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.is paper investigates the anticontrol of the fractional-order chaotic system. .e necessary condition of the anticontrol of the
fractional-order chaotic system is proposed, and based on this necessary condition, a 3D fractional-order chaotic system is driven
to two new 4D fractional-order hyperchaotic systems, respectively, without changing the parameters and fractional order.
Hyperchaotic properties of these new fractional dynamic systems are confirmed by Lyapunov exponents and bifurcation di-
agrams. Furthermore, a color image encryption algorithm is designed based on these fractional hyperchaotic systems. .e
effectiveness of their application in image encryption is verified.

1. Introduction

In recent years, how to make a dynamic system chaotic or
enhance the chaos of the system, that is to say, study on the
anticontrol of the chaotic system, has become a very hot
research topic [1–7]. A feedback control design method is
proposed to make all the Lyapunov exponents of the discrete-
time dynamical system strictly positive by Chen and Lai [1].
Based on time-delay feedback, a systematic design approach is
developed for anticontrol of chaos in a continuous-time
system [2, 3]. Li et al. present a simple parameter perturbation
control technique to drive a unified chaotic system to
hyperchaotic [4]. In [5], a state feedback control is used to
design a hyperchaotic Chua system with piecewise-linear
nonlinearity. A systematic methodology is proposed to
construct the continuous-time autonomous hyperchaotic
system with multiple positive Lyapunov exponents, and a 6-
dimensional hyperchaotic circuit is implemented [6, 7].

In the aforementioned works, the dynamical systems are all
chaotic systems with integer order. However, compared with
the integer-order chaotic system, the fractional-order system
has higher nonlinearity. Moreover, the derivative orders can be
used as secret keys in the encryption algorithm based on the
chaotic system. At the same time, because high-dimensional

chaotic systems have multiple positive Lyapunov exponents
and control parameters, it can display more complex dy-
namical behaviors. .erefore, study on the fractional-order
hyperchaotic systems has attracted interest of many scholars
[8–19]. Some new high-dimensional fractional-order chaotic
systems have been proposed and studied, including dynamic
analysis [8–11], control [12, 13], synchronization [14, 15],
circuit implementation [16], and application in information
encryption [17–19]. But, these fractional-order hyperchaotic
systems are obtained by directlymodifying the order of integer-
order hyperchaotic systems, instead of getting from the anti-
control of the fractional-order system.

Inspired by the above discussions, in this paper, based on
linear feedback and nonlinear feedback, we directly drive the
3D fractional-order chaotic system to two new 4D fractional-
order hyperchaotic systems, respectively, without changing the
parameters and fractional order. We propose the necessary
conditions of the anticontrol for the fractional-order chaotic
system and to calculate the Lyapunov exponents and bifur-
cation diagrams of the new fractional hyperchaotic dynamic
systems. Furthermore, based on these two fractional-order
hyperchaotic systems, a color image encryption algorithm is
designed. .e security analysis verifies that these hyperchaotic
systems are effective for image encryption.
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2. Problem Formulation

A 3D autonomous chaotic system is proposed by Qi et al.
[20], which can be described as

_x � a(y − x) + yz,

_y � cx − y − xz,

_z � xy − bz,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where x, y, and z are state variables. When the parameters
a � 35, b � 8/3, and c � 55, system (1) shows a chaotic
behavior. .e fractional-order equation of system (1) can be
expressed as

dq1x

dtq1
� a(y − x) + yz,

dq2y

dtq2
� cx − y − xz,

dq3z

dtq3
� xy − bz,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where qi is the fractional order, 0< qi ≤ 1(i � 1, 2, 3).
According to the algorithm presented by Wolf et al. [21], we
calculate the largest Lyapunov exponent of fractional-order
system (2). When q1 � q2 � q3 � 0.96, system (2) exhibits a
chaotic behavior with the largest Lyapunov exponent 2.168.
In this paper, the numerical simulation of fractional-order
systems is derived according to Caputo derivative. More
detailed introduction about Caputo derivative definition can
be seen in [22].

In the following, fractional-order chaotic system (2) is
driven to two new 4D fractional-order hyperchaotic systems,
respectively, with the same parameters and fractional order,
that is, a � 35, b � 8/3, c � 55, and q1 � q2 � q3 � 0.96.

