set of RouteViews BGP table
snapshots. In our experiment, we extracted snapshots weekly
from Jan. 2004 to Apr. 2006. AS-733 collects the commu-
nication record of an Autonomous System (AS). It is col-
lected from University of Oregon RouteViews Project. In
our experiment, we extracted snapshots daily from Nov. 8,
1997, to Dec. 17, 1997. 'e statistics of portion data are
shown in Tables 1 and 2.

We compare the accuracy of GHRG-DPwith DDPA [29]
and the straightforward method through (1) the relative
error of degree distribution and shortest path length dis-
tribution (2) the running time. 'e relative error is repre-
sented as

rel.err �
S(G) − Savg(

G)


1
2

. (9)

As differential privacy needs to produce random noise,
we measure the accuracy of the result by the median relative
error where we run the Laplace mechanism 10 times.

7.2. Evaluation of GHRG-DP

7.2.1. Comparing with Other Approaches. To show the utility
of GHRG-DP algorithm, we first compare the relative error
of degree distribution and shortest path length distribution

Input: evolving graphs G{ }t
t+w− 1, sampled dendrogram Tt

sample, privacy parameter ε2, the length of the sliding window w, Tt
sample ’s

internal node r∗
Output: noisy probabilities prMAP t, r ∈ r∗, all internal nodes below r∗{ }

(1) Gt
′ � Gt ∪Gt+1 ∪ · · · ∪Gt+w− 1;

(2) compute the Nr of Gr
′ and Er of Gt;

(3) for Gi ∈ Gt, Gt+1, . . . , Gt+w− 1  do
(4) Δαi � E

Gi
r ,Δβi � Nr − E

Gi
r ;

(5) Δαi � E
Gi
r + lap(2N/ε2), Δβi � Nr − E

Gi
r + lap(2N/ε2);

(6) for end
(7) αr

′ � α + i�t,t+1,...,t+w− 1Δαi,βr
′ � β + i�t,t+1,...,t+w− 1Δβi;

(8) prMAP � (Er + αr
′/Nr + αr

′ + βr
′)；

(9) for each r∗’child do
(10) rc←r

∗′child;
(11) PCBD ( G{ }t

t+w− 1, Tt
sample, ε2, w, rc);

(12) end for

ALGORITHM 2: Probability calculation based on distribution (PCBD).

Input: input graph G{ }t
t+w− 1, sampled dendrogram Tt

sample, privacy parameter ε2
Output: synthetic graph Gt

(1) rroot← root node of Tt
sample；

(2) PCBD ( G{ }t
t+w− 1, Tt

sample, ε2, w, rroot);
(3) for each pair of vertices i, j ∈ Vt do
(4) find the lowest common ancestor r of i and j in Tt

sample;
(5) place an edge in Gt between i and j with independent probability prMAP；
(6) for end
(7) return Gt；

ALGORITHM 3: Generate synthetic graph.Gt.
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Tabel 1: Statistics of AS-caida.

Snapshot 1 5 9 13 17 21 25 29 33 37 40
#Nodes 16301 17160 17848 18740 19489 20344 21202 21339 21548 21672 21885
#Edges 65910 70026 74344 77002 79718 81882 85850 86566 87784 88654 88944

Tabel 2: Statistics of AS-733.

Snapshot 1 5 9 13 17 21 25 29 33 37 40
#Nodes 3015 3022 3037 3055 3066 3095 3109 3130 3153 3166 3172
#Edges 5347 5368 5361 5433 5440 5533 5550 5774 5798 5869 5855
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Figure 2: 'e relative error of degree distribution. (a) AS-caida. (b) AS-733.
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Figure 3: 'e relative error of shortest path length distribution. (a) AS-caida. (b) AS-733.
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with DDPA and the straightforward method which we have
mentioned above. From Figures 2 and 3, we can see that
GHRG-DP outperforms the DDPA and straightforward
method. 'is is because we add noise to the posterior pa-
rameters of the model instead of adding noise to the con-
nection probabilities. GHRG-DP avoids perturbing the
connection probabilities directly. Furthermore, we observe

that, comparing the variance of the relative error during the
entire time series, GHRG-DP also outperforms the
straightforward method. 'is means that the output of
GHRG-DP is more stable.'is is because, during the process
of PCBD algorithm, neighbor networks are similar to each
other and it leads to the similar posterior parameters. 'us,
the networks GHRG-DP generates are more stable.

