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Cloud-based web applications are proliferating fast. Owing to the elastic capacity and diverse pricing schemes, cloud Infra-
structure-as-a-Service (IaaS) offers great opportunity for web application providers to optimize resource cost. However, such
optimization activities are confronting the challenges posed by the uncertainty of future demand and the increasing reservation
contracts. *is work investigates the problem of how to minimize IaaS rental cost associated with hosting web applications, while
meeting the demand in the future business cycle. First, an integer liner program model is developed to optimize reservation-
contract procurement, in which reserved and on-demand resources are planned for multiple provisioning stages as well as a long-
term plan, e.g., twelve stages in an annual plan. *en, a Long Short-TermMemory (LSTM) based algorithm is designed to predict
the workload in the future business cycle. In addition, the approaches for determining virtual instance capacity and the baseline
workload of planning time slot are also presented. Finally, the experimental prediction results show the LSTM-based algorithm
gains an advantage over several popular models, such as the Holter–Winters, the Seasonal Autoregressive Integrated Moving
Average (SARIMA), and the Support Vector Regression (SVR). *e simulations of resource planning show that the provisioning
scheme based on our reservation-optimization model obtains significant cost savings than other typical provisioning schemes,
while satisfying the demands.

1. Introduction

Cloud computing is a large-scale distributed computing
paradigm in which a pool of computing resources is
available via the Internet. As the most widely applied service
model in cloud computing, the IaaS liberates organizations
from the expensive infrastructure investment with the vir-
tually infinite resources and the elasticity. In this model,
infrastructure resources such as computing, storages, and
networks can be rented to customers in the form of virtual
machine instances. Each instance belongs to a specific in-
stance type specifying the hardware configuration (CPU
cores and speed, memory, and I/O channels). *e con-
sumers can quickly deploy the packaged OS and application
images to the leased IaaS instances and start them. Mean-
while, web application workload generally exhibits inherent
seasonality, stochastic volatility, and aggregated volatility
[1]. *erefore, web applications are well suitable for the

deployment on the instances rented from IaaS providers, as
it makes easy to quickly scale resources so as to deal with
varying workload. For example, the 12306 e-ticket site in
China is now very stable [2], but before being deployed to the
cloud, it gets stuck or even crashed almost whenever the
peak of visits appears.

IaaS providers usually offer customers two types of re-
source provisioning plans, namely, on-demand and reser-
vation plans with different charging schemes. *e on-
demand plans charge customers on a pay-as-you-go basis
and enable them to start or terminate instances at any
moment according to needs without paying any penalty.
However, comparing the unit price, the on-demand re-
sources are often more expensive than the reserved ones.
With the reservation plans, virtual instances are reserved in
the form of long-term contracts. *rough the use of res-
ervation plans, customers can get significant price discount
compared with on-demand plans and pay once for the
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contract duration (e.g., 1month, 3months, 6months,
9months, or 1 to 5 years at Aliyun [3], 6 to 36months at
Rackspace [4], and 1 year or 3 years at Amazon [5]). Taking
an Aliyun’s ecs.g5.large instance in the Region Qingdao of
North China, for example, compared with the on-demand
plan, the discount rates of monthly fees for 1month,
3months, 6months, and 1 year reservation contracts are
60.9%, 64.8%, 66.7%, and 69.0%, respectively.

In fact, for the web applications with time-varying
workload, using only reserved resources or on-demand
resources is generally not the best choice. Imagine a web
application with changing resources demand, as shown in
the curve of Figure 1. If only reserved resources are planed,
e.g., NH instances are reserved, then lots of instances will not
be efficiently utilized, resulting in significant waste of re-
sources.. On the contrary, if only on-demand resources are
used, high unit price of resources will lead to a large total
cost. Apparently, the best decision is to reserveNR (namely, a
number betweenNH andNL) instances and then supplement
several on-demand instances when needed. As such, an
optimal total cost can be obtained, while meeting the
workload demand.

Nowadays, more and more web applications are mi-
grated to the cloud. Meanwhile, more and more IaaS res-
ervation contracts are also offered by cloud providers. For
web applications providers, it has become very necessary to
optimize the provisioning of IaaS resources for saving cost.
However, most of the existing approaches have employed
the deterministic resources provisioning schemes [6–10]. In
these studies, the uncertain nature of the user’s demands is
neglected by assuming the demand as a deterministic value.
To address the demand uncertainties, in [11–14], some
dynamic resource provisioning schemes are proposed.*ese
schemes are more flexible and provision resources dy-
namically to meet fluctuating workload. However, these
studies do not exploit the cost benefits of reservation con-
tracts, resulting in failure to achieve economical solutions.
Given the disadvantages of two categories of schemes above,
several studies have employed the hybrid schemes to pro-
vision resources [15–18]. Although the decision making is
more complex, the hybrid schemes take advantage of re-
served and on-demand resources simultaneously so as to
save cost, while better meeting varying demand. *e hybrid
provisioning scheme is generally carried out in two phases.
Prior to the start of the workload cycle, the resource-res-
ervation contract procurement is planned in advance based
on an estimated or predicted workload. During the workload
cycle, the previous obtained reservation plans are carried out
successively and then the reserved resources are utilized,
while additional on-demand resources may be provisioned
whenever necessary.

For cloud-based web applications, we prefer the hybrid
scheme and believe that an excellent provisioning scheme
should use as many reserved resources as possible to satisfy
long-term stable demands in the future and only use a small
amount of on-demand resources to deal with sudden de-
mands so as to minimize the total resources cost. However,
as more and more IaaS reservation contracts are offered, for

a long web application workload cycle, how to combine
multiple reservation contracts as well as determine the
numbers and start times of them so as to optimize the total
cost? is the first major challenge for the IaaS resource de-
cision-makers of web applications.

Besides, planning resource for the future business cycle
of a web application requires an estimation/prediction of the
future workloads. Some studies have employed the simu-
lated workloads [6, 9, 11]; meanwhile, some studies directly
take the workloads in the historical cycle as an estimation of
the workloads in the future cycle [14, 15, 17]. But, the two
approaches generally could not obtain a good accuracy.
*ere are also some studies to develop the stochastic pro-
gramming models for future workloads based on the his-
torical workloads’ summary [18–20] (e.g., the mean and
standard deviation). However, such models are only ap-
plicable to stochastic workload series and cannot handle the
workload series with the trend and seasonality. *e most
widely employed schemes are workload predictions. One
group of prediction approaches for web workloads is sta-
tistical models such as Autoregression (AR), Autoregressive
Moving Average (ARMA), Autoregressive Integrated
Moving Average (ARIMA) [21], Exponential Smoothing
(ES) [22], and Linear Regression (LR) [13] models. *ese
statistical models are effective for the short-term prediction
of stationary series, while their prediction accuracy for
nonstationary series is very poor. *is is because erratic
fluctuations, which are typical for web workload series, are
practically impossible to predict. *is problem can be re-
solved by using machine-learning techniques such as the
Support Vector Regression (SVR) [23–25] and the Deep
Belief Networks (DBN) [26]. *e advantages of these ap-
proaches are that they can learn from historical data (search
connections among features) and build a prediction model
for future workloads [27]. However, due to the lack of long-
term memory ability, these models are still difficult to learn
long-term inherent patterns of workload series. In view of
the facts that web workload is often affected by many factors
and the workload cycle is usually long, how to deal with the
uncertainty of workload prediction in the future business
cycle for web applications? is the second major challenge for
the IaaS resource decision-makers of web applications.

