
Research Article
A Parallel Splitting Augmented Lagrangian Method
for Two-Block Separable Convex Programming with
Application in Image Processing

Jing Liu ,1,2 Yongrui Duan,1 and Tonghui Wang3

1School of Economics and Management, Tongji University, Shanghai, China
2School of Date Scineces, Zhejiang University of Finance and Economics, Hangzhou, China
3Department of Mathematical Science, New Mexico State University, Las Cruces, NM, USA

Correspondence should be addressed to Jing Liu; ljlj8899@163.com

Received 30 August 2019; Revised 30 December 2019; Accepted 13 January 2020; Published 21 February 2020

Guest Editor: Marco Perez-Cisneros

Copyright © 2020 Jing Liu et al.-is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-e augmented Lagrangian method (ALM) is one of the most successful first-order methods for convex programming with linear
equality constraints. To solve the two-block separable convex minimization problem, we always use the parallel splitting ALM
method. In this paper, we will show that no matter how small the step size and the penalty parameter are, the convergence of the
parallel splitting ALM is not guaranteed. We propose a new convergent parallel splitting ALM (PSALM), which is the regularizing
ALM’s minimization subproblem by some simple proximal terms. In application this new PSALM is used to solve video
background extraction problems and our numerical results indicate that this new PSALM is efficient.

1. Introduction

Many problems arising from machine learning, such as
compressive sensing [1, 2], the video background extraction
problem [3–5], batch images alignment [6, 7], and transform
invariant low-rank textures [8, 9] can be formulated as
separable convex programming with linear constraints. In
this paper, we consider the following two-block separable
convex programming:

min θ1 x1(  +θ2 x2( 
 A1x1 + A2x2 � b, x1 ∈ X1, x2 ∈ X2 ,

(1)

where i � 1, 2, Ai ∈ R
ℓ×ni , the ℓ × ni matrix onR; b ∈ Rℓ, the

ℓ-dimensional vector on R; Xi is the subset of Rni . Here,
θi: Xi⟼R(i � 1, 2) are the proper lower semicontinuous
convex functions, i.e.,

lim inf
x⟶x

θi(x) � θi(x), for all x ∈ dom θi( ≠∅,

θi(λx +(1 − λ)y)≤ λθi(x) +(1 − λ)θi(y),

for allx, y ∈ Xi, λ ∈ [0, 1].

(2)

-e solution set of problem (1), denoted by X∗, is as-
sumed to be nonempty. Note that theoretical results to
problem (1) can easily be extended to matrix variables.

Let β> 0 be a penalty parameter, and the augmented
Lagrangian functions of problem (1) can be written as

Lβ x1, x2, λ(  � θ1 x2(  + θ2 x2(  − λ⊤ A1x1 + A2x2 − b( 

+
β
2

A1x1 + A2x2 − b
����

����
2
,

(3)

where λ ∈ Rℓ is the Lagrangian multiplier. It is well-known
that the augmented Lagrangian method (ALM) [10] is one of
the most successful first-order methods for convex pro-
gramming with linear constraints. Applying it to problem
(1), we can obtain the following procedure:

xk+1
1 , xk+1

2(  � argmin Lβ x1, x2, λ
k

 
 x1 ∈ X1, x2 ∈ X2 ,

λk+1 � λk − αβ A1x
k+1
1 + A2x

k+1
2 − b( ,

⎧⎪⎨

⎪⎩

(4)
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where α ∈ (0, 2) is the step size. It has been proved that the
sequence generated by the iterative scheme (4) is Fejér
monotone and has the global convergence. Inmany practical
problems, the proximal mapping prox]θi

of θi, defined as

prox]θi
xi(  ≔ argmin

y∈Rni

θi xi(  +
1
2]

y − xi

����
����
2

 , (5)

has closed-form expression. For example, consider the video
background extraction problem given by

min
L,S

‖L‖∗ + τ‖S‖1 ,

subject to L + S � D,
(6)

where

‖L‖∗ � 

min m,n{ }

i�1

�����

σi(L)



