
Research Article
A Novel Malware Classification Method Based on
Crucial Behavior

Fei Xiao ,1,2 Yi Sun ,1,2 Donggao Du,1,2 Xuelei Li ,3,4 and Min Luo5

1Network and Information Center, Institute of Network Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China
2National Engineering Laboratory for Mobile Network Security (No. [2013] 2685),
Beijing University of Posts and Telecommunications, Beijing 100876, China
3Inspur Electronic Information Industry Co., Ltd, Jinan 250000, China
4State Key Laboratory of High-end Server and Storage Technology, Jinan 250000, China
5Ernst and Young, Tokyo, Japan

Correspondence should be addressed to Yi Sun; sybupt@bupt.edu.cn

Received 24 December 2019; Revised 22 February 2020; Accepted 28 February 2020; Published 21 March 2020

Academic Editor: Ramon Sancibrian

Copyright © 2020 Fei Xiao et al.(is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, some graph-based methods have been proposed for malware detection. However, current malware is generally characterized
by sophisticated behaviors, which makes graph-based malware detection extremely challenging. To address this issue, we propose a
graph repartition algorithm by transforming API call graphs into fragment behaviors based on programs’ dynamic execution traces.(e
proposed algorithm relies on the N-order subgraph (NSG) for constructing the appropriate fragment behavior. Moreover, we improve
the term frequency-inverse document frequency- (TF-IDF-) like measure and information gain (IG) to extract the crucial N-order
subgraph (CNSG). (is novel behavioral representation and improved extraction method can accurately represent crucial behaviors of
malware. Experiments on 4,400 samples demonstrate that the proposedmethod achieves a high accuracy of 99.75% inmalware detection
and promising performance of 95.27% in malware classification.

1. Introduction

Malware refers to any software that aims at damaging or
infiltrating computer systems [1]. (e fast-growing malware
variants pose a serious threat to malware detection. According
to Symantec’s 2018 Internet Security(reat Report (ISTR), the
number of malware variants reached 669,947,865 in 2017,
doubling that of 2016 [2]. Moreover, the advent of new
technologies has contributed to the increasing complexity of
malware. Facing numerous and sophisticated malware vari-
ants, malware detection is urgently needed (e.g., see [3–5]).

Among the existing methods, malware detection is
mainly divided into static and dynamic analysis methods [6].
Static analysis methods are processes of analyzing instructions
and structures to confirm program functions [7]. (ey do not
need to run malware directly. Unfortunately, static analysis
methods are sensitive to sophisticated obfuscation instructions

and encryption techniques. Aiming at the shortcomings of the
static analysis methods, dynamic analysis methods are pro-
posed. (e advantage of dynamic methods is that they observe
behaviors by running programs in a virtual environment.
Dynamic methods commonly address the threat of statically
obfuscatedmalware [8] and encryption techniques. Obfuscated
malware samples can change their code syntaxwhile preserving
their semantics [9]. Dynamic analysis is an effective way to
recognize malware behavior. For example, when we want to
analyze the keylogger, dynamic analysis can help us find the
keylogger’s log file and trace the information.

(e program generally relies on Application Program-
ming Interface (API) calls provided by the operating system
to accomplish its functions. Hence, a program’s execution
trace can be obtained by monitoring the stream of API calls
[10]. (e API call graph is constructed by tracing API calls
and their arguments, which is an effective method to indicate
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program behavior [11]. Considerable effort has been
expended to identify malware by using the API call graph
[12, 13]. With the advent of sophisticated malware samples,
the API call graph is becoming more and more complex
[14, 15]. (e major issue facing malware detection is
computational complexity [16, 17] of graph matching.
Moreover, it is a great challenge to construct a graph that is
general enough to classify malware.

Our method is different from previous methods since it
solves one major shortcoming. We propose a novel method
that divides the API call graph into fragment behaviors.
Moreover, we extract crucial behaviors by applying the term
frequency-inverse document frequency- (TF-IDF-) like
measure [18, 19] and information gain (IG) [20, 21]. Finally,
we utilize Random Forest (RF) [22], Support Vector Ma-
chine (SVM) [23], Decision Tree (DT) [24, 25], and
K-Nearest Neighbor (KNN) [26] for malware classification.
We aim to enhance the malware classification performance
by constructing an appropriate behavioral representation of
the malware family. (e main contributions of this method
are as follows:

(1) We propose a graph repartition algorithm to extract
fragment behaviors from original API call graphs.
(e extracted fragment behavior is a graph-based
API sequence that preserves the dependency of the
API call graph.

(2) We extract crucial behaviors by improving the fea-
ture extraction measure. (e improved extraction
measure which combines TF-IDF and IG shows
great advantages in malware classification.

(3) (e proposed method achieves promising perfor-
mance in both malware detection and classification.
(e experimental results demonstrate that the
extracted crucial behaviors can accurately describe
malware activities.