*e Recurrent Neural Network (RNN) is a novel neural
network architecture specially designed for the sequence
data and has been proven successful in time series prediction
tasks [28]. However, a traditional RNN performs poorly at
handling long-term dependencies, mainly due to the
exploding and vanishing gradient problem [29, 30]. As a
redesigned architecture of RNN, the LSTM network ad-
dresses the shortcomings by replacing the RNN cell with an
LSTM cell in the hidden layer and thus has the ability of
learning long-term dependencies [31]. Owing to the superior
long-term memory ability, the LSTM exhibits excellent
potential for predicting the long time series.*ere have been
several good attempts on applying the LSTM to carry out the
mid- and long-term prediction for time series, such as traffic
flow [32], bank business [33], and earthquakes [34]. Under
such background, we choose to employ the LSTM for
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predicting the future cycle workload of web applications and
evaluate its prediction performance by comparing with other
popular approaches.

In addition, planning resource for the future business
cycle of a web application depends not only on the future
workload but also on the processing capacity of each IaaS
instance. However, this value is not fixed and is closely
related to the threshold of service response time. At the same
time, for a long planning cycle, because it is hard to perform
fairly fine granularity of prediction, the duration of planning
time slot is not usually short, such as a day. Also, the
predicted workload is generally the total or average number
of requests in a time slot. If the predicted average values are
directly used as the baseline workload for planning slot, it is
clear that the underprovisioning will happen frequently.
*erefore, how to determine the processing capacity of
single instance and the baseline workload of planning time
slot so that planned resources can better meet the demand? is
the third major challenge for the IaaS resource decision-
makers of web applications.

*is work focuses on planning resource reservations
prior to the beginning of the workload cycle, aimed at
achieving the optimal plan of IaaS reservation contract
procurement through the use of workload prediction. We
studied the above several challenge problems in depth, and
the major contributions are threefold.

(1) Based on the divisions of the provisioning cycle and
the description of reservation contracts, an integer
linear program model is developed to optimize
reservation contract procurement.

(2) Given the inherent pattern of web cycle workload
series, a Long Short-Term Memory (LSTM) net-
work-based algorithm is designed to predict the cycle
workload of web applications.

(3) *e approach for determining instance capacity is
presented by using anM/M/n queuing system. Time-
slot baseline workload is also determined based on
the average of historical peak workloads.

*e remainder of this paper is organized as follows.
Section 2 discusses the related work. Section 3 presents the
problem domain and assumptions. Section 4 develops the
reservation contract procurement-optimization model. In

Section 5, the LSTM-based prediction algorithm is designed.
In Section 6, the approaches for determining the instance
capacity and time-slot baseline workload are introduced.
Experimental settings and results are presented in Section 7,
followed by conclusions and future work in Section 8.

2. Related Work

In the past years, the problem of cloud resource planning has
attracted many researchers’ attention to develop resource
provisioning algorithms and techniques [6, 9, 35–37]. A
deeply survey can separate the studies into three categories:
deterministic resource provisioning, dynamic resource
provisioning, and hybrid resource provisioning. In the
following sections, the existing studies are discussed in these
categories, and finally the prediction approaches for web
application workload are also discussed.

2.1. Deterministic Resource Provisioning. Most of the
studies model this problem as a single phase optimization
algorithm that only considers resources with reserved
contracts from IaaS providers. *ese studies neglect the
uncertainty of users’ demands and regard the demands as
fixed values and then employ deterministic provisioning
schemes to deal with future workload [8, 9]. Mireslami et al.
[6] planned the number of service instances according to
the instance’s minimum service rate. Imai et al. [7] used an
expensive overprovisioning scheme for the worst-case
demand. Jiao et al. [38] designed a cost optimization model
for online social network deployment in geo-distributed
clouds. *e work regarded the demand of each cloud as a
deterministic value. Similarly, in [10], a multiobjective
algorithm was developed to minimize total deployment
cost and maximize service of quality (QoS) performance.
Chen et al. [9] constructed a resource cost optimization
model for periodical workflow applications based on fixed
workload.

Deterministic resource provisioning is better suited for
constant workload scenarios (e.g., batch processing tasks)
rather than web applications with varying workload.

2.2. Dynamic Resource Provisioning. In order to deal with
the uncertainty of users’ demands, some studies employ
elastic mechanisms to provision cloud resources. Zhao et al.
[11] constructed a resource cost optimization model for
computational and data intensive applications, which is
performed periodically at hourly intervals. Antonescu et al.
[13] dynamically adjusted resources to meet predicted short-
term workload so as to minimize the cost, while avoiding the
service level agreement (SLA) violations. Sniezynski et al.
[14] used linear regression, neural networks, etc., to learn
resource usage patterns from the historical records so as to
predict and update resource capacity periodically.

Although these dynamic provisioning schemes better
meet the varying demands, they result in considerable cost
because of using only expensive on-demand resources.
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On-demand instances

On-demand instances

Time

Figure 1: A workload example.
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2.3. Hybrid Resource Provisioning. *e hybrid resource
provisioning uses deterministic reserved resources to deal
with long-term stable workload and uses dynamic on-de-
mand resources to deal with short-term sudden workload.
Stijven et al. [39] proposed a scheme to plan reserved re-
sources based on short-term workload prediction but only
one kind of contract could be used. Candeia et al. [15]
designed the algorithms to select IaaS reservation markets
and determine the numbers of instances as well as their
lifespans, without considering multiple kinds of contracts
simultaneously. Similarly, Chen et al. [17] also presented a
hybrid short-term provisioning scheme that could only
include one contract type. Mireslami et al. [18] proposed
two-stage provisioning scheme for web applications. In the
first stage, they decide which contract to purchase based on
the minimum workload, and in the second stage, additional
on-demand resources was provisioned dynamically. *eir
scheme is similar to this work but only one type of contracts
is considered.