, ‖S‖1 � 
m

i�1


n

j�1
sij



. (7)

σi(L) are the singular values of the m × n matrix L,
U V⊤ is the singular value decomposition of L, and sij are
elements of the m × n matrix S. -en, by [11], the proximal
mapping (5) is rewritten as

prox]‖·‖∗
(L) � Udiag Sc(Σ)( V

⊤
. (8)

Similarly, by [12], the proximal mapping (5) is given as

prox]‖·‖1
(S) � S](S), (9)

where S](E) is defined by

S](E)( ij ≔ sign Eij  · max Eij



 − ], 0 , 1≤ i≤m, 1≤ j≤ n,

(10)

and sign(·) is the sign function. However, the proximal
mapping of ‖L‖∗ + τ‖S‖1 does not admit closed-form ex-
pression so that the iterative scheme (4) for problem (5) has
to resort some inner solver to compute its minimization
problem in each iteration, which inevitably creates a chain of
problems, such as an efficient solver to solve the minimi-
zation problem and stopping criterion to ensure the global
convergence of inexact version of the iterative scheme (5).
-erefore, we should not ignore the separable structure of
the objective function of problem (1). -at is, we’d better
split the minimization subproblem in (5) into some smaller
scale subproblems to fully utilize the individual property
of θi.

-e alternating direction method of multipliers
(ADMM) can decompose a complicated problem into some
small-scale subproblems and solve these subproblems in a
sequential manner or a parallel manner. Focusing on the way
of splitting the augmented Lagrangian function in the spirit
of the well-known alternating direction method (ADM), Tao
and Yuan [4] have proposed a variant of the alternating
splitting augmented Lagrangian method (ASALM) with
convergent property, which can solve three-block separable
convex programming. He et al. [13] propose a splitting
method for solving a separable convex minimization
problem with linear constraints, where the objective func-
tion is expressed as the sum of m individual functions

without coupled variables. Aybat and Iyenga [14] have
designed a variant of ADMM with increasing penalty for
stable principal component pursuit (ADMIP) to solve the
SPCP problem. Its preliminary computational tests show
that ADMIP works very well in practice and outperforms
ASALMwhich is a state-of-the-art ADMM algorithm for the
SPCP problem with a constant penalty parameter.

In this paper, following the abovementioned procedure,
we split the minimization problem of ALM in the Jacobian
manner and get the following iterative scheme:

xk+1
1 � argmin Lβ x1, xk

2, λk
  x1 ∈ X1

 ,

xk+1
2 � argmin Lβ xk

1, x2, λ
k

  x2 ∈ X2
 ,

λk+1 � λk − αβ A1x
k+1
1 + A2x

k+1
2 − b( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

-e iterative scheme (11) takes advantages of the sep-
arable structure and parallel architectures. Unfortunately, it
suffers from the weakness that its convergence cannot be
guaranteed under the convex assumption of θi and X∗ ≠∅.
To verify this, we shall apply the iterative scheme (11) to
solve problem (1) given in Section 2 and show that the
generated sequence diverges even β⟶ 0+. So, in Section 2,
we propose a new parallel splitting ALM for problem (1),
which is not only convergent but also keeps the good
properties of the original ALM. Our numerical results in
Section 3 indicate that the new PSALM is efficient.

-e remainder of this paper is organized as follows. In
Section 2, an example is given showing that the iterative
scheme (11) maybe diverge, and a new parallel splitting ALM
for problem (1) is proposed, which has the global conver-
gence in both ergodic and nonergodic senses. For illustration
of our main results, two numerical examples are given in
Section 3 and a brief conclusion is drawn in Section 4.

2. Algorithm and Convergence Results

In this section, we will show that the iterative scheme (11)
with any small positive α and β can be diverge so that a new
parallel splitting ALM for problem (1) is proposed and the
corresponding convergence results are established.

In what follows, Rn will stand for the n-dimensional
Euclidean space, and set

x � x1, x2( ,

w � x1, x2, λ( ,

θ(x) � θ1 x1(  + θ2 x2( ,

A � A1, A2( ,

X � X1 × X2,

W � X × R
l
.