(e rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 introduces some basic
notations. Section 4 represents the proposed method which
consists of system overview, graph repartition, and feature
extraction module. Experiment and evaluation are described
in Section 5. (e limitations of the proposed method are
discussed in Section 6, which is followed by the conclusion in
Section 7.

2. Related Work

Programs generally perform various activities by taking
advantage of different predefined API calls. API calls provide
valuable information to identify potential exceptions and
malicious activities. A considerable amount of researchers
has been devoted to the research of the API call sequence.
Eskandari et al. [27] proposed a dynamic malware detection
system that explores system call via API call. In addition,
they extracted API calls from the log file and used the n-gram
to generate 4-gram API call sequences. Lee et al. [28] utilized
the Cuckoo sandbox to execute programs dynamically. (ey
extracted API behavior data and transformed API calls into

sequences by using the n-gram method. Moreover, they
calculated the frequency of sequences. After that, the cosine
similarities of API sequences were calculated among dif-
ferent programs. Finally, the malware samples which are
similar to each other were grouped.

Hansen et al. [29] presented a scalable dynamic analysis
method by injecting programs into parallel virtual envi-
ronments. (e parallel virtual environment is implemented
by developing the setup of the Cuckoo sandbox. (ey
extracted labels and features from samples. (e extracted
features consist of API calls and their input arguments which
include registry and DLLs. After that, they proposed two
representation methods for malware detection and
classification.

As mentioned above, the common parts of API call
sequences can be utilized to identify the similarities of
malware samples. (e sequence-based approach is relatively
simple to describe malware behavior. However, sequence-
based methods only preserve temporal information between
API calls, which are vulnerable to reorder or irrelevant API
calls. Some methods have been proposed to address the
drawbacks of sequence-based methods, such as deep
learning-based models and more comprehensive feature
representation.

Amin et al. [30, 31] explored bidirectional long short-
term memory for building an antimalware system to detect
static opcodes of malware. In addition, they designed a deep
learning model of generative adversarial networks to detect
Android malware.

D’Angelo et al. [32] transformed API call sequences
which are invoked by apps during their execution to API-
images. (ey autonomously extracted the most represen-
tative and discriminating features by applying autoencoders.
(e deep learning-based model shows great advantages in
malware detection.

On the other hand, the API call graph is proposed to
capture comprehensive relations (such as argument de-
pendency) between API calls [33]. Park et al. [34] moni-
tored the execution of programs and then constructed
weighted directed behavioral graphs that represent kernel
objects, object attributes, and dependencies between kernel
objects. In addition, they proposed a method to generate a
common behavioral graph by clustering individual be-
havioral graphs.

Elhadi et al. [11] presented a static analysis system; the
proposed system read samples and then extracted API calls
and their parameters under a secure environment. (ey
classified API call graphs based on sequence dependence,
data dependence, declaration dependence, and API de-
pendence. For each kind of dependence, they constructed an
API call graph. Finally, they integrated four kinds of API call
graphs into an integrating API call graph and calculated the
similarity between graphs.

Nikolopoulos and Polenakis [35] proposed a graph-
based model based on dynamic taint analysis. (e proposed
model is constructed by exploringmain properties of system-
call dependency graphs. (ey adopted the Euclidean dis-
tance-based Δ-similarity metric for malware detection and
the SaMe-NP similarity metric for malware classification.
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Programs generally accomplish tasks by executing
similar behaviors or repeating behavior multiple times.
More similar or repeated behaviors occur, and more du-
plicated nodes or subgraphs appear. (e drawback arises
with sophisticated behavior which results in high dimen-
sional features and brings more calculations [36]. Fur-
thermore, it is unsatisfied that a behavioral graph is too
specific which may ignore the minor changes in malware
variants [37]. Likewise, not specific enough of the behavior
graph commonly leads to benign samples judged as mal-
ware. A large number of work have been concentrated on
investigating accurate approximation methods for these
problems.

Fredrikson et al. [37] mined significant behaviors from
samples based on the data dependence graph. (e mined
significant behaviors are then utilized to synthesize an op-
timally discriminative specification based on concept
analysis and simulated annealing [38] algorithm. (e focus
of this proposed method is to reduce the size of the graph
[39].

Alam et al. [40] put forward the “Annotated Control
Flow Graph” and “Sliding Window of Difference and
Control Flow Weight” to reduce the effects of obfuscations.
(e proposed Annotated Control Flow Graph provides a
quick graph matching method by dividing itself into many
smaller Annotated Control Flow Graphs. (e proposed
Sliding Window of Difference and Control Flow Weight
captures the semantics of the control flow and helps in
malware detection.

Ding et al. [41] constructed an API dependency graph by
tracing taint data. After that, they proposed a dependency
graph pruning algorithm for pruning a dependency graph.
Finally, they constructed a common behavioral graph based
on the pruned dependency graph. (e proposed common
behavior graph prunes similar and repeated behaviors.