For all above studies, only one reservation-contract type
can be included, and the reserved resources are constant. In
this work, the problem of reservation-resource planning for
the entire workload cycle is investigated. A workload cycle is
divided into multiple provisioning stages uniformly so that
multiple reservation contract types with different durations
can be combined to provision resources so as to obtain a
minimum total cost.

2.4. Prediction ofWebApplicationWorkload. Calheiros et al.
[21] presented the realization of a workload prediction
module for cloud-based applications based on the ARIMA.
However, the ARIMA cannot deal with the seasonal vari-
ations of workload series. Dhib et al. [40] employed the
SARIMA to fit the workload of the Massively Multiplayers
Online Gaming and allocated resources according to pre-
dicted workload. Although the experimental results show
that the quality of experience is improved, the SARIMA still
cannot fit the nonlinear variations of the workload well. Ma
et al. [26] designed a workload-prediction algorithm for web
applications based on the Deep Belief Networks but only
verified its short-term prediction effect. Zhao et al. [23]
employed the SVR to predict the workload of web appli-
cation, and the prediction accuracy reached 89% but only
verified the short-term prediction for future three steps.
Singh et al. [41] proposed an adaptive prediction model for
web application workload using Linear Regression, ARIMA,
and SVR models. Similarly, they only verified short-term
prediction effect. Given the sufficient long-term memory
ability of the LSTM, some scholars attempted to employ it
for predicting the long time series. Tian et al. [32], Liu et al.
[33], and Wang et al. [34] designed the mid- and long-term
prediction models for the traffic flow, the reserve require-
ments of bank outlets, and the earthquakes based on the
LSTM, respectively. As a result, they all obtained good
prediction accuracy. However, so far the LSTM was still
seldom applied in the mid- and long-term prediction for
web-application workloads. Kumar et al. [28] employed the
LSTM to carry out the long-term prediction for HTTP

requests to web servers in cloud datacenter and claimed to
have obtained ideal results, but they did not present the
details of the design. Tran et al. [42] designed a LSTM-based
algorithm for predicting cloud resource consumption with
multivariate time series, but only verified the short-term
prediction effect. By contrast, we specially designed a LSTM-
based long-term prediction algorithm for the future cycle
workload of web application and presented the design de-
tails. From experimental results, our LSTM-based prediction
algorithm outperforms existing common models and ach-
ieves a good accuracy.

3. Problem Domain and Assumptions

First, this work targets at interactive web applications
deployed in IaaS cloud. *ere are various applications
deployed in IaaS cloud, such as interactive applications
[2, 43], scientific computing [44, 45], and batch processing
tasks [46, 47]. Among them, interactive applications usually
have a certain business cycle (e.g., one year), the workloads
of which generally show similar patterns in the long run,
while being stochastic in the short run. Due to the com-
plexity of enterprise-level application architecture, it is
difficult to conduct general research on the resource plan-
ning of whole application. But, the large application is
generally orchestrated by multiple web services or sub-
applications. Especially in the rise of microservices archi-
tecture today, more and more web subapplications run
independently as services. *is work focuses on planning
reserved resources for such web services or subapplications.
In addition, such a subapplication is generally composed of
several components such as web server, database server, and
hard disk. Among them, nonservice components can be
statically configured, and service-oriented components need
to be scalable. According to the experience knowledge of
web development and operation, as long as the numbers of
instances of several service-oriented components satisfy a
certain ratio with each other, the system can be in a stable
state. *is ratio can be obtained through application-specific
benchmarking.

Next, this work does not involve the IaaS discovery and
the selection of cloud providers. *ese problems belong to
another research domain. We assume that the matching
instance type of each service component has been found, and
the provider has also been selected.

Additionally, only the horizontal scaling scheme is
considered in this work. Horizontal scaling adjusts service
capacity through dynamically changing the number of in-
stances, while vertical scaling does this through dynamically
changing the instance’s configuration. However, most
providers have not yet opened the services to support dy-
namic vertical scaling.

Finally, in view of the fact that most providers have
sufficient resource capacity nowadays, it is assumed that the
provisioning of on-demand instances is not restricted by the
quantity. Also, we assume that all reservation contracts are
paid completely in advance so as to obtain a larger discount
and simplify the problem although several providers also
support partial payment.
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4. Problem Description and
Model Construction

4.1. Provisioning Phases. As illustrated in Figure 2, over the
provisioning time horizon, there are three provisioning
phases: reservation, utilization, and on-demand phases. *e
corresponding actions of these phases are performed in
different points of time (or events). In the short reservation
phase, the decision maker develops a resource-reservation
plan and conducts it. In the following utilization phase, the
reserved instances are used to deal with incoming workload.
During the ongoing utilization phase, once the workload
exceeds the processing capacity of reserved instances, an on-
demand phase starts, during which additional on-demand
instances are provisioned. *e reservation and utilization
phases always appear in pairs in a sequential order. A uti-
lization phase may contain several on-demand phases. Over
the provisioning horizon, there may be multiple pairs of
reservation and utilization phases, and the reservation du-
rations may be contained or overlapped by each other.

4.2. Divisions of Resource Provisioning Cycle. As illustrated in
Figure 3, we regard a web-application’s business cycle as its
resource provisioning cycle, namely, resource planning cycle,
which consists of several equal-duration provisioning stages.

4.2.1. Resource Planning Cycle. Let Τ denote a resource
planning cycle, which is a relatively long workload-pro-
cessing cycle defined by the web-application provider. *e
cycle has a definite beginning and a definite end. During the
cycle, although the workload seems to fluctuate randomly in
the short term, there is usually a certain pattern implied in
workloads from long-term observations. *is makes it
possible and meaningful to plan resources for a business
cycle. Since such a cycle is generally long (e.g., one year),
multiple reservation contracts with equal duration or un-
equal duration can be included in the plan so as to obtain a
lower total cost.

4.2.2. Provisioning Stage. As shown in Figure 3, a resource
planning cycle Τ can be divided into several provisioning
stages uniformly. Let Ti be the i-th provisioning stage. *e
duration of a provisioning stage is generally equal to the
greatest common divisor of the durations of all reservation
contracts so as to ensure that each contract can cover an
integer number of stages. For example, an annual planning
cycle can be divided into 12 monthly provisioning stages T1,
T2,. . ., T12. Each provisioning stage can contain one reser-
vation phase ∆T and the whole or part of utilization phases
(namely, a utilization phase may cover one or more pro-
visioning stages), as well as one or more on-demand pro-
visioning phases. In particular, as seen in Figure 3, the
optimal procurement plan of reservation contracts for the
entire cycle T is decided in the phase ∆T1 of the first stage T1,
and the subplan of procurements corresponding to T1 is also
carried out in ∆T1. In each subsequent ∆T, its corresponding

contract procurements are carried out according to the
optimal plan developed in ∆T1.