(12)

By the characterization of optimality condition for
convex optimization, problem (1) can be readily charac-
terized as the following mixed variational inequalities
denoted by MVI (W, F, θ):

θ(x) − θ x
∗

(  + w − w
∗

( 
⊤

F w
∗

( ≥ 0, ∀w ∈W, (13)
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where

F(w) �

− A⊤1 λ

− A⊤2 λ

Ax − b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (14)

Because F(w) is a linear mapping with the skew-sym-
metric coefficient matrix, it satisfies the following property:

w′ − w( 
⊤

F w′(  � w′ − w( 
⊤

F(w), ∀w′, w ∈W.

(15)

-e solution set of MVI (W, F, θ) is denoted by W∗,
which is nonempty under the assumption X∗ ≠∅.

Based on the prototype algorithm proposed by He and
Yuan in [15], we can introduce the following prototype
algorithm to solve MVI (W, F, θ):

A prototype algorithm for MVI (W, F, θ) is denoted by
ProAlo

[Prediction] For given wk, find wk ∈W and Q satisfying

θ(x) − θ x
k

  + w − w
k

 
⊤

F w
k

 ≥ w − w
k

 
⊤

Q w
k

− w
k

 ,

∀w ∈W,

(16)

where the matrix Q has the property (Q + Q⊤) which is
positive definite

[Correction] Determine a nonsingular matrixM, a scalar
α> 0, and generate the new iterate wk+1 via

w
k+1

� w
k

− αM w
k

− w
k

 . (17)

Similar to [15], we have the following convergence
condition, which ensures that the ProAlo is globally con-
vergent and has worst-case O(1/t) convergence rate in er-
godic and nonergodic senses.

Convergence Condition
-e matrices Q + Q⊤, H ≔ QM− 1, G(α) ≔ Q + Q⊤−

αM⊤HM are positive definite.
Now we give an example to show that the iterative

scheme (11) maybe diverge for problem (1).

Example 1. Consider the linear equation [16]

x1 + x2 � 0. (18)

Obviously, the linear equation (18) is a special case of
problem (1) with the specifications: θ1 � θ2 � 0, A1 �

A2 � 1, b � 0, andX1 � X2 � R. -e augmented Lagrang-
ian function of problem (18) is given by

Lβ x1, x2, λ(  � − λ⊤ x1 + x2(  +
β
2

x1 + x2
����

����
2
. (19)

-en, applying the iterative scheme (11) to solve problem
(18) gives the following procedure:

xk+1
1

xk+1
2

λk+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � P

xk
1

xk
2

λk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

where

P �

0 − 1
1
β

− 1 0
1
β

αβ αβ 1 − 2α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

-ree eigenvalues of the matrix P are

λ1 � 1,

λ2 � − α +
�����
α2 + 1

√
,

λ3 � − α −
�����
α2 + 1

√
.

(22)

For any α, β> 0, we have ρ(P) � α +
�����
α2 + 1

√
> 1, let

ρ(P) is the spectral radius of P. Hence, the iterative
scheme (20) with α, β> 0 is divergent, which also indicates
that the iterative scheme (11) diverge for problem (1)
under the traditional assumption. In the following, we
shall design a new parallel splitting ALM for problem (1),
which maximally inherits the structure of the iterative
scheme (11).

Algorithm 1. new PSALM

Step 1. Given an initial point w0 � (x0
1, x0

2, λ
0) ∈W; let

parameters ]> 0, α ∈ (0, 2]/1 + ]), β> 0, and the tol-
erance ε> 0. Set k � 0.
Step 2. Compute the new iterate wk+1 �

(xk+1
1 , xk+1

2 , λk+1) via

xk+1
1 � argmin Lβ x1, xk

2, λk
  +

]β
2

A1x1 − A1x
k
1

�����

�����
2

x1 ∈ X1
 ,

xk+1
2 � argmin Lβ xk

1, x2, λ
k

  +
]β
2

A2x2 − A2x
k
2

�����

�����
2

x2 ∈ X2
 ,

λk+1 � λk − αβ A1x
k+1
1 + A2x

k+1
2 − b( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)
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Step 3. If max ‖A1x
k
1 − A1x

k+1
1 ‖, ‖A2x

k
2 − A2x

k+1
2 ‖,

‖λk − λk+1‖}≤ ε, then stop; otherwise, replace k + 1 by k,
and go to Step 2.