3. New Fractional-Order Hyperchaotic Systems

About the anticontrol of the fractional-order chaotic sys-
tems, we give the two necessary conditions as follows:

(1) .e new dynamic system must be dissipative
(2) None of equilibriums of the new fractional-order

system is stable

.e stable and unstable region division at the zero
equilibrium of the fractional-order system is shown in
Figure 1. According to the stability theory of the fractional-
order system [23], it can be proved that, for n-dimensional
fractional system, if all the eigenvalues (λ1, λ2, ..., λn) of the
Jacobian matrix of some equilibrium point satisfy

arg λi( 


>
απ
2

, α � max q1, q2, . . . , qn( , i � 1, 2, . . . , n,

(3)

then the fractional-order system is asymptotically steady at
the equilibrium. From Figure 1, it can be seen that, for the
fractional-order system, as long as there is a stable equi-
librium, it will be steady at one point; it is in chaos only when

none equilibrium is stable. Moreover, a dynamic systemwith
chaotic characteristics must be dissipative. .erefore, the
above necessary conditions can be obtained.

In the following, we analyze the dynamical behaviors of
fractional-order system (2). We can calculate that system (2)
has three equilibriums S0(−19.3091, −7.5418, 54.6094),
S1(19.3091, 7.5418, 54.6094), and S2(0, 0, 0).

For the equilibrium S0(−19.3091, −7.5418, 54.6094),
it can be calculated that the eigenvalues of the Jacobian
matrix are λ1 � −43.0978, λ2 � 2.2156 + 24.4545i, and
λ3 � 2.2156 − 24.4545i. Further, it can be obtained that
arg(λ1) � π, arg(λ2) � 1.4797, and arg(λ3) � −1.4797. From
formula (3), when qi > 0.9420(1.4797 × 2/π), i � 1, 2, 3,
S0(−19.3091, −7.5418, 54.6094) is unstable equilibrium.
In the same way, it can be obtained that the equilib-
rium S1(19.3091, 7.5418, 54.6094) is unstable when
qi > 0.9420(1.4797 × 2/π), i � 1, 2, 3, and S2(0, 0, 0) is un-
stable equilibrium of system (2).

To sum up, when qi > 0.9420, i � 1, 2, 3, S0, S1, and S2 are
all unstable equilibriums of system (2). So, the value of
fractional order of system (2) must be between 0.9420 and 1.
Finally, we select 0.96 as fractional order of system (2).

3.1. Fractional Hyperchaotic System Obtained by Linear
Feedback. For convenience of expression, the variables of
system (2) are replaced with xi(i � 1, . . . , 3). With the same
parameters and fractional order, a new 4-dimensional
fractional-order dynamic system is obtained by introducing
a linear feedback control term (dq4x4/dtq4) � −63x2 + r1x4
to the equation of system (2) as follows:

dq1x1

dtq1
� a x2 − x1(  + x2x3,

dq2x2

dtq2
� cx1 − x2 − x1x3 + x4,

dq3x3

dtq3
� x1x2 − bx3,

dq4x4

dtq4
� −63x1 + r1x4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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Figure 1: Stability region of the fractional-order system.
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where r1 is a control parameter, and system (4) is possible to
be chaotic only when its value satisfies the above necessary
condition of the anticontrol.

In order to ensure the dissipative structure of system (4),
the requirement is that

∇V �
z _x1

zx1
+

z _x2

zx2
+

z _x3

zx3
+

z _x4

zx4
� −a − 1 − b + r1 � r1 − 38.7< 0.

(5)

It is concluded that the value of control parameter r1
must be less than 38.7. In order to maintain the dissipative
structure better, we choose r1 � 0.6 near zero.

When a � 35, b � 8/3, c � 55, and r1 � 0.6, we calculate
that system (4) has three equilibriums S0(0, 0, 0, 0), S1(0.0487,

0.0088, 0.1598, 5.1141), and S2(−0.0487, −0.0088, 0.1598,

−5.1141).
First, let us study whether equilibrium S0(0, 0, 0, 0) is

stable. .e Jacobian matrix of system (4) at equilibrium
point S0 is as follows:

J �

−a a + x3 x2 0

c − x3 −1 −x1 1

x2 x1 −b 0

−63 0 0 r1

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

−a a 0 0

c −1 0 1

0 0 −b 0

−63 0 0 r1

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(6)

It is calculated that the eigenvalues of the Jacobian
matrix are λ1 � −65.4068, λ2 � 28.1963, λ3 � 1.8105, and
λ4 � −2.6667. Furthermore, we can get that arg(λ1) � π,
arg(λ2) � 0, arg(λ3) � 0, and arg(λ4) � π, without satisfying
that |arg(λi)|> 0.96 × π/2 (i � 1, 2, . . . , 4). .erefore, it can
be concluded that S0 is unstable equilibrium.