We provide a comprehensive summary of malware
detection and classification work in Table 1. To simplify the
representation of the graph, we propose a novel graph re-
partition algorithm. (e proposed algorithm constructs
fragment behaviors that describe crucial activities of the
malware. (e novel and simplified representation of frag-
ment behavior preserves the dependency of the API call
graph and effectively avoids problems in graph matching.
(is novel behavioral representation is designed to provide a
better malware classification performance.

3. Basic Notation

We explain some notations in this section: subgraph, N-
order subgraph, crucial N-order subgraph, and TF-IDF.

API call graph commonly represented by a directed
acyclic graph which consists of nodes and edges. If an API
call A is associated with API call B, an edge is established
from node A to node B. (at is, edges represent depen-
dencies among different types of nodes (e.g., network,
registry, and file system).

API call graph defines specific behaviors. We annotate
root and leaf nodes with labels in each API call graph. After
that, we extract the full execution paths from the root node

to leaf nodes in an API call graph. (ese no-branching
execution graphs extracted from API call graph are repre-
sented as subgraphs in our system.

N-order subgraph is extracted from the subgraph by
sliding a window of size N.

Definition 1 (N-Order Subgraph (NSG)). NSG is a graph in
which the maximum number of nodes does not exceed N.

NSGS stands for NSG set:

NSGS � NSG1, NSG2, . . . , NSGm( 􏼁, (1)

where m is the number of NSG in NSGS.
NSG with the crucial information is chosen as an in-

dicator of malware. We call this crucial NSG.

Definition 2 (Crucial N-Order Subgraph (CNSG)). CNSG is
a subset of NSGS, and it contains the crucial information of
NSGS. It can be described as follows:

CNSG � arg max
NSGi∈NSGS

Cru NSGi( 􏼁( 􏼁, (2)

where Cru(NSGi) is the crucial coefficient of N-order
subgraph NSGi.

TF-IDF is a numerical statistic in information retrieval.
It reflects the importance of words in a document. TF refers
to the number of times a given word appears in a document.
IDF measures the general importance of words [42].

Definition 3. TF-IDF is the product of TF and IDF.
Given a document di and document set D which has n

documents, D � (d1, d2, . . . , dn). (e word in the dataset is
represented as w. TF-IDF is calculated as follows:

TF − IDF w, di, D( 􏼁 � TF w, di( 􏼁∗ IDF(w, D),

TF w, di( 􏼁 �
f w, di( 􏼁

di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

IDF(w, D) � log
|D|

di

􏼌􏼌􏼌􏼌 w ∈ di􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,

(3)

where TF(w, di) represents the frequency of the word w in
document di, f(w, di) is the number of times the given
word w appears in a document di, and |di| represents the
dimension of the document di. IDF(w, D) reflects the in-
verse document frequency of the word w in document set D,
and | di | w ∈ di􏼈 􏼉| is the number of the documents which
contain w.

4. The Proposed Method

4.1. Malware Classification System Overview. Our method
consists of three parts: graph repartition, feature extraction,
and malware classification. (e whole process of the pro-
posed system is outlined in Figure 1. Graph repartition
consists of two modules: subgraph construction module and
NSG construction module. Subgraph construction module
extracts subgraphs from API call graphs which are con-
structed based on the registry, filesystem, process, services,
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network, and synchronization. NSG construction module
extracts NSG from the subgraph construction module. Our
goal is to build the appropriate behavioral representation
and extract CNSG by using the improved TF-IDF-like
measure in feature extraction. In the last step, RF, SVM, DT,
and KNN are used for malware classification. (e following
are the steps of our proposed system.

Step 1. Extract subgraphs
We extract subgraphs from API call graphs of malware

and benign samples. Icons with different shapes and colors
represent various API calls in Figure 1. We can see that four
API call graphs are listed in different rectangles. (e sub-
graph construction module extracts five different subgraphs
from four API call graphs.

Step 2. Build fragment behavior of NSG
NSG is obtained through an API call repartition algo-

rithm based on the sliding window. We illustrate 3SG and
4SG in Figure 1. Icons that are not in the shadow refer to the
parts that need to be discarded. NSG preserves more
complex semantic information than API sequences, which
contains the dependencies of API call graphs.

Step 3. Extract crucial behavior of CNSG
We adopt the TF-IDF-like measure and IG to calculate

the crucial coefficient of NSG. (e NSG with the higher
crucial coefficient is selected as the significant behavior (e.g.,
CNSG) in our method.

Step 4. Malware classification
For each program analyzed in Cuckoo sandbox, we use

some classifiers (e.g., RF, SVM, DT, and KNN) to identify
whether the program is benign or malware. We obtain the
appropriate CNSG in this process by comparing the per-
formance of the experiments.

4.2. Malware Classification SystemOverview. In this section,
we propose a graph repartition algorithm that reconstructs
the API call graph to NSG. (e purpose of the proposed
algorithm is to build the appropriate fragment behavior of
malware families by pruning similar behaviors.