Remark 1. -e new PSALM iterative scheme (23) not only
preserves the main advantage of the ALM iterative scheme
(11) in treating the objective functions θ1 and θ2 individually,
but also numerically accelerates (11) with some values of the
step size α, e.g., α ∈ (1, 2), which can be achieved when ]> 1.

In the following, we further make the following as-
sumption about problem (1).

Assumption 1. -e matrices A1 andA2 in problem (1) are
both full column ranks.

To establish the convergence results of new PSALM, we
first cast it to a special case of the ProAlo. To accomplish this,

let us define an auxiliary sequence wk � (xk
1, xk

2, λ
k
)  as

follows:

x
k
i � x

k+1
i , i � 1, 2,

λ
k

� λk
− β A1x

k
1 + A2x

k
2 − b .

(24)

-is together with the updated formula of λ in (23) gives

λk+1
� λk

− α − βA1 x
k
1 − x

k
1  − βA2 x

k
2 − x

k
2  + λk

− λ
k

  .

(25)

-us,

w
k+1

� w
k

− αM w
k

− w
k

 , (26)

where the matrix M is defined as

M �

In1

α
0 0

0
In2

α
0

− βA1 − βA2 Il

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Lemma 1. Let wk  be the sequence generated by the new
PSALM and wk  be defined as in (24), and it holds that

θ(x) − θ x
k

  + w − w
k

 
⊤

F w
k

 ≥ w − w
k

 
⊤

Q w
k

− w
k

 ,

∀w ∈W,

(28)

where the matrix Q is defined by

Q �

β(1 + ])A⊤1 A1 0 0

0 β(1 + ])A⊤2 A2 0

− A1 − A2
Il

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

Proof. By the first-order optimality condition of the two mini-
mization problems in (23), for anyx1 ∈ X1andx2 ∈ X2, we have

θ1 x1(  − θ1 x
k
1  + x1 − x

k
1 
⊤

− A
⊤
1

λ
k

− β(1 + ])A
⊤
1 A1

· x
k
1 − x

k
1 ≥ 0,

θ2 x2(  − θ2 x
k
2  + x2 − x

k
2 
⊤

− A
⊤
2

λ
k

− β(1 + ])A
⊤
2 A2

· x
k
2 − x

k
2 ≥ 0.

(30)
-e definition of the variable λ

k
in (24) gives

λ − λ
k

 
⊤

A1x
k
1 + A2x

k
2 − b + A1 x

k
1 − x

k
1  + A2 x

k
2 − x

k
2 

+
1
β

λ
k

− λk
 ≥ 0, ∀λ ∈ Rl

.

(31)
Adding the above three inequalities, using the notation

of θ(x) and F(w), we can get the compact form (28) and this
completes the proof. □

Remark 2. If max{‖A1x
k
1 − A1x

k+1
1 ‖, ‖A2x

k
2 − A2x

k+1
2 ‖, ‖λk−

λk+1‖} � 0, then by (24), we have A1x
k
1 � A1xk

1, A2x
k
2 �

A2xk
2, λ

k � λ
k
. So, Q(wk − wk) � 0. Substituting it into the

right-hand side of (28), we have

θ(x) − θ x
k

  + w − w
k

 
⊤

F w
k

 ≥ 0, ∀w ∈W. (32)

So, wk ∈W∗, and the stopping criterion of the PSALM is
reasonable.

With inequalities (26) and (28) in hand, to establish the
convergence results of the PSALM, we only need to ensure
the matrices M andQ defined as in (27) and (29) satisfy the
convergence condition.