Next, S1(0.0487, 0.0088, 0.1598, 5.1141) is chosen to
study. We can compute that the eigenvalues of the Jacobian
matrix λ1 � −65.4416, λ2 � 28.2276, λ3 � 1.8140, and
λ4 � −2.6666, and we can obtain that arg(λ1) � π,
arg(λ2) � 0, arg(λ3) � 0, and arg(λ4) � π. So, the equilib-
rium S1 is not stable. In the same way, it can be obtained that
S2(−0.0487, −0.0088, 0.1598, −5.1141) is also unstable.

To sum up, when r1 � 0.6, S0, S1, and S2 are all unstable
equilibriums of system (4). We obtain the Lyapunov ex-
ponents of system (4): λ1 � 1.4272, λ2 � 0.3705,
λ3 � −0.0028, and λ4 � −41.3635 when r1 � 0.6 and
q1 � q2 � q3 � q4 � 0.96. .erefore, it is proved that system
(4) shows a hyperchaotic behavior..e part of projections of
the hyperchaotic attractor is shown in Figure 2.

According to the method presented by Ramasu-
bramanian and Sriram [24], when −1.5≤ r1 ≤ 2, the Lya-
punov exponent spectrum of fractional-order system (4) is
calculated, and it is shown in Figure 3(a). .e corresponding
bifurcation diagram of system (4) is shown in Figure 3(b).
From Figure 3, it is easy to observe that when
−1.05≤ r1 ≤ 1.7, fractional-order system (4) is hyperchaotic
with satisfying that λ1 > 0, λ2 > 0, λ3 � 0, and λ4 < 0.

3.2. Fractional Hyperchaotic System Obtained by Nonlinear
Feedback. .e variables of system (2) are taken the place of

yi(i � 1, . . . , 3), and a nonlinear feedback control term is
added to system (2). A new 4D fractional-order dynamic
system is obtained as follows:

dq1y1

dtq1
� a y2 − y1(  + y2y3,

dq2y2

dtq2
� cy1 − y2 − y1y3 + y4,

dq3y3

dtq3
� y1y2 − by3,

dq4y4

dtq4
� −y1y3 + r2y4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where r2 is a control parameter, and we choose r2 � 1.2 in
order to ensure system (7) be dissipative.

When r2 � 1.2, it can be computed that system (7) has only
one equilibrium S0(0, 0, 0, 0). Furthermore, we can calculate
that arg(λ1) � π, arg(λ2) � 0, arg(λ3) � π, and arg(λ4) � 0.
So, it is not satisfied that |arg(λi)|> 0.96 × (π/2). .erefore, S0
is not stable equilibrium.

When r2 � 1.2 and q1 � q2 � q3 � q4 � 0.96, fractional-
order system (7) displays a hyperchaotic behavior with
Lyapunov exponents λ1 � 1.3551, λ2 � 0.2182, λ3 � 0.0039,
and λ4 � −30.2820. .e part of projections of the hyper-
chaotic attractor is shown in Figure 4.

When 0.5≤ r2 ≤ 2.5, the Lyapunov exponent spectrum
of system (7) is computed according to Ramasu-
bramanian and Sriram method [24]. It is shown in
Figure 5(a), and the corresponding bifurcation diagram
of system (7) is shown in Figure 5(b). From Figure 5, it
can be seen that when 1.1≤ r2 ≤ 1.95, system (7) is
hyperchaotic with two positive, a zero, and a negative
Lyapunov exponents.

4. Image Encryption Based on the Fractional-
Order Hyperchaotic Systems

In this section, a color image encryption algorithm is
designed based on fractional-order hyperchaotic system (4)
and system (7).

4.1. Design of Image Encryption Algorithm

4.1.1. Permutation Process. In order to break the correlation
of the neighboring pixels in the plaintext, the plain image is
permutated in bit-level. A color image with size of m × n is
chosen as the plain image P.