4.2.3. Provisioning Time Slot. Due to the workload is usually
fluctuating during a provisioning stage, it is not appro-
priate to provide fixed resources during a provisioning
stage. *erefore, as presented in Figure 3, we divide each
provisioning stage into several provisioning time slots (e.g.,
T11, T12, and T24) uniformly for planning resources. Due to
the duration of any reserved contract is not shorter than the
one of any provisioning stages, the available reserved re-
sources are exactly same for all slots in the same stage.
Given it is difficult to obtain the fairly fine granularity of
predicted workloads, the duration of each slot is usually set
as one day.

4.3. Reservation Contracts. An IaaS provider usually offers
multiple reservation-contract types with different durations
for consumers. Let K be the set of reservation-contract types,
and any contract type k ∈K can be expressed as 〈v, l, pr〉,
where v, l, and pr denote the offered instance type, contract
duration, and unit price, respectively. To describe the
conditionality of procurement and utilization of reservation
contracts, an annual plan case with 12months (K1),
6months (K2), 3months (K3), and 1month (K4) reservation
contracts is illustrated in Figure 4. *e boxes over the time
horizon represent the time coverage of these contracts.

We take the planning cycle T� {T1, T2, . . ., T12}. Let |k|

denote the duration (in unit of provisioning stages) of any k-
type contract. Due to only the contracts with a duration of
not longer than Tare considered, |k|≤ |T|. Let Ŧk denotes the
set of stages at which IaaS providers can start provisioning
resources with a k-type contract, and then Ŧk can be
expressed as formula (1). According to Section 4.2.2, Ŧk is
also the set of stages at which a k-type contract can be
purchased. *is is because only when a k-type contract is
purchased at the stages from Ŧk can this contract be properly
terminated during T.

Tk � 1, . . . , |T| − |k| + 1{ }. (1)

Let Fki denote the set of stages at which some resources
reserved by a k-type contract can be utilized in the stage Ti. It
means that only when the k-type contracts are purchased at
stages belonging to Fki, the resources reserved by these
contracts can be utilized during the i-th stage. Fki can be
expressed as formula (2). In Figure 4, any set Fki can be
obtained. For example, FK1T3

� T1 , FK2T3
� T1, T2, , T3 ,

FK3T11
� T9, T10 , and FK4T3

� T3 . Let nr
vki be the number

the k-type contracts with instance type v available in the
stage Ti. Let rvkj be the number of the k-type contracts with
instance type v purchased at the stage Tj. Based on Fki and
rvkj, nr

vkiis calculated by using the following formula:

Fki � max(1, i − |k| + 1)&min(i, |T| − |k| + 1){ }, (2)

n
r
vki � 

j∈Fik

rvkj. (3)
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4.4. Model Construction. We choose to perform resources
planning based on each time slot rather than each provi-
sioning stage. Owing to the fine granularity of a time slot, the
planned resources based on time slots are more adaptable to
fluctuating demand, and the amount of overprovisioning
and underprovisioning can be reduced greatly. *us, for a
web application service, the resource planning goal is to
minimize the total cost of reserved and on-demand re-
sources, while meeting any time-slot’s demand in the entire
business cycle.

For a specific web application, according to the as-
sumptions in Section 3, several instance types have been
selected for its service components. *e processing capacity
of single web-server instance as well as the optimal ratios
between the other server instances and the web-server in-
stances have been determined (the method for determining

the former is presented in Section 6, while the latter can be
obtained by benchmarking). Besides, it is also assumed that
the workload of each time slot has been predicted. Based on
these assumptions, the numbers of various service instances
required in each time slot are determined. Finally, we have
defined some necessary parameters as presented in Table 1
so as to construct the optimization model.

In particular, in the context of horizontal scaling, a service
component is deployed on a cluster of instances with the same
type; therefore, the instance types correspond to the com-
ponent types one by one. In addition, let Si represent the
number of time slots in the i-th provisioning stage for Si ∈ S,
while let s represent any one in Si. Based on defined parameters
and variables above, the model is constructed as follows.

First, the cost of all reservation contracts charged to
v-type instances in Ti, namely, cr

vi, is expressed as formula
(4). Note that rvki is equal to 0 when i ∉ Ŧk.

c
r
vi � 

k∈K
p

r
vkrvki. (4)

Next, because the number of v-type instances reserved by
k-type contracts available in Ti, namely, nr

vki, is obtained by
formula (3), the number of v-type instances available in Ti,
namely, nr

vi, can be expressed as follows:

n
r
vi � 

k∈K


t∈Fki

rvkt. (5)

In addition, the cost of all v-type instances provisioned
on demand in Ti, namely, co

vi, is expressed as follows:

c
o
vi � 

j∈Si

p
o
v · n

o
vij · |s|,

(6)

where the number no
vij is equal to the maximum of 0 and

nd
vij − nr

vi, nd
vij denotes the number of v-type instances re-

quired in the j-th time slot of the stage Ti, and |s| denotes the
number of hours in time slot s.

As a result, the total cost of v-type instances provisioned
in Ti, namely, cvi, is equal to the sum of reservation cost cr

vi

and on-demand cost co
vi in Ti. *erefore, the total cost of

v-type instances provisioned in the entire planning cycle,
namely, cv, can be expressed as follows:

Event A :
A new provisioning

 stage is planned

Event B :
Provisioning stage

begins 

Event C :
�e reserved resources are

insufficient 

Reservation
Phase A 

Utilization
Phase B 

On-demand
Phase C 

Action A :
Resources are

reserved in advance 

Action B : 
�e reserved resources

are utilized 

Action C :
More resources are

provisioned on demand 

Timeline

BA C ...

Figure 2: Transition of provisioning phases.

... ...
...

Conducting the
second stage’s plan 
Conducting the third
Stage's plan 

Time

Demand curve
Reserved resources
On-demand resources

T11 T12 T13 T14 T21 T22 T23 T24
T1

∆T1 ∆T2 ∆T3

T2 T12

Planning reserved
Resource and
Conducting the first
Stage’s plan

Figure 3: Divisions of a resource planning cycle.

K4

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

K2

K2

K1

K3

Figure 4: An annual plan case with 5 reservation contracts.
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cv � 
i∈T


k∈K

p
r
vkrvki + 

j∈Si

p
o
v · n

o
vij · |s|⎛⎝ ⎞⎠. (7)

Finally, for the entire planning cycle T, the optimization
model of reservation contract procurement for various re-
quired instances is constructed as follows:

min
v∈I


i∈T


k∈K

p
r
vkrvki + 

j∈Si

p
o
v · n

o
vij · |s|⎛⎝ ⎞⎠

s.t.
rvki ≤max n

d
vij , v ∈ I, k ∈ K, i ∈ T, j ∈ Si, n

d
vij ∈ D

rvki � 0, v ∈ I, k ∈ K, i ∈ T, Tk

n
o
vij � max 0, n

d
vij − 

k∈K


t∈Fki

rvkt
⎛⎝ ⎞⎠

v ∈ I, i ∈ T, j ∈ Si, k ∈ K, n
d
vij ∈ D

rvki ∈ Ν, p
r
vk ∈ P

r
, p

o
v ∈ P

o
, s ∈ S, Si ⊂ S,

(8)

where only rvki is the decision variables, and the objective
function is the linear function of rvki; therefore, this is a Pure
Integer Linear Programming (PILP) problem, which can be
solved by using the classical Branch and Bound method.