Lemma 2. Let the matrices Q andM be defined as in (27)
and (29). If α ∈ (0, 2]/1 + ]) and Assumption 1 holds, then

(i) Ae matrix Q + Q⊤ is positive definite
(ii) Ae matrix H � QM− 1 is symmetric and positive

definite
(iii) Ae matrix G(α) � Q + Q⊤ − αM⊤HM is symmetric

and positive definite

Proof

(i) From the definition of the matrix Q, we have

Q + Q
⊤

�

2β(1 + ])A⊤1 A1 0 − A⊤1

0 2β(1 + ])A⊤2 A2 − A⊤2

− A1 − A2
2Il

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(33)
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which is positive definite from ]> 0 andAssumption 1.
(ii) From the definition of the matrices Q andM, we

have

H �

αβ(1 + ])A⊤1 A1 0 0

0 αβ(1 + ])A⊤2 A2 0

0 0
Il

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

which is symmetric and positive definite by As-
sumption 1.

(iii) Similarly, from the definition of Q, M, we have

G(α) �

β(1 + ] − α)A⊤1 A1 − αβA⊤1 A2 − (1 − α)A⊤1

− αβA⊤2 A1 β(1 + ] − α)A⊤2 A2 − (1 − α)A⊤2

− (1 − α)A1 − (1 − α)A2
(2 − α)Il

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� L
⊤

R(α)L,

(35)

where

L �

��
β


A1 0 0

0
��
β


A2 0

0 0
Il��
β



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R(α) �

(1 + ] − α)Il − αIl − (1 − α)Il

− αIl (1 + ] − α)Il − (1 − α)Il

− (1 − α)Il − (1 − α)Il (2 − α)Il

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(36)

From Assumption 1, we only need to prove the matrix
R(α) is positive definite. In fact, it can be written as

1 + ] − α − α − (1 − α)

− α 1 + ] − α − (1 − α)

− (1 − α) − (1 − α) 2 − α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⊗ Il, (37)

where ⊗ denotes the matrix Kronecker product. -us, we
only need to prove the 3 order matrix

1 + ] − α − α − (1 − α)

− α 1 + ] − α − (1 − α)

− (1 − α) − (1 − α) 2 − α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (38)

is positive definite. Its three eigenvalues are λ1 � 1 + ], λ2 �

(3 + ] − 3α −
������������������������
9α2 − 2α] − 14α + ]2 − 2v + 9

√
)/2, λ3 � (3+

] − 3α +
������������������������
9α2 − 2α] − 14α + ]2 − 2v + 9

√
)/2. -en, solving

the following three inequalities
1 + ]> 0,

3 + ] − 3α −
������������������������
9α2 − 2α] − 14α + ]2 − 2v + 9

√
> 0,

3 + ] − 3α +
������������������������
9α2 − 2α] − 14α + ]2 − 2v + 9

√
> 0,

⎧⎪⎪⎨

⎪⎪⎩
(39)

we get 0< α< 2]/1 + ]. -erefore, the matrix G is positive
definite for any α ∈ (0, 2]/1 + ]). In addition, from its ex-
pression, the matrix G(α) is obviously symmetric. -is
completes the proof.

Lemma 2 indicates that the matrices Q andM defined as
in (27) and (29) satisfy convergence condition, and
according to the result in [15], we get the following con-
vergence results of new PSALM. □

Theorem 1 (global convergence). Let wk  be the sequence
generated by new PSALM. Aen, it converges to some w∞,
which belongs to W∗.

Theorem 2 (ergodic convergence rate). Let wk  be the
sequence generated by new PSALM, wk  be the corre-
sponding sequence defined as in (24). Set

w
t

�
1
t



t− 1

k�0
w

k
. (40)

Then, for any integer t≥ 0, we have

θ x
t

  − θ(x) + w
t

− w 
⊤

F(w)≤
1
2αt

w − w
0����
����
2
H

, ∀w ∈W.