Step 1. First, the plain image P is converted into a
grayscale image whose size is m × 3n according to the
red, green, and blue components of the color image.
.en, each pixel of the grayscale image is trans-
formed into an 8-bit array. So, the whole plain image
P is changed into a binary matrix Pb with a size of
m × 24n.

Mathematical Problems in Engineering 3
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Figure 2: When r1 � 0.6, the part of projections of the attractor of system (4).
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Figure 3: Lyapunov exponents and bifurcation diagram of system (4) for −1.5≤ r1 ≤ 2. (a) Lyapunov exponents. (b) Bifurcation diagram.
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Figure 4: When r2 � 1.2, the part of projections of the hyperchaotic attractor of system (7).
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Figure 5: Lyapunov exponents and bifurcation diagram of system (7) for 0.5≤ r2 ≤ 2.5. (a) Lyapunov exponents. (b) Bifurcation diagram.

Mathematical Problems in Engineering 5



Step 2. .e sequences (x1(i), x2(i), x3(i), x4(i)) are
generated by fractional-order hyperchaotic system (4)
with initial values (x1(0), x2(0), x3(0), x4(0)). .e key
vectors keyh and keyv are produced by equations (8)
and (9), respectively:

keyh(i) � abs x1(i) + x2(i) × g(  − floor abs(

· x1(i) + x2(i) × g( , i � 1, 2, . . . , m,

(8)

keyv(j) � abs x3(j) × g + x4(j)(  − floor abs(

· x3(j) × g + x4(j)( , j � 1, 2, . . . , 24n,

(9)

where g is a disturbance item related to the plain image,
which can be obtained by equation (10) as follows:

g �
sum Pb( 

mn
, (10)

where sum (Pb) is the sum of all the elements with
value of 1 in the matrix Pb. .erefore, the key vectors
keyh and keyv are related to the plain image P. Be-
cause different plain images are encrypted by dif-
ferent keys, this algorithm can resist the chosen
plaintext attack.
Step 3. Set two auxiliary vectors h(i), i � 1, 2, . . . , m

and v(j), j � 1, 2, . . . , 24n. .ey represent the line
numbers and the column numbers of Pb in the as-
cending order, respectively. Next, the vectors h′ and
v′ are generated by equations (11) and (12), sepa-
rately. .en, a binary matrix is obtained by per-
muting the rows and columns of image Pb,
respectively, according to the vectors h′ and v′. Fi-
nally, we transform this binary matrix into color
image Pc.
h′(i) � h floor keyh(i) × m( mod i( , i � 1, 2, . . . , m,

(11)

v′(j) � v floor keyv(j) × 24n( mod j( , j � 1, 2, . . . , 24n.

(12)

4.1.2. Encryption Algorithm. In this stage, the permutated
color image Pc is encrypted in pixel-level, and the detailed
steps are as follows:

Step 1. Separate the permuted color image Pc into red,
green, and blue grayscale images, and the i-th pixel
value of these three grayscale images is represented by
ri, gi, and bi(i � 1, 2, ..., mn), respectively.
Step 2.With initial values (y1(0), y2(0), y3(0), y4(0)),
the sequences (y1(i), y2(i), y3(i), y4(i)) are produced
by fractional-order hyperchaotic system (7). .en,
an integer sequence skj(i) between 0 and 255 is
obtained:

skj(i) � abs yu(i) + yv(i)( (  − floor abs(

· yu(i) + yv(i)(  × 1014 mod 256, j � 1, . . . , 6,

(13)

where u, v ∈ 1, 2, 3, 4{ } and u≠ v. .e encryption
key sequences (keyr(i), keyg(i), keyb(i)) can be
gained by the key selection table, and it is shown in
Table 1.

.ere are three groups of keys in Table 1. s(i) is used to
decide which group is selected to encrypt ri, gi, and bi

of the i-th pixel. So, it is realized that different
plain images are encrypted by different key streams.
.e sequence s(i) is generated by equations (14) and
(15):

keys(i) � abs 
4

j�1
xj(i)⎛⎝ ⎞⎠ − floor abs 

4

j�1
xj(i)⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠

× 1014, i � 1, 2, . . . , mn,

(14)

s(i) �

floor 
mn

j�2
rj + gj + bj  × keys(i)⎛⎝ ⎞⎠mod 3, i � 1,

floor sp(i − 1) − ri + gi + bi( (  × keys(i)( mod 3,

i � 2, . . . , mn,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where xj(i), (j � 1, 2, . . . , 4) are produced by frac-
tional-order hyperchaotic system (4).
Step 3. After ri, gi, and bi of three grayscale images are
encrypted by equation (16), respectively, we can get the
encrypted ri