Figure 2 shows the trace extracted from the log file
generated through the Cuckoo sandbox. (is is part of the
input that the API call graph is built from. In line 1, one can
see that the malware creates and opens a registry. After that,
it repeatedly retrieves and sets the data. On lines 7 and 8, the
malware creates a file and changes its information. In line 9,
the program retrieves the information of the file. It closes the
file on line 10. On lines 11 to 13, the program creates, re-
trieves, and closes another file.

In Figure 3,G1,G2, and G3 are three API call graphs from
line 1 to line 6, line 7 to line 10, and line 11 to line 13 in
Figure 2, respectively. As illustrated in Figure 3, API call is
applied to construct the node of a graph and the arguments
are utilized to connect two API calls based on dependencies.
For example, API call of line 1 in Figure 2 is labeled as
RegCreateKey (Handle �> 0x0000044c, Registry �>
0x80000001, SubKey �> . . .proxyTool). (e value
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Figure 1: Overview of the proposed method.

Table 1: Summary of malware detection and classification work.

Approach Features Note
Eskandari et al. [27] API call sequence

Simple, vulnerable to reorder or irrelevant API callsLee et al. [28] API call sequence
Hansen et al. [29] API call sequence; arguments; frequency
Amin [30, 31] Opcode End-to-end learningD’Angelo et al. [32] API call sequence-based image
Park et al. [34] Behavioral graph

High dimensional features can bring more calculationsElhadi et al. [11] API call graph
Nikolopoulos and Polenakis [35] System call dependency graph
Fredrikson et al. [37] Optimally discriminative specification

Simplified representation of behavior graphsAlam et al. [40] Control flow graph-based feature
Ding et al. [41] API dependency graph
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0x0000044c of Handle is used to connect the RegQuer-
yValue on line 2. (e details of API call graph construction
are described in our previous work [43]. It is necessary to
extract crucial behaviors from the API call graph for mal-
ware classification.

For each API call graph, we first identify the root and leaf
nodes. (e root node is a node with no input information,
and the leaf node is the node whose output is null in our
system. Also, we need to extract subgraphs from the
established API call graph. (e extracted subgraphs are
simple no-branching graphs that start at the root node and
end with the leaf node. We obtained all subgraphs as follows.

When there is only one branch in the API call graph, the
extracted subgraph is the same as the API call graph. (e
subgraph of G1 is

{RegCreateKey, RegQueryValue, RegSetValue,
RegQueryValue, RegSetValue, RegQueryValue}

(ere aremultiple branches inG2 andG3. In this case, we
need to extract different no-branching subgraphs based on
root and leaf nodes.

Subgraphs of G2 are explained as follows:

{NtCreateFile, NtSetInformationFile}
{NtCreateFile, NtQueryInformationFile}

{NtCreateFile, NtClose}

Subgraphs of G3 are explained as follows:

{NtCreateFile, NtQueryInformationFile}
{NtCreateFile, NtClose}

We divide the subgraph into fragment behavior through
a sliding window. (e behavior in a sliding window is a
fragment behavior. (e fragment behaviors are a set of
behaviors that can accomplish a part or a certain function.
(e extracted fragment behavior is represented by NSG in
our method. (e size of the sliding window determines the
maximum number (N) of NSG.

We show the process of some NSGs extracted from the
subgraph of G1 in Figure 4. When N� 3 (3SG), SG1 in the
first window is the first 3SG extracted from the subgraph.
(e sliding window of size 3 slides from top to bottom at
intervals of 1. Different colors of the window reflect the
moving trail of the sliding window. We can see that the
fragment behavior in the fourth window is the same as the
fragment behavior in the second window. Hence, three
unique 3SGs of SG1, SG2, and SG3 are extracted from the
subgraph:

SG1: {RegCreateKey, RegQueryValue, RegSetValue}
SG2: {RegQueryValue, RegSetValue, RegQueryValue}
SG3: {RegSetValue, RegQueryValue, RegSetValue}

For G2 and G3, we notice that the number of nodes in
each subgraph is smaller than 3 when we want to build 3SG.
In this condition, the subgraph is regarded as a 3SG, which
does not need to be divided. When all NSGs are extracted
from all subgraphs of a program, we obtain NSGS. (is set is
used to represent the program behavior. (e combination of
NSGs contains the complete semantic information of a
program’s API call graph. Our goal is to describe malware
with an appropriate fragment behavioral representation by
searching for N.