5. Workload Prediction

Considering that the LSTM is designed to combine the
short-term and long-term temporal information and ex-
hibits superior long time-series prediction performance, we
attempt to design a LSTM-based algorithm for predicting
the future cycle workload of a web application.

5.1. Prediction Algorithm Based on the LSTM

5.1.1. Typical LSTM Architecture and Principles. *e key to
the LSTM is the cell state. Figure 5 illustrates the typical
architecture of the LSTM memory cell and the cell’s state
transition at time t − 1, t, and t+ 1, and in practice the
transition flow usually contains more moments. It can be
seen that the cell state runs straight down the entire chain
with only some linear interactions, which makes it easy for
information to be propagated over time. For thememory cell
at time t, there are three inputs: the current input xt, the
previous output ht− 1, and the previous state ct− 1, and two
outputs: the current output ht and the current state ct. *e

Table 1: Notation box.

Symbol Definition
Input parameter
K Set of reservation contract types
I Set of service instance types
T Set of provisioning stages

Pr Set of unit prices of reservation contracts while pr
vk ∈ Pr denotes the price of the k-type reservation-contract charged to a v-type

instance
Po Set of unit prices of on-demand instances while po

v ∈ Po denotes the unit price of on-demand v-type instance
S Set of numbers of time slots in each stage

D Set of numbers of various instances required in each time slot while nd
vij ∈ Ddenotes the number of v-type instances required in

the j-th time slot of the stage Ti
Decision variable
rvki Number of k-type reservation-contracts with v-type instance purchased in Ti
Other parameters
Ŧk Set of stages at which k-type reservation-contracts can be purchased for planning cycle T (obtained by formula (1))
Fki Set of stages at which some instances reserved by k-type contracts can be utilized during Ti (obtained by formula (2))
nr

vki Number of v-type instances reserved by k-type contracts available in Ti (obtained by formula (3))
nr

vi Number of v-type reserved instances available in Ti
no

vij Number of v-type instances provisioned on demand for the j-th time slot in Ti
cv Total cost of v-type instances provisioned in T
cvi Cost paid to v-type instances provisioned in Ti
cr

vi Cost of all reserved contracts charged to v-type instances in Ti
co

vi Cost of all v-type instances provisioned on demand in Ti
co

vij Cost of all v-type instances provisioned on demand in the j-th time slot in Ti
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LSTM uses three gates to control the cell state transition.*e
forget gate determines how much information of the pre-
vious state ct− 1 is retained to the current state ct, while the
input gate determines how much information of the current
input xt is saved to the state ct. *e output gate determines
how much information of the current state ct is output to ht,
which controls the influence of long-term memory on the
current output. *e forward calculation of the LSTM is
expressed as follows:

ft � σ Wfht− 1 + Ufxt + bf , (9)

ct � tan h Wcht− 1 + Uc · xt + bc( , (10)

it � σ Wi · ht− 1 + Ui · xt + bi( , (11)

ct � f t ⊙ ct− 1 + it ⊙ct, (12)

ot � σ Wo · ht− 1 + Uo · xt + bo( , (13)

ht � ot ⊙ tan h ct( , (14)

where f, i, and o denote the forget gate, the input gate, and
the output gate, respectively, W and U matrices are the
network parameters, b denotes the bias, σ is a sigmoid
function, and ⊙ denotes the product operation.

*e LSTM is trained with the Back Propagation*rough
Time (BPTT) algorithm, which is similar to the Back
Propagation (BP) algorithm in principle.*emain process is
as follows: (1) obtain the outputs by the forward calculation
(formulas (9)–(14)); (2) calculate the loss function of each
LSTM cell from two backward propagation directions of
time and network; and (3) select a gradient optimization
algorithm to minimize the loss function and hence optimize
system parameters. *ere are several commonly used gra-
dient optimization algorithms such as the SGD, AdaGrad,
RMSProp, and Adam optimizers. Among them, the Adam is
a stochastic gradient descent algorithm that combines the
advantages of the AdaGrad and RMSProp and can adap-
tively adjust the learning rate of parameters. By comparison,
the Adam performs better in practice.

5.1.2. Prediction Framework Based on the LSTM. As web
workload is usually influenced by many factors, such as date,
time, and business events, we express web workload as a
multivariate time series for training and predicting. *e
designed workload prediction framework based on the
LSTM is illustrated in Figure 6, which contains four func-
tional parts, namely, the data, the LSTM network, the
training, and the prediction parts. *e data part performs
preprocessing on raw historical workload data, such as
missing data processing, abnormal data processing, feature
extraction, workload series generation, supervised data
generation, normalization, and division of training and test
sets. *e designed LSTM network contains an input layer, a
hidden layer, and an output layer. *e number of nodes in
the input layer and the number of LSTM cells in the hidden
layer are both equal to the number of time steps of a
workload sequence sample. In Figure 6, c and h are the state
and output of each cell, respectively. *e output layer
contains an output node py, which saves the output of an
input sample. In the training part, the process is as follows:
(1) the samples are continuously fed into the network, and
then the errors are calculated based on formula (15) (where
num is the number of samples); (2) the network parameters
are updated by the Adam optimizer based on the errors; (3)
the two steps above are performed iteratively a specified
number of times, and finally the network parameters are
saved. In the prediction part, the trained network is used to
iteratively predict future workload.

loss � 
num

i�1

p
y
i − yi( 

2

num
. (15)

5.1.3. Supervised Data Generation. *e workload at each
moment is not only related to its previous values but also
related to the date, time, holiday, and other information.
*erefore, we express a workload series with length n as
F′ � X1′ , X2′ , . . . , Xn

′ , where Xi
′ � xi1′ , xi2′ , . . . , xik

′ , ri
′  rep-

resents the observations at time i, ri
′ denotes the workload

value, and xi1′ to xik
′ denote the measurements of the k

variables related to ri
′. To avoid the influence of inconsistent
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Figure 5: *e LSTM memory cell and its state transition.