′, gi
′, and bi

′:

ri
′ � ri + ri−1′( mod 256( ⊕ keyr(i),

gi
′ � gi + gi−1′( mod 256( ⊕ keyg(i), i � 1, . . . , mn,

bi
′ � bi + bi−1′( mod 256( ⊕ keyb(i),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

where

r0′ � 
mn

j�1
rj + sk1(1)⎛⎝ ⎞⎠mod 256,

g0′ � 
mn

j�1
gj + sk2(1)⎛⎝ ⎞⎠mod 256,

b0′ � 
mn

j�1
bj + sk3(1)⎛⎝ ⎞⎠mod 256.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Step 4. Repeat the aforementioned steps appropriately.
In the end, the encrypted color image IE is created by
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the composition of the three encrypted grayscale
images.

4.2. Design of the Decryption Algorithm

4.2.1. Decryption Algorithm

Step 1. Separate the encrypted image IE into red, green,
and blue grayscale images, and set ri

′, gi
′, and

bi
′(i � 1, 2, . . . , mn) to represent the i-th pixel value of
these grayscale images, respectively. .e decryption
begins from the back to the front, that is to say that the
mn-th pixel is firstly decrypted.
Step 2. With the same initial values with the encryption
process, the sequences (y1(i), y2(i), y3(i), y4(i)) are
generated by fractional-order dynamic system (7). Next, it
can be calculated that s(mn) � 0 by equation (15). .en,
the keys (keyr(mn), keyg(mn), keyb(mn)) can be ob-
tained by equation (13) and s(mn) � 0. Finally, we can get
rmn, gmn, and bmn after the following equation:

ri � ri
′ ⊕ keyr(i) − ri−1′( mod 256,

gi � gi
′ ⊕ keyg(i) − gi−1′ mod 256,

bi � bi
′ ⊕ keyb(i) − bi−1′( mod 256.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

Step 3. With values of rmn, gmn, and bmn and s(mn) � 0,
the value of s(mn − 1) can be computed by equations
(14) and (15). .en, the (mn−1)-th pixel can be
decrypted. Similarly, it is finished until the values of r1,
g1, and b1 are decrypted.
Step 4. After repeating the above steps for the same
rounds with the encryption process, the decrypted
image I′ is obtained.

4.2.2. Inverse Permutation Process

Step 1. According to the red, green, and blue components
of the color image, the image I′ is converted into a
grayscale imagewith size ofm × 3n..en, a binarymatrix
Ib
′ with size of m × 24n is obtained by each pixel of the

grayscale image which is changed into an 8-bit array.
Step 2. Because the sum of all the elements with value of
1 in the binary matrix Ib

′ is equal to one of all the el-
ements with value of 1 in the binary matrixPb, the value
of g is computed by the following equation:

g �
sum Ib
′( 

mn
. (19)

Step 3. With the same initial values as permutation
process, the sequences (x1(i), x2(i), x3(i), x4(i)) are
generated by system (4). .en, the keys keyh and keyv

are computed by equations (8) and (9), respectively.
Finally, the vectors h′ and v′ are obtained by equations
(11) and (12) separately.
Step 4. According to the array vectors h′ and v′, the
rows and columns of binary image Ib

′ are inversely
permuted, respectively. .e image Ib is obtained by
this inverse permutation. We convert Ib with size
of m × 24n into the plain color image I whose size
is of m × n. .us, the decryption is achieved
completely.

4.3. Experimental Result. .e color image named pepper
is selected as the plain images, whose size is 197 × 206.
.e initial values of fractional-order hyperchaotic system (4)
and system (7) are x1(0) � 0.67185367890218, x2(0) �

0.24566789543262, x3(0) � 0.15492289843576, x4(0) �

1.32854321678987, y1(0) � 0.98165678567657, y2(0) �

0.12345678901234,y3(0) � 1.65432109876543, and y4(0) �

0.57167689592916. .e experimental results are shown in
Figure 6.