Algorithm 1 describes our proposed API Call Reparti-
tion Algorithm. (e input of this algorithm is the API call
graph (G1, G2, . . . , Gr). For an API call graph Gi, we first
search for the root and leaf nodes. Lines 3 and 4 describe the
root node and leaf nodes in an API call graph. We extract
subgraphs from an API call graph in line 5. (e extracted

(i)
(ii)

(iii)
(iv)
(v)

(vi)

(vii)
(viii)

(ix)
(x)

(xi)

(xiii)
(xii)

RegCreateKey (Out Handle => 0x0000044c, Registry => 0x80000001, SubKey => ... proxyTool)
RegQueryValue (Out Handle => 0x0000044c, ValueName => team tick)
RegSetValue (Out Handle => 0x0000044c, ValueName => team tick)
RegQueryValue (Out Handle => 0x0000044c, ValueName => team tick)
RegSetValue (Out Handle => 0x0000044c, ValueName => team tick)
RegQueryValue (Out Handle => 0x0000044c, ValueName => team tick)

NtCreateFile (Out FileHandle => 0x000000a0, …, Filename => ...index.dat)
NtSetInformationFile (In FileHandle => 0x000000a0)
NtQueryInformationFile (In FileHandle => 0x000000a0)
NtClose (In FileHandle => 0x000000a0)
NtCreateFile (Out FileHandle => 0x0000010c, …, Filename => ...phcl2vj0e73a.bmp)
NtQueryInformationFile (In FileHandle => 0x0000010c)
NtClose (In FileHandle => 0x0000010c)

Figure 2: Execution trace of a malware sample.

NtCreateFile

NtSetInformationFile

NtQueryInformationFile

G3

RegQueryValue

RegCreateKey

RegSetValue

RegQueryValue

RegSetValue

RegQueryValue

G2

G1

NtClose

NtCreateFile

NtQueryInformationFile

NtClose

Figure 3: Some API call graphs.
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subgraphs start from the root node and end with leaf nodes.
It is worth mentioning that the simple paths from the root
node to a certain leaf node in an API call graph may occur
more than once. For each subgraph in line 8, if the order of a
subgraph is smaller than N,NSG is the same as the subgraph.
Otherwise, we should extract the appropriate NSG based on
the sliding window. (e output of this algorithm is NSG. In
this algorithm, we transform the original API call graph into
fragment behaviors NSG.

(e subgraph is a no-branching fragment behavior
extracted from API call graphs. Hence, the number of
subgraph n is no less than the number of API call graph r

(n≥ r). In the same way,m≥ n. An important problem of this
issue is the value of N. Our goal is to better describe malware
with an appropriate N as small as possible.

API call repartition algorithm removes two types of
similar behaviors: internal similarity and external similarity.
Internal similarity refers to the similarity of NSG in a

subgraph. External similarity represents the similarity of
NSG among different subgraphs. Internal similarity is
generally caused by repeatedly executing API calls. For
example, if a program repeatedly invokes RegQueryValue
and RegSetValue in Figure 4, then two repeated 3SGs of
{RegQueryValue, RegSetValue, RegQueryValue} are gener-
ated. In this condition, we select {RegQueryValue, RegSet-
Value, RegQueryValue} only once. External similarity is
commonly caused by API calls that perform the same type of
behaviors among different subgraphs. For example,
NtCreateFile outputs two different values FileHandle
0x000000a0 and FileHandle 0x0000010c on lines 7 and 11,
respectively. As a result, 3SGs of {NtCreateFile, NtQuer-
yInformationFile} and {NtCreateFile, NtClose} are the same
type of behaviors in different subgraphs.(erefore, we select
{NtCreateFile, NtQueryInformationFile} and {NtCreateFile,
NtClose} only once in the program. Removing similar be-
haviors can help to simplify the representation of the graph.

RegQueryValue

RegCreateKey

RegSetValue

RegQueryValue

RegSetValue

RegQueryValue

SG1

RegQueryValue

RegCreateKey

RegSetValue

SG3

SG2
RegQueryValue

RegQueryValue

RegSetValue

RegSetValue

RegQueryValue

RegSetValue

Figure 4: Construction of 3SG.

Input: API call graph (G1, G2, . . . , Gr)
Output: NSG1, NSG2, . . . , NSGm // m≥ r

(1) Begin
(2) For i � 1 to r do // i represents i − th API call graph in a sample
(3) Find the root node V0 in Gi

(4) Find leaf nodes (Vk, Vk+1, . . . , Vk+r) in Gi

(5) Extract subgraphs from V0 to leaf nodes
(6) End
(7) Obtained all extracted subgraphs (G1′, G2′, . . . , Gn

′)
(8) For i � 1 to n do // i represents i − th subgraph and m≥ n

(9) If the order h in Gi
′ is smaller than N: h≤N

(10) NSGi � Gi
′

(11) Else
(12) Divide Gi

′ into NSG

(13) End
(14) End
(15) Output NSG1, NSG2, . . . , NSGm

(16) End

ALGORITHM 1: API call repartition algorithm.
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4.3. Feature Extraction. (e characteristic of the program is
represented as fragment behavior NSGS by applying the API
call repartition algorithm which eliminates similarity be-
haviors. To remove unimportant ones, we need to calculate
the crucial coefficient of NSG in NSGS. We propose a
method that exploits the idea of TF-IDF and IG to evaluate
the importance of an NSG.

We have four malware families and different types of
benign samples in our proposed system. Different types of
benign samples are defined as one family of benign. Hence,
we have five categories; the category set is represented as C,
where C � (C0, C1, C2, C3, C4). Each family has k samples
(in our proposed system, k � 880).