8 Mathematical Problems in Engineering



dimensions on the learning, all feature values in the series F′
are normalized to unified dimension [0, 1]. As such, a new
normalized workload series is obtained as F� {X1, X2,. . .,
Xn}, Xi � {xi1, xi2,. . ., xik, ri}, where ri and xi1 to xik denote
normalized ri

′ and xi1′ to xik
′ , respectively. Let ts be the

number of time steps of a workload sequence that is used as
an input of the LSTM network, while let S be the set of
inputs. Based on ts and F, S is expressed as follows:

S � S1, S2, . . . , Sn− ts ,

Si � Xi,Xi+1, . . . ,Xi+ts− 1 ,
(16)

where i≤ n − ts (Sn− ts+1 has been removed from S so as to
make each input correspond to an output) and Si denotes the
i-th input sequence. Let Y be the corresponding output set,
which is expressed as follows:

Y � y1, y2, . . . , yn− ts . (17)

Here, yi is equal to ri+ts. As a result, n-ts samples are
obtained based on S and Y, and then the training and test
sets are also be easily obtained after a simple division.

5.1.4. Network Training and Data Predicting. To obtain the
best result, we use grid search to optimize three key
hyperparameters of the LSTM network: ts (the number of
time steps of a input sequence), units (the number of
neurons in the hidden layer), and η (the Adam optimizer’s
initial learning rate). Other hyperparameters are set
according to general experience. *e designed training and
predicting process is presented in Algorithm 1. *ere are
several inputs, where tsl, tsu, stepts, unitsl, unitsu, and stepunits
denote the lower bounds, upper bounds, and growth step
sizes of ts as well as units, respectively. η Array,m, seed, and
epochs denote the value range of learning rate η, sample
division ratio, random-number seed, and iteration times,

respectively. *e outputs include possible combinations of
hyperparameters in the grid and their corresponding test
errors, as well as the optimal predicted result and its error.

*e algorithm traverses the hyperparameters space,
looping the training, and predicting process as shown in
lines 7 to 22. In particular, based on the S, Y, and m, line 4
obtains the input set Str and the output set Ytr for the
training, as well as the corresponding sets Ste and Yte for the
testing. Line 7 and line 8, respectively, create and initialize
the pLSTM model, lines 9 to 12 perform training, and lines
13 to 17 iteratively predict test data. Line 17 uses the current
predicted result to update the workload value of the last
observations in the next input sequence. Py

tr and Py
te are the

output sets of the training and the testing, respectively.

6. Determination of Instance Capacity and
Time-Slot Baseline Workload

6.1. Determination of Service Instance Capacity. For inter-
active web applications, service response time is the most
important QoS index, and the system designer usually
specifies an upper bound for it so as to ensure a good user
experience. In fact, there is an inherent relationship among
service response time, request arrival rate, and system service
capacity. Let C be the service capacity of a virtual instance,
which refers to the maximum request arrival rate supported
by this instance while the response time index is met. Due to
the web request arrival process is a Poisson process and the
service time complies with negative exponential distribution,
therefore, a service instance with n vCPUs can be modeled as
anM/M/n queuing system. Let μ and λ be the average service
rate and request arrival rate, respectively, then service in-
tensity ρ is equal to (λ/(nμ)). Let ρ1 be (λ/μ) and pk be the
probability of the state that there are k requests in the system.
According to K’s algebraic equation, when k< n,

LSTM1 LSTM2 LSTMtsh1

X1 X2
Xtimesteps(ts)

c1

h2

c2

hts–1

cts–1

...

...

Hidden layer

Input layer

Output layer

Data preprocessing,
normalization, and

division 

Trainning

Model outputs

Real outputs

Loss
calculation

Adam
optimizer

Raw historical
series 

Prediction

LSTM network

Data

Iterative prediction, de-normalization

py

Figure 6: *e LSTM-based prediction framework for workload series.
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pk � ((nnρkp0)/k!) and when k≥ n, pk � ((nnρkp0)/n!) [48].
Obviously, (

∞
k�0 pk � 1). After deducing the formulas, p0 is

expressed as follows (where (ρ< 1)):

p0 � 
n− 1

k�0

ρk
1

k!
+
ρn
1

n!

1
1 − ρ

⎛⎝ ⎞⎠

− 1

. (18)

Additionally, let Ls, Lq, and Lbusy be the average number
of requests, the number of queued requests, and the number
of busy vCPUs in the system, respectively. Apparently,
Ls � Lq+ Lbusy, Lq�

+∞
k�n(k − n)pk, and Lbusy � ρ1. After some

derivations, Ls is expressed as follows:

Ls �
ρρn

1p0

n!(1 − ρ)
2 + ρ1. (19)

According to Little’s formula, the service response time,
namely, the average staying time ts of a request in the system
is calculated as follows:

ts �
Ls

λ
�

ρn
1p0

μn · n!(1 − ρ)
2 +

1
μ

. (20)

If tmax is the upper bound of acceptable response time,
that is, ts≤tmax, then the allowable maximum request arrival
rate is determined based on tmax by the formulas (18) and
(20), which is exactly the service capacity C of the instance.

6.2. Determination of Time-Slot Baseline Workload. We
consider that the baseline workload for planning slot should
be set this way as far as possible to meet all workload de-
mands after excluding few abnormal values. As the workload
distribution of the adjacent planning cycle is similar, the
workload statistics of the last cycle can be used to transform
current predicted workload so as to obtain the reasonable
baseline workload. It is assumed that the last historical cycle
contains m time-slots (e.g., a year contains 365 days), any
one of which contains ΔT(e.g., 10minutes), and the number
of requests during each ΔT has been counted. First, the
request numbers of all ΔTs are sorted in the descending
order, and then a two-dimensional array d is obtained, where
dij represents the j-th largest workload in time slot i. Next, we
specify a workloads-ratio threshold fr (e.g., fr � 0.1) and
then calculate the average of time-ratios of m slots, namely,
tr, as follows:

tr �


m
i�1 li/n( ( 

m
, (21)

where li is calculated based on the constraints:
((

li − 1
j�1 dij)/(

n
j�1 dij))≤ fr≤ ((

li
j�1 dij)/(

n
j�1 dij)).

In particular, tr denotes the average cumulative-time-
ratio of several sequenced peak workloads with a cumula-
tive-workloads-ratio fr for time slots in a stage. For example,
fr� 0.2 and tr� 0.1 means that, on average, 20 percent of
peak workloads in a slot only takes up 10 percent of time.
*en, the average of a certain percentage of sequenced peak
workloads can be used as the time-slot’s baseline workload.
Let Ds denotes the number of requests in slot s, while |s|

denotes the number of seconds in s, then the baseline
workload λs of time slot s is calculated as follows:

λs � fr · Ds( /(tr · |s|)( . (22)

7. Experimental Evaluation

7.1. Experimental Environment, Datasets, and
Evaluation Criteria

7.1.1. Experimental Environment. *e experiments were run
on anOSWin10machine with 16GB ofmemory and 3.0GHz
Intel Core i7 processor. By using Python 3.7 under the
PyCharm 2019.1.3, the LSTM-based prediction algorithm was
developed through the use of the Tensorflow 1.13.1 frame-
work, and the experimental SARIMA and Holter–Winters
models were developed based on Statsmodels 0.10.1 package,
while the experimental SVR model was developed based on
the machine-learning toolkit Sklearn 0.21. To solve the op-
timization problem, LINGO 15 [49] solver was used.