(41)

Theorem 3 (nonergodic convergence rate). Let wk  be the
sequence generated by new PSALM. Aen, for any w∗ ∈W∗
and integer t≥ 0, we have

M w
t

− w
t

 
�����

�����
2

H
≤

1
c0t

w
0

− w
∗����
����
2
H

, (42)

where c0 > 0 is a constant.
Note that the right-hand side of (41) is independent of

the distance between the initial iterate w0 and the solution
set W∗. -erefore, (41) is not a reasonable criterion to
measure the nonergodic convergence rate. In the following,
we give a refined result to measure the nonergodic con-
vergence rate of the sequence wk  generated by new
PSALM.

Lemma 4. Let wk  be the sequence generated by new
PSALM. Aen, for any w ∈W, we have

α θ(x) − θ x
k

  + w − w
k

 
⊤

F w
k

  

≥
1
2

w − w
k+1

�����

�����
2

H
− w − w

k
�����

�����
2

H
  +

α
2

w
k

− w
k2
H .

(43)
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Proof. -e proof is similar to that of Lemma 3.1 in [15] and
is omitted for brevity of this paper.

Theorem 4 (refined ergodic convergence rate). Let wk  be
the sequence generated by the PSALM, and set

w
t

�
1
t



t− 1

k�0
w

k
. (44)

Then, for any integer t≥ 0, there exists a constant c> 0
such that

θ xt(  − θ x∗( )


≤
c

2αt
,

Axt − b
���

���≤
c

2αt
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(45)

Proof. Choose w∗ � (x∗, λ∗) ∈W∗. -en, for any λ ∈ Rl,
we have w∗ ≔ (x∗, λ) ∈W. From the notion of F(w) and
(15), we have

w
∗

− w
k

 
⊤

F w
k

 

� w
∗

− w
k

 
⊤

F w
∗

( 

�
x∗ − xk

λ − λ
k

⎛⎝ ⎞⎠

⊤
− A⊤λ

Ax∗ − b

⎛⎝ ⎞⎠

� − λ⊤ Ax
∗

− Ax
k

 

� λ⊤ Ax
k

− b .

(46)

Set w � w∗ in (43), and we obtain

α θ x
k

  − θ x
∗

(  − w
∗

− w
k

 
⊤

F w
k

  

≤
1
2

w
∗

− w
k

�����

�����
2

H
− w
∗

− w
k+1

�����

�����
2

H
  −

α
2

w
k

− w
k








2

H
.

(47)

Combining the above two inequalities gives

α θ x
k

  − θ x
∗

(  − λ⊤ Ax
k

− b  

≤
1
2

w
∗

− w
k

�����

�����
2

H
− w
∗

− w
k+1

�����

�����
2

H
  −

α
2

w
k

− w
k

�����

�����
2

H
.

(48)

Summing the abovementioned inequality from k � 0 to
t − 1 yields



t− 1

k�0
θ x

k
  − tθ x

∗
(  − λ⊤ A 

t− 1

k�0
x

k
− tb⎛⎝ ⎞⎠≤

1
2α

w
∗

− w
0����
����
2
H

.

(49)

Dividing the both sides of the above inequality by t, we
obtain

1
t



t− 1

k�0
θ x

k
  − θ x

∗
(  − λ⊤ Ax

t
− b ≤

1
2αt

w
∗

− w
0����
����
2
H

.

(50)

-en, it follows from the convexity of θ1 and θ2 that

θ x
t

  − θ x
∗

(  − λ⊤ Ax
t

− b ≤
1
2αt

x0 − x∗

λ0 − λ
⎛⎝ ⎞⎠

����������

����������

2

H

.

(51)

Since (51) holds for any λ, we set

λ � −
A x t − b

A x t − b
���

���
, (52)

and obtain

θ x
t

  − θ x
∗

(  + Ax
t

− b





≤
1
2αt

sup
‖λ‖≤1

x0 − x∗

λ0 − λ
⎛⎝ ⎞⎠

����������

����������

2

H

.