TF-IDF’s main idea is that a fragment behavior NSG is
appropriate for selecting as a crucial behavior when it ap-
pears with a high frequency (TF) in a category and appears
with a low frequency in other categories. For IDF, NSG is
appropriate for selecting as a CNSG when a fragment be-
havior NSGi appears in a small number of categories.

We consider that a fragment behavior NSG appears p

times in a category Cj (Cj ∈ C). In addition, it appears q

times in other categories except for Cj. Hence, fragment
behavior appears (p + q) times altogether. NSG is a crucial
behavior of Cj when p is large enough, which means that the
value of Cru(NSGi) is very high. However, the value of
IDF(NSGi) is relatively small because of the large (p + q).

We present the improved TF-IDF-like measure by ap-
plying IG which is described in our previous work [20]. IG is
defined as how much information the feature brings to the
system. (e more the information this feature brings to the
system, the more important the feature is. (e fragment
behavior NSG appears p times in the category Cj and ap-
pears q times in other categories except for Cj. When p is
large enough, the value of IG(NSGi) is sufficient to select
NSG as a crucial behavior.

Based on the TF-IDF and IG, we derive a symbolic
expression for calculating the coefficient of NSG as follows:

Cru NSGi( 􏼁 � αTF − IDF NSGi( 􏼁 +(1 − α)IG NSGi( 􏼁,

TF − IDF NSGi( 􏼁 �
f NSGi, Cj􏼐 􏼑

Cj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
∗ log

5 ∗ k

C | NSGi ∈ C􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(4)

where TF − IDF(NSGi) represents the value of the TF-IDF-
like measure and IG(NSGi) stands for the value calculated
by IG. (e improved TF-IDF-like method determines the
effects of different factors of TF-IDF-like measure and IG by
finding appropriate α (0< α< 1).f(NSGi, Cj) is the number
of times NSGi appears in family Cj, |Cj| is the dimension of
Cj, and Cj | NSGi ∈ Cj􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 is the number of samples which
contain NSGi.

5. Results

(is section describes the dataset and the evaluation method
in Section 5.1. Section 5.2 shows the experiment and eval-
uation results.

5.1. Dataset and Evaluation Method. To prove that our
method is effective in detecting malware, a set of malware
classification experiments are presented in this section. To
ensure the fairness and effectiveness of the experiment, we
selected the same amount of families which consist of Delf,
Small, Zlob, and OBfuscated. To prevent confusion with
obfuscated malware, we use the OBfuscated that begins
with two uppercase letters to represent the Trojan.Wi-
n32.Obfuscated family. In addition, we download 880 be-
nign samples from different websites. More precisely, benign
samples consist of Desk Widget, Facebook Messenger,
Google Earth, Matlab, Minclock, and Quicktime player.

Ubuntu is selected as the operating system to run a
standard Cuckoo sandbox. First, we process malware
samples in bulk by developing the Cuckoo sandbox. Each
sample was executed several times. After a comprehensive
analysis, the samples that performed malicious behaviors
were selected for experimental analysis. As we all know, file-
less malware can delete all the files it saves on the infected
system disk, injects code into running processes, and uses
PowerShell, Windows Management Instrumentation, and
other technologies to make detection and analysis difficult.
(is antianalysis method can bypass hooks deployed in
automated analysis sandboxes (such as Cuckoo sandbox).
(is article does not focus on file-less malware and other
escape circumstance. Second, to ensure the fairness and
effectiveness of the experimental results, we select 880
samples for each malware family and benign for experi-
ments. Finally, we perform 10-fold cross-validation. In 10-
fold cross-validation, we divide all dataset samples into ten
parts. To guarantee the proportion of each family, we choose
nine parts for training and the last part for testing each time.
(e experiments are repeated ten times and the accuracy is
the average of the experimental results.

In our proposed malware classification method, TP, FN,
FP, TN, TPR, and FPR in the formulas are defined in Table 2.

(is definition uses Delf as an example. Delf is a malware
family in our work.

TP represents the number of samples in which the
sample belongs to Delf and is correctly classified as Delf.

FN is the number of samples in which the sample be-
longs to Delf but not classified as Delf.

FP indicates the number of samples in which the sample
not belongs to Delf but classified as Delf.

TN indicates the number of samples in which the sample
not belongs to Delf and is not classified as Delf.

(e common performance of accuracy is defined as follows:

accuracy �
TP + TN

TP + FN + FP + TN
. (5)

5.2. Experiment and Evaluation Results. RF, SVM, DT, and
KNN are employed to evaluate the detection effectiveness of
our method and to explore the impact of α in malware clas-
sification. We studied the effect of the value of α on different
classifiers. We set the size of α from 0.1 to 0.9 to observe the
effect of α on different classifiers.(e effect of α on the accuracy
of different CNSGs and classifiers is shown in Figure 5.