4.4. Performance and Security Analysis

4.4.1. Key Space and Sensitivity. In the encryption algo-
rithm, the secret keys are the initial values of the two
hyperchaotic systems, that is, (x1(0), x2(0), x3(0), x4(0))

and (y1(0), y2(0), y3(0), y4(0)). Because the maximum
precision of these initial values is 10−14, the total key space is
that (1014)8 � 10112, which is much larger than 2100 [25].
.erefore, our algorithm can resist all kinds of brute force
attacks.

For the key sensitive test, the tiny change 10− 14 is se-
lected as the error of these initial values, and it is shown in
Table 2. Due to space limitations, only the changes of x1(0),
x2(0), y3(0), and y4(0) were made. .e experimental re-
sults are shown in Figure 7. It can be seen that these
decrypted images are extremely similar to noise and ab-
solutely different from the plain image, and those pixel
distribution histograms are uniform. Moreover, we cal-
culate the NPCR and UACI of the original image and
recovered images (peppers) with different keys; it is shown
in Table 3. It is easy to observe that NPCR is over 99%, and
the UACI is close to 33%. It demonstrates that the re-
covered images with different keys are greatly different
from their original form. .erefore, our algorithm is
sensitive to the secret key.

4.4.2. χ2 Test. We compute the χ2 values of both plain image
and encrypted image named Pepper, Flower, Yacht, and
Baboon, whose sizes are all 197 × 206. It is shown in Table 4.

Table 1: .e key selection table.

Key 0 1 2
keyr(i) sk1(i)⊕ sk2(i) sk1(i)⊕ sk3(i) sk2(i)⊕ sk5(i)

keyg(i) sk3(i)⊕ sk5(i) sk4(i)⊕ sk5(i) sk1(i)⊕ sk4(i)

keyb(i) sk4(i)⊕ sk6(i) sk2(i)⊕ sk6(i) sk3(i)⊕ sk6(i)

Mathematical Problems in Engineering 7



Obviously, the χ2 values of the ciphered images are far lower
than those of the plain images and similar to the algorithm in
[26, 27]; they are all within the effective interval
[210.7918, 293.2478].

4.4.3. Statistical Analysis. From the plain image and
encrypted image, 2500 pairs of adjacent pixels are randomly
selected in horizontal, vertical, and diagonal directions,
respectively..en, we calculate the correlation coefficients of
two adjacent pixels, which are shown in Table 5. From
Table 5, it can be observed that the correlations of two
adjacent pixels are close to 1 in the plain images, while the

ones of the encrypted images are round 0 and similar to the
algorithm in [28, 29]. .erefore, the encryption algorithm
can eliminate the correlation of the adjacent pixels.

4.4.4. Information Entropy. We compute the information
entropy of the encrypted images according to the red,
green, and blue components of the color image, which is
shown in Table 6. It can be seen that the information
entropy of these ciphered images is all close to the value 8.
So, it proves that the unpredictability of the encrypted
images is very high.

4.4.5. Differential Attack. To test the differential attack,
some color images are encrypted with altering a pixel in the
plain images, respectively, and NPCR and UACI are cal-
culated in Table 7. It can be found that the NPCR is over
99%, the UACI is over 33%, and similar to the algorithm in
[28–30]. It indicates that our algorithm can resist the dif-
ferential attack.

(a) (b)

(c) (d)

(e)

Figure 6:.e encryption results of pepper image. (a).e original image. (b).e grayscale image of decomposing Figure 6(a). (c).e image
of permuting Figure 6(b). (d) .e result of composing Figure 6(c). (e) .e encrypted image.

Table 2: .e tiny change of secret keys.

Key Original value New value
x1(0) 0.67185367890218 0.67185367890218 + 10−14

x2(0) 0.24566789543262 0.24566789543262−10−14

y3(0) 1.65432109876543 1.65432109876543 + 10−14

y4(0) 0.57167689592916 0.57167689592916−10−14
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Figure 7: .e decrypted images in tiny change of keys and their histograms. (a) x1(0)� 0.67185367890219. (b) x2(0)� 0.24566789543261.
(c) y3(0)� 1.65432109876544. (d) y4(0)� 0.57167689592915. (e) .e pixel distribution histogram of Figure 7(a). (f ) .e pixel distribution
histogram of Figure 7(b). (g) .e pixel distribution histogram of Figure 7(c). (h) .e pixel distribution histogram of Figure 7(d).
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Table 4: .e results of the χ2 test.