7.1.2. Datasets. *e LAcity.org website traffic dataset from
Kaggle [50] was chosen to evaluate the workload prediction
approaches. *is is a dataset hosted by the city of Los Angeles,
which contains detailed daily traffic data from January 1, 2014, to
July 12, 2019, for lacity.org, the main website for the city of Los
Angeles. We obtained the numbers of daily requests after
preprocessing and then intercepted the data from January 1,
2014, to December 31, 2018, for evaluations. *e distribution of
workloads is shown in Figure 7. To obtain fine-grained web-
traffic data to simulate the determination of time-slot baseline
workload, the YOOCHOOSEdataset was also downloaded from
Kaggle [51], in which all clicks of users over a retailer’s website
had been recorded. After preprocessing, we obtained the
numbers of requests per 10minutes over the website from June
1, 2014 to August 31, 2014. *e distribution of workloads is
shown in Figure 8.

7.1.3. Evaluation Criteria. We mainly used the Mean Ab-
solute Error (MAE), the Mean Absolute Percentage Error
(MAPE), and the Root Mean Square Error (RMSE) as the
evaluation criteria to gauge the prediction accuracy, which
were calculated as the formulas (27)–(29), respectively, where
the parameter n denotes the number of observations, yi is the
actual workload, and yi represents the predicted workload.

MAE �
1
n



n

i�1
yi − yi


, (23)

MAPE �
100%

n


n

i�1

yi − yi

yi




, (24)

RMSE �

����

1
n



n

i�1




yi − yi( 
2

. (25)
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7.2. Evaluation for Workload Estimation/Prediction. In this
section, we first introduce several typical estimation or
prediction approaches for future cycle workloads and then
present the result of the LSTM-based prediction algorithm.

7.2.1. Historical-Workload-Based Estimations. Some studies
directly used the historical cycle’s workloads as an estima-
tion of the current cycle’s workloads [14, 15, 17]. Similarly,
we used the workloads from 2014 to 2017 as the estimations
of the workloads in the following years, namely, 2015 to
2018, respectively. *e results are shown in Figure 9, where
only dark red overlapping areas are accurately estimated
areas. *eir Mean Absolute Percentage Errors (MAPEs) are
27.0%, 69.1%, 29.4%, and 51.7%, respectively. Apparently,
the accuracies are poor.

7.2.2. Holter–Winters Seasonal Models. Several typical ex-
ponential smoothing models are often used in workload
predicting, which include single exponential smoothing,
double exponential smoothing, and multiple-parameter
exponential smoothing (namely, Holter–Winters seasonal
models). Among them, cubic exponential smoothing-based
Holter–Winters seasonal models can deal with seasonality
and trends, which are classified as additive model and
multiplicative model. In the additive model, several com-
ponents such as level value, seasonal trend, and linear trend
are considered to be independent of each other, and so they
are directly added. In the multiplicative model, these
components are considered to be influenced by each other,
and so they are directly multiplied. Given the workload

fluctuations is relatively gentle, we selected the Holter–
Winters additive model for predicting. *e prediction for-
mula is shown as follows:

xt+k � at + btk + St− s+k, k ∈ Ν+
, (26)

where at and bt are the intercepts and St− s+k and s denote
seasonal component and period length, respectively. *e
first three parameters are calculated as follows:

at � α xt − St− s(  +(1 − α) at− 1 + bt− 1( ,

bt � β at − at− 1(  +(1 − β)bt− 1,

St � c xt − at(  +(1 − c)St− s.

(27)

Here, α, β, and c are three damping factors, and
α, β, c ∈ (0, 1). For the purpose of comparison, we used both
additive and multiplicative models for predicting, and the
results are shown in Figure 10. It can be seen that the trends
predicted by the multiplicative model decay dramatically
from the beginning so that the prediction cannot continue
after a while. *e additive model can basically predict the
trends and periods, but the MAPE reached 33.8%, and
obviously the overall accuracy is still low.

7.2.3. SARIMA Model. AR, MA, ARMA, ARIMA, and
SARIMA are several typical time series models. *e first
three models are only suitable for stationary series, while the
ARIMA can make some nonstationary series become sta-
tionary through differencing. Given the SARIMA can fur-
ther deal with the seasonal trends compared with the
ARIMA, we employed the SARIMA to perform the pre-
diction and the comparison. *e SARIMA model is gen-
erally expressed as follows:

ϕ(B)Φ BS
 
∇d∇D

S xt � c + θ(B)Θ(BS)εt. (28)

Here,

ϕ(B) � 1 − ϕ1B − ϕ2B
2

− · · · ϕpB
p
,

θ(B) � 1 − θ1B − θ2B
2

− · · · θqB
q
,

Φ B
S

  � 1 − Φ1B
S

− Φ2B
2S

− · · · − ΦPB
PS

,

Θ B
S

  � 1 − Θ1B
S

− Θ2B
2S

− · · · − ΘQB
QS

,

∇d
� (1 − B)

d
,

∇D
S � (1 − BS)

D
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where S, D, d, εt, and c denote the length of seasonal period,
the times of seasonal difference and ordinary difference, the
white Gaussian noise, and the constant term, respectively.
ϕ(B)is an autoregressive polynomial, (ϕ1,ϕ2, . . . ,ϕp) are the
autoregressive coefficients, Φ(BS) is a seasonal autore-
gressive polynomial, and (Φ1,Φ2, . . . ,ΦP) are the seasonal
autoregressive coefficients. Meanwhile, θ(B) is a moving
average polynomial, (θ1, θ2, . . . , θq) are the moving average
coefficients,Θ(BS) is a seasonal moving average polynomial,
and (Θ1,Θ2, . . . ,ΘQ) are the seasonal moving average co-
efficients. Here, p, P, q, and Q are the orders of ϕ(B), Φ(BS),
θ(B), and Θ(BS), respectively. In addition, B is the ordinary
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Figure 7: Distribution of daily request rate for lacity.org.
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Figure 8: Distribution of requests per 10minutes for a retailer’s
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lag operator, BS is the seasonal lag operator, and ∇d is the
ordinary difference operator, while ∇D

S is the seasonal dif-
ference operator. ∇d∇D

S xt represents a stationary time series.
*e model expressed as equation (28) can be abbreviated as
SARIMA (p, d, q) (P,D,Q)S, which is constructed based on p,
d, q, P, D, Q, and S. *e process of determining these pa-
rameters is as follows.