Mathematical Problems in Engineering 7



(e horizontal axis of Figure 5 indicates the value of α. (e
vertical axis of Figure 5 is the average accuracy we obtained
from the 10-fold cross-validation.

We can see from Figure 5 that RF has good performance
in malware classification based on behavioral fragment

CNSG. In Figure 5(a), the average accuracy of RF is higher
than of other classifiers for different values of α. (e average
accuracy of RF increases first and then decreases with the
increase of α.(e average accuracy of RF reaches the optimal
value when α is equal to 0.7. In Figure 5(b), when the value of

Table 2: Descriptions of the metrics.

Abbr Symbol Definition
TP True positive #(e number of malware samples in family f is correctly classified as family f
FN False negative #(e number of malware samples in family f is incorrectly not classified as family f
FP False positive #(e number of malware samples not in family f is incorrectly classified as family f
TN True negative #(e number of malware samples not in family f is correctly not classified as family f
TPR True positive rate #TP/(TP + FN)
FPR False positive rate #FP/(FP +TN)

93.4

93.6

93.8

94.0

94.2

94.4

94.6

94.8

95.0

95.2

AV
G

 ac
cu

ra
cy

0.2 0.4 0.6 0.8 1.00.0
Value of α

RF
SVM

DT
KNN

(a)

0.2 0.4 0.6 0.8 1.00.0
Value of α

RF
SVM

DT
KNN

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

AV
G

 ac
cu

ra
cy

(b)

93.0

93.5

94.0

94.5

95.0

95.5

AV
G

 ac
cu

ra
cy

0.2 0.4 0.6 0.8 1.00.0
Value of α

RF
SVM

DT
KNN

(c)

93.0

93.5

94.0

94.5

95.0

AV
G

 ac
cu

ra
cy

0.2 0.4 0.6 0.8 1.00.0
Value of α

RF
SVM

DT
KNN

(d)

Figure 5: CNSG classification performance with α. (a)(e relationship between average accuracy of different classifiers (e.g., RF, SVM, DT,
and KNN) and the value of α in C3SG. (b) (e relationship between average accuracy of different classifiers and the value of α in C4SG. (c)
(e relationship between average accuracy of different classifiers and the value of α in C4SG. (d)(e relationship between average accuracy
of different classifiers and the value of α in C6SG.
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α is between 0.1 and 0.3, the average accuracy of SVM is
optimal. When α is greater than 0.3, the average accuracy of
RF is the best and is slowly increasing. (e average accuracy
of RF reaches the optimal value when α is equal to 0.9. In
Figures 5(c) and 5(d), the average accuracy of RF is better
than the other three classifiers, and the highest average
accuracy is achieved when α is equal to 0.6 and 0.7,
respectively.

It can be seen from Figure 5 that with the change of α, the
average accuracy of CNSG classified by different classifiers
has obvious changes. In other words, exploring changes in α
has a positive impact on malware classification. α is an
indispensable factor in malware classification. We can
conclude that the IG can well compensate for the short-
comings of the TF-IDF-like measure when the optimal value
of α is obtained.

To prove the validity of our improved TF-IDF-like
measure, we compare the TF-IDF-like measure with our
proposed method. Table 3 describes the average accuracy
of the TF-IDF-like measure and the improved TF-IDF-
like measure. We can see from Table 3 that with different
classifiers and CNSGs, the improved TF-IDF-like mea-
sure is better than the TF-IDF-like measure, in most
cases.

(e experimental results also demonstrate that IG can
make up for the deficiency of the TF-IDF in malware
classification. When α is 0.9, C4SG has the highest classi-
fication accuracy (when the classifier is RF), which is as high
as 95.27%. Based on the experimental results, we select C4SG
as the final fragment behavior.

For malware detection, we select the optimal value of α
obtained in malware classification. We draw a Receiver
Operating Characteristic (ROC) curve in Figure 6. (e
horizontal axis of Figure 6 represents FPR, and the vertical
axis of Figure 6 is TPR. (e ROC curve reflects the corre-
lation between FPR and TPR. It can be calculated in Figure 6
that the accuracy is as high as 99.7% with the FPR of 1.2%.
(e experimental results show that C4SG is promising in
malware detection.

For malware classification, an example of the ROC
curve is depicted in Figure 7. It illustrates the classifi-
cation performance of C4SG detected by RF. Four pic-
tures with the detection performance of Delf, OBfuscated,
Small, and Zlob are presented. Figure 7(a) describes the
detection performance of Delf. In Figure 7(a), we com-
pare the ROC curve of API sequence (4 gram), C4SG, and
subgraph. We can see from Figure 7(a) that the perfor-
mance of C4SG is better than the subgraph and API
sequence and the performance of the subgraph is better
than the API sequence. Figure 7(b) describes the detec-
tion performance of OBfuscated. We can see from
Figure 7(b) that both C4SG and subgraph obtained better
detection performance than API sequence and C4SG is
better than the subgraph. Figures 7(c) and 7(d) represent
the detection performance of Small and Zlob, separately.
In Figures 7(c) and 7(d), C4SG has better detection
performance than the subgraph and API sequence, and
the detection performance of the subgraph is better than
the API sequence.