(53)

Set

c � sup
‖λ‖≤1

x0 − x∗

λ0 − λ
 

���������

���������

2

H

, (54)

and we thus obtain

θ x
t

  − θ x
∗

(  + A x
t

− b
����

����≤
c

2αt
. (55)

Since x∗ ∈ X∗, we have

θ x
t

  − θ x
∗

( ≥ 0. (56)

Combining the above two inequalities gives

θ x t(  − θ x∗( )


≤
c

2αt
,

Ax t − b
���

���≤
c

2αt
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(57)

which completes the proof. □

-e following example is to test the influence of the
parameters ] and α on this new PSALM.

Example 2 (go on with Example 1). For this new PSALM, we
set β � 1, and the resulting iterative scheme is

xk+1
1

xk+1
2

λk+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1
1 + ]

] − 1 1

− 1 ] 1

α(1 − ]) α(1 − ]) 1 + ] − 2α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xk
1

xk
2

λk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(58)

Furthermore, we set the initial pointx0
1 � x0

2 � 0 and λ0 � 1,
and the stopping criterion is set as

max x
k
1 + x

k
2



, λ
k



 ≤ 10− 5
, (59)

or the number of iterations exceeds 10000.
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-e left subplot of Figure 1 graphically depicts the
numerical results when ] � 5 and α � 0.1: 0.1: 1.5. It reveals
that when ] is fixed, the larger α is, the better of the new
PSALM’s performance is. -e right subplot of Figure 1
graphically depicts the numerical results when
] � 0.1: 0.1: 5 and α � (1.9]/1 + ]). It reveals that when ν
takes some values near 1, the new PSALM always performs
best. -is is in conformity with the intuition because the
large value of this parameter makes the proximal term
]β/2‖A1x1 − A1x

k
1‖

2 taking a too heavy weight in the ob-
jective function Lβ(x1, xk

2, λk) + ]β/2‖A1x1 − A1x
k
1‖

2, leads
to a very small increment of the variable x1, and finally
decreases the convergence speed of the new PSALM. On the
contrary, the small value of this parameter also makes the
step size α � 1.9]/1 + ] to be very small. -erefore, how to
choose a suitable combination of α and ] is a challenging
issue.

Remark 3. -e step size α is at the denominator of the right-
hand side terms of (45). -erefore, the bigger α is, the
smaller the right-hand side terms of (45) are, and the
new PSALM may need less iteration to generate an
ε-approximate solution of problem (1).

3. Numerical Results

In this section, we demonstrate the potential efficiency of
this new PSALM by solving the video background extraction
problem (6).

3.1. Simulation Study. Firstly, we generate a low-rank matrix
L∗ ∈ Rm×m and a sparse matrix S∗ ∈ Rm×m. Secondly, we get
an observationmatrix D � L∗ + S∗ be an observationmatrix.
-irdly, we want to recover the low-rank matrix L∗ and the
sparse matrix S∗ by problem (6) with D as the input matrix

and L and S as the unknown matrices. In the following, let
r and spr represent the low-rank ratio of L∗ and the ratios of
the number of nonzeros entries of S∗ (i.e., ‖S∗‖0/(pq)),
respectively. We use the following Matlab script to generate
matrix D:

(i) L � randn(m, r)∗ randn(r, n)

(ii) S � zeros(m, n); q � randperm(m∗ n); K �

round(spr∗m∗ n); S(q(1: K)) � randn(K, 1)

(iii) D � L + S

We set m � n � 100 and tested

(r, spr) � (1.0, 0.05), (5, 0.05), (10, 0.05), (15, 0.05),

(1.0, 0.1), (5, 0.1), (10, 0.1), (15, 0.1).
(60)

We empirically set τ � 0.1 in problem (6), and
α � 1.3, β � 0.05/mean(abs(D(:))), ] � 2 in the PSALM.
-e initial iterate (L0, S0,Λ0) � (0, 0, 0), and use the stop-
ping criterion

RelChg ≔
Lk+1, Sk+1(  − Lk, Sk( 

����
����

1 + Lk, Sk( 
����

����
< 10− 8

, (61)

or the number of iterations exceeds 1000. Let L and S be the
numerical solution of problem (6) obtained by the PSALM,
and we measure the quality of recovery by the relative error
to (L∗, S∗), which is defined by

RelErr ≔
(L, S) − L∗, S∗( )
����

����

1 + L∗, S∗( )‖ ‖
. (62)

In Table 1, we report the recovery results on simulated
matrices with size m � n � 100. Note that for the recovered
sparse matrix S, to eliminate the roundabout error, we have
reset the component whose the absolute value is less than
0.01 to be 0, i.e., S(abs(S)< 0.01) � 0. From this table, it can
be seen that (i) the rank of the low-rank matrix L∗ can be
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Figure 1: Sensitivity test on the parameters ] and α.
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Figure 2: Convergence results for r � 5 and spr � 0.1.