Tabel 3: Running time evaluation.

Dataset Average time of GHRG-DP (ms) Average time of DDPA (ms) Average time of straightforward method (ms)
AS-caida 506 6144 5904
AS-733 88.5 1106 1054
Dataset Median of GHRG-DP (ms) Median of DDPA (ms) Median of straightforward method (ms)
AS-caida 62 5933 5912
AS-733 10 1003 995
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Figure 4: 'e relative error of degree distribution on different ε. (a) AS-caida. (b) AS-733.
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Figure 5: 'e relative error of shortest path length distribution on different ε. (a) AS-caida. (b) AS-733.
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'en, we compare the running time with DDPA and the
straightforward method. From Table 3, we can see that
GHRG-DP uses less time than DDPA and the straightfor-
wardmethod takes the most time.'is is because, in GHRG-
DP, we generate the dendrogram by adjustment inmost time
and it omits the MCMC process. However, the median of
GHRG-DP is much less than the average, and the median of
DDPA and the straightforward method is roughly equal to
the average. 'is is because, when the result of change-point
detection is false, the adjustment process of dendrogram
omits the MCMC computing process. 'e running time is
much less than the straightforward method. However, when
the result of change-point detection is true, GHRG-DP
needs to sample the dendrogram by MCMC. At this time,
the running time is similar. As a result, the running time of

GHRG-DP increases, and some part of running time be-
comes protruding.

7.2.2. Evaluation of GHRG-DP on Different ε. In Figures 4
and 5, we show how the assignment of privacy parameter
affects the performance of GHRG-DP. We fix ε � 1.0 and
assign (ε1, ε2) � (0.1, 0.9), (0.3, 0.7), (0.6, 0.4), (0.9, 0.1){ }

for DCBA and PCBD, respectively. We compare the relative
error of degree distribution and shortest path length dis-
tribution. From Figures 4 and 5, we can see, when ε1 is
relatively large, the relative error always stays high. 'is is
because, in PCBD, we perturb the model parameters and it
affects the synthetic graph directly. 'is means that, com-
pared with the process of sampling dendrogram under
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Figure 6: 'e relative error of degree distribution on different w. (a) AS-caida. (b) AS-733.
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Figure 7: 'e relative error of shortest path length distribution on different w. (a) AS-caida. (b) AS-733.
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differential privacy, the process of perturbing the model
parameters affects the performance of GHRG-DP much
more.

7.2.3. Evaluation of GHRG-DP on Different Lengths of Sliding
Window. In Figures 6 and 7, we show how the length of the
sliding window affects the performance of GHRG-DP. We
set the length to be w � 4, 8, 16, 32{ }, respectively. We
compare the relative error of degree distribution and
shortest path length distribution.

Form Figures 6 and 7, we can see, when the length of the
sliding window is relatively long, the relative error always
stays high. 'is is because, when we update the hyper-
parameters in PCBD, we need to compute the summation of
Δα andΔβ of all the nodes in the sliding window. It generates
much cumulate noise.

8. Conclusions

In this paper, we investigate the problem of evolving net-
work differential privacy. We first introduce a straightfor-
ward approach for publishing differentially private evolving
network. 'is approach sanitizes each timestamp network,
respectively. We observe that the amount of noise required
in straightforward approach is really high. 'us, we propose
our GHRG-DP algorithm. 'e main idea is adjusting the
structure of dendrogram to reduce the amount of noise
during the process of MCMC. We change the real value of
connection to the distribution of connection probability. It
satisfies the differential privacy through adding noise during
the iteration process of updating the hyperparameters. It
could fit the dynamic environment of evolving network.
Formal privacy analysis and the results of extensive ex-
periments show GHRG-DP can achieve a private evolving
network with high utility. Our future research directions are
the more effective change-point detection method in Al-
gorithm 1 under differential privacy.
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