Subgraph and C4SG contain many API calls and their
dependencies. Hence, the semantic in subgraph and C4SG is
more abundant than in the API sequence. C4SG achieves a
better detection performance than the subgraph. (is ef-
fectively proves that the C4SG we built is suitable for
malware classification.

For malware detection and classification, we make a
comparison with some related models, i.e., Fredrikson et al.
[37], Alam et al. [40], and Ding et al. [41] in Table 4. Our
malware detection result shows good advantages in related
studies. For malware classification, authors of [41] have
surpassed our results; we take note that Delf, Small, and Zlob
in our experiment have some of the same malicious be-
havior, which may be an important cause of the reduction in
classification accuracy.

6. Discussion

We summarize the limitations of the system in this section.
In addition, possible solutions are counseled on these
limitations.

(e main premise of our proposed malware classifica-
tion method is that we observe malicious activities by ex-
ecuting Cuckoo sandbox. Sandbox is widely used for
detecting malware in dynamic analysis. Nevertheless, certain
malware samples can evade detection by analyzing the
virtual environment to avoid executing malicious opera-
tions. In addition, malware writers can also use some

Table 3: Classification accuracy.

Type Method RF SVM DT KNN

C3SG TF-IDF 0.9450 0.9350 0.9448 0.9391
Improved TF-IDF 0.9507 0.9475 0.9434 0.9420

C4SG TF-IDF 0.9498 0.9448 0.9350 0.9391
Improved TF-IDF 0.9527 0.9493 0.9441 0.9459

C5SG TF-IDF 0.9482 0.9489 0.9382 0.9425
Improved TF-IDF 0.9520 0.9489 0.9425 0.9441

C6SG TF-IDF 0.9470 0.9470 0.9375 0.9425
Improved TF-IDF 0.9505 0.9468 0.9407 0.9439
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Figure 6: Detection performance with RF.
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methods (e.g., delays) to restraint malicious operations
during analysis. Executing malware in multiple analysis
environments is an effective way to detect evasive samples.

(e dataset for malware analysis is relatively small.
Larger numbers of malware samples may have better results.
(erefore, more samples are needed to implement a large
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Figure 7: Classification performance with RF. (a) ROC curve of Delf with (i) API sequence, (ii) C4SG, and (iii) subgraph detected by RF. (b)
ROC curve of OBfuscated with (i) API sequence, (ii) C4SG, and (iii) subgraph detected by RF. (c) ROC curve of Small with (i) API sequence,
(ii) C4SG, and (iii) subgraph detected by RF. (d) ROC curve of Zlob with (i) API sequence, (ii) C4SG, and (iii) subgraph detected by RF.(e
overall average accuracy of C4SG is better than in the subgraph and API sequence.

Table 4: Summary of related work.

Approach Analysis type Accuracy (detection/classification) Precision F1 score
Fredrikson et al. [37] Dynamic 86.56% (D) NA NA
Alam et al. [40] Static 94%–99.6% (D) NA NA
Ding et al. (SDG-A) [41] Dynamic 96.2% (C) NA NA
Ding et al. (CDG) [41] Dynamic 96.4% (C) NA NA
Our method Dynamic 95.27 (C) 95.3% 95.3%
Our method Dynamic 99.7% (D) 99.7% 99.7%
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multiclassification.(is is also the work we want to do in the
future.

(e proposed method is very promising for family
classification, but there are miss predictions. In our ex-
periments, some Delf samples are detected as Small and
Zlob. (e main reason for this misclassification is that they
have some of the same malicious behavior. Delf generally
downloads and runs files on designated IP and port, causing
the malware to run automatically on remote hosts. Small
usually infects a computer and connects to remote servers to
download malware. Zlob is a Trojan that remotes access to
infected computers unauthorized. (at is to say, Delf, Small,
and Zlob perform remote connection operations and have
similar behaviors with each other. In addition, the graph-
based sequence may have certain limitations. (erefore, in
future work, we intend to explore the similarity of CNSG in
the form of the graph.

To overcome the shortcomings of traditional detection
models, we also need to explore some state-of-the-art modes,
i.e., Amin et al. [30], Amin et al. [31], and D’Angelo et al.
[32]. We will explore deep learning-based methods to im-
prove the detection rate of malware.

(e dataset for malware analysis is relatively small.
Larger numbers of malware samples may have better results.
(erefore, more samples are needed to implement a large
multiclassification.(is is also the work we want to do in the
future.

7. Conclusions

In this paper, we propose a dynamic malware analysis
method that relies on novel feature representation and
extraction for malware classification. (e proposed feature
representation measure transforms malware behavior into
fragment behavior. Moreover, the improved feature ex-
traction measure is utilized to extract crucial behaviors of
malware families. (e experimental results show that the
proposed C4SG achieves a promising performance of
95.27% detected by RF in malware classification.
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