Table 1: Numerical results on simulated matrices with size m � n � 100.

(r, spr) RelErr Rank (L∗) Rank (L) ‖S∗‖0 ‖S‖0

(1, 0.05) 3.7215e − 05 1 1 500 499
(1, 0.1) 2.6670e − 05 1 1 1000 999
(5, 0.05) 3.7402e − 05 5 5 500 499
(5, 0.1) 2.7067e − 05 5 5 1000 1001
(10, 0.05) 4.2738e-06 10 10 500 500
(10, 0.1) 4.9249e − 06 10 10 1000 1000
(15, 0.05) 3.8210e − 05 15 15 500 504
(15, 0.1) 3.1827e − 05 15 15 1000 1028

(a)

(b)

Figure 3: Continued.

8 Mathematical Problems in Engineering



exactly recovered, while the sparse matrix S∗ is recovered
approximately; (ii) though S∗ is not recovered completely,
the relative error RelErr indicates that the precision of the
recovered S is high.

In Figure 2, we present the convergence result for
problem (6) with r � 5 and spr � 0.1. From this figure, it can
be observed that when the number of iterations k � 80, the
relative error RelErr achieves at a stable state. It decreases
almost linearly with k before k � 80, while it almost does not
decrease any more after k � 80.

3.2. An Application Example. In this section, we apply the
new PSALM(NEW− PSALM) to solve a concrete problem
of model (6): the video background extraction problem
[17], which aims to subtract the background from (the
low-rank matrix L) a video clip (stacking as the matrix D)
and meanwhile detect the moving objects (the sparse
matrix S). We set τ � 1/(

���������
max m, n{ }


) in problem (6). We

have downloaded the video clip: Highway from the In-
ternet. For comparison, we also applied the iteration method
in [4] (denoted by TY− VASALM) and the iterationmethod in
[13] (denoted by HTY− IMA) to solve this problem.

Figure 3 presents the extracted backgrounds and
foregrounds images by TY− VASALM, HTY− IMA, and
NEW− PSALM. Clearly, all methods can extract satisfactory
results

Table 2 lists the detail experimental results, where the
number of iterations (Iteration), CPU time in seconds
(CPU), the rank of the recovered final low-rank matrix
(Rank), and the number of nonzeros of the recovered final
sparse matrix (Sparse) are reported. From the results given
in Table 2, we see that NEW− PSALM is faster than the other
two methods in terms of both iteration numbers and CPU
time. In particular, NEW− PSALM outperforms all the other
twomethods in recovering low rank and sparse components.
-ese results clearly illustrate the efficiency and robustness
of NEW− PSALM.

4. Conclusion

In this paper, we have proposed a new parallel splitting
augmented Lagrangian method(NEW− PSALM) for two-
block separable convex programming and have established
its various convergence results, including global conver-
gence, ergodic, and nonerogdic convergence rate. Numerical
results indicate that it is efficient for the video background
extraction problem.

Practical experiments indicate that the ALM and its
various variants with the step size α ∈ (1, 2) can often ac-
celerate the convergence speed, while in the new PSALM, to
ensure the step size α ∈ (1, 2), the parameter ν must larger
than 1, such as α ∈ (0, 1.9) only if ]≥ 19. However, as we
have mentioned in Example 2, large ν often decreases the
convergence speed of the new PSALM. -erefore, the ALM
type methods with less restrictions imposed on ] and α
deserve further researching, and we leave this problem as a
future research work.
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