χ2
Plain image Ciphered image

R G B R G B
Pepper 35,300 32,679 64,067 258.8352 247.7227 208.7380
Flower 25,554 27,012 47,904 235.1820 250.1199 260.4022
Yacht 18,431 21,044 17,323 259.1406 271.4038 229.4794
Baboon 19,059 27,759 17,654 249.9811 237.2006 219.9287
Pepper in [26] 57,362 62,180 122,870 265.4625 269.3956 289.2321
Image 1 in [27] — — — 230.8105 234.7070 250.3419
Image 2 in [27] — — — 265.7558 286.3242 276.2754

Table 5: Correlation coefficients of the plain image and ciphered image.

Correlation Horizontal Vertical Diagonal
Pepper 0.9373 0.9716 0.9478
Ciphered pepper 0.0021 0.0018 −0.0195
Flower 0.9414 0.9792 0.9769
Ciphered flower 0.0009 0.0173 −0.0194
Lena in [28] (R) 0.95409435 0.97692808 0.92946084
Lena in [28] (G) 0.93859702 0.96847242 0.91318153
Lena in [28] (B) 0.92230178 0.95144503 0.89275171
Ciphered lena in [28] (R) 0.00268849 0.00113425 0.00526812
Ciphered lena in [28] (G) 0.00979889 0.00302981 0.00038029
Ciphered lena in [28] (B) 0.00098796 0.00056287 0.00111043
Lena in [29] 0.9494 0.9667 0.9336
Ciphered lena in [29] 0.0054 0.0035 0.0016

Table 6: .e information entropy of encrypted images.

Color image Red Green Blue
Pepper 7.9875 7.9880 7.9876
Flower 7.9882 7.9881 7.9871
Yacht 7.9867 7.9883 7.9874
Baboon 7.9881 7.9882 7.9875

Table 3: .e NPCR and UACI of the original image and recovered image (peppers) with different keys.

Image
NPCR (%) UACI (%)

R G B R G B
Recovered image with x1(0) 99.4259 99.3569 99.4185 28.3860 32.9807 32.8930
Recovered image with x2(0) 99.3421 99.3864 99.4061 28.4061 32.8305 32.7692
Recovered image with y3(0) 99.3174 99.3618 99.4209 28.2771 32.8916 32.7201
Recovered image with y4(0) 99.3544 99.2755 99.3544 28.1678 32.4912 32.7000

Table 7: .e NPCR and UACI of ciphered images.

Image
NPCR (%) UACI (%)

R G B R G B
Pepper 99.5762 99.6205 99.5762 33.2831 33.4199 33.5400
Flower 99.6772 99.7142 99.6550 33.4547 33.7477 33.3845
Yacht 99.5269 99.5810 99.5146 33.3787 33.4017 33.4997
Baboon 99.6550 99.6723 99.6747 33.3987 33.3903 33.3644
Lena in [28] 99.98779 99.98779 99.98779 50.17915 50.18009 25.19263
Lena in [29] (avg.) 99.5723 33.3159
Lena in [30] 99.6231 99.6338 99.6170 33.4747 33.5683 33.3382

10 Mathematical Problems in Engineering



5. Conclusion

In this paper, the anticontrol of the fractional-order chaotic
system is studied. We give the necessary conditions for the
anticontrol of the fractional-order chaotic system. With the
same parameters and fractional order, a 3D chaotic system
is driven to two new 4D fractional-order hyperchaotic
systems, respectively. We compute Lyapunov exponents
and bifurcation diagrams of these new fractional dynamic
systems.

Based on these two fractional-order hyperchaotic sys-
tems, a color image encryption algorithm is designed. In
permutation process, the key is related to the plain image,
and the key in encryption process is dynamically changing
with different plain images and encrypted images..erefore,
our algorithm can resist the chosen plaintext (ciphertext)
attacks and overcome the difficulty of key management in
the “one time and one secret (one time one key)” scheme. In
addition, the security analysis shows that our algorithm has
better security. .erefore, it verifies the effectiveness of these
fractional dynamic systems for image encryption.

In the future, we will further study on the anticontrol of
the fractional-order chaotic system and identify the new
chaotic system scientifically by the criteria from the work
[31]. In image encryption, the fractional hyperchaotic system
could be extended to a computational model for parallel
image encryption algorithms.
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