First, the S-steps (S is equal to period length) periodic
difference is performedD times to eliminate seasonal trends,
and then the ordinary difference is performed d times based
on the results of stationarity checking so that the series
become stationary. In this process, S is determined by ob-
serving the time-series diagram, whileD is equal to the times
of periodic difference and d is equal to the times of ordinary
difference. In general, D and d do not exceed 3. Second, the
order p can be determined based on the tailing or truncation
of partial autocorrelation coefficients in the partial auto-
correlogram. Meanwhile, the order q can be determined
based on the tailing or truncation of autocorrelation coef-
ficients in the autocorrelogram. Similarly, the orders P andQ
can also be determined based on the tailing or truncation of
the autocorrelation and partial autocorrelation coefficients
over the time-lag points with several times of period length.
Finally, the SARIMA model is created based on the deter-
mined parameters above and then is fitted based on the

samples. *e results of iterative prediction are shown in
Figure 11. *e MAPE is 22.3%, the MAE is 190.5, and the
RMSE is 253.3, respectively. It can be seen that the overall
prediction for seasonal and linear trends is relatively ac-
curate, but the detailed prediction is poor.

7.2.4. SVRModel. *e Support Vector Machine (SVM) is an
innovative statistical learning model proposed by Cortes and
Vapnik based on the principle of structural risk minimi-
zation [52]. It has excellent generalization capabilities and
can deal with small sample, nonlinear, high-dimensional
learning problems.*e SVR is the application of the SVM in
the data regression and prediction. *e applications of SVR
in workload forecasting have been also widely studied
[23, 53–57]. In the process of the SVR nonlinear regression
and prediction, the original data is mapped to the high-
dimensional space through the use of a nonlinear mapping,
where a linear function can be found to fit the input and
output values of samples, and then the prediction is done
based on this function. Given the workload of the LAcity.org
exhibits obvious nonlinear characteristics, we choose to use
the nonlinear ε − SVR model for the prediction and the
comparison.

Suppose there is a sample set: {(x1, y1), (x2, y2), . . ., (xn,
yn)}, xi ∈Rd, and yi ∈R, where d denotes the feature di-
mension and n denotes the number of samples. After the set
is mapped to the high-dimensional space, its linear fitted
function can be expressed as follows:

f(x) � ω · φ(x) + b, (30)

where φ(x) is the nonlinear mapping function from the
original data to the high-dimensional space, ω is the coef-
ficient vector, and b is the offset. According to the principle
of the ε − SVRmodel, the goal of learning is to make f(x) and
y as close as possible but tolerate a deviation with the
maximum value ε between f(x) and y; that is, the loss is
calculated only when the deviation is greater than ε. Also,
considering a few samples is still unable to be fitted under the
accuracy ε, the slack variables (ξi) and (ξ∗i ) are introduced.
*us, based on the principle of structural risk minimization,
the function estimation problem is transformed into the
following optimization problem:

min
1
2
‖ω‖

2
+ C

1
n



n

i�1
ξi + ξ∗i( 

s.t.

yi − ω · φ xi(  − b≤ ε + ξi

ω · φ xi(  + b − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0, i � 1, 2, . . . , n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(31)

where C is the penalty coefficient, which determines how
well the regression function fits the data. In order to facilitate
solving the problem, the Lagrange multipliers α and α∗ are
introduced, and the above problem is transformed into the
dual problem:
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Figure 9: Estimated results based on the historical cycle’s
workloads.
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min
1
2



n

i,j�1
αi − α∗i(  αj − α∗j K〈xi, xj〉 + ε 

n

i�1
αi + α∗i(  + 

n

i�1
yi αi − α∗i( s.t. 

n

i

αi − α∗i(  � 00≤ αi, a
∗
i ≤C, i � 1, 2, . . . , n,

(32)

where through the use of kernel function
K〈xi, xj〉 � 〈φ(xi),φ(xj)〉, the calculation of vector inner
product in the high-dimensional space is converted to the
corresponding calculation in the original low-dimensional
space, avoiding the problem of dimension explosion. By
solving this problem, αi and a∗i are obtained, then multiple
samples satisfying 0< αi, a∗i <C can be chosen to solve for b
and the average value of b is used (namely, b), so the re-
gression function is obtained as follows:

f(x) � 
n

i�1
αi − α∗i( K〈xi, x〉 + b. (33)

After data preprocessing, we obtained the normalized
daily-workload series of the LAcity.org from 2014 to 2018:
R� {r1, r2,. . ., rn}, the corresponding month-feature series:
M� {m1, m2,. . ., mn}, and the corresponding workday-fea-
ture series: D� {d1, d2,. . ., dn}, where n is the length of these
series, ri denotes the value of the i-th workload (namely, the
number of daily requests), mi denotes the month-number
feature corresponding to the i-th workload, and di denotes
the corresponding workday-number feature. *e reason for
choosing the feature m and d is that the analysis found that
the daily workload is closely related to its date attributes.
*en, we designed the input set as X� {x1, x2,. . ., xn− lag} and
the output set as Y� {y1, y2, . . ., yn− lag} for the SVR model,
where xi � {ri, ri+1,. . ., ri+lag− 1, mi+lag, di+lag}, yi � ri+lag, and
the adjustable parameter lag denotes the length of time lag.
*e value of lag implies that the current workload is most
relevant to the recent lag historical workloads. Finally, we
developed the SVR-based prediction algorithm through the
use of the toolkit Sklearn. Considering the good adaptability
of the radial basis function, we chose it as the kernel function
(namely, K〈xi, x〉 � exp(− c‖xi − x‖2)). Also, we applied
grid search and cross-validation to determine the values of
lag, C (penalty coefficient) and c (width coefficient of the

radial basis function) and sorted the predicted results
according to the MAPE. *e top five optimal combinations
of hyperparameters, corresponding errors, and time cost are
illustrated in Table 2. Meanwhile, the distributions of pre-
dicted results and original workloads are shown in Figure 12.

From the results, the prediction accuracy reaches 86%
and the computational overhead is low, which is mainly due
to the use of kernel function. As can be seen from Figure 12,
the predicted results fit well with the original series in terms
of the level values, the seasonality, and the trends, and the
prediction of the details is also good.*e disadvantage is that
the predicted values of valley workloads are generally higher
than the actual values.

7.2.5. Prediction Algorithm Based on the LSTM. We
implemented the training and prediction process of the
LSTM network according to Algorithm 1. First, several
general parameters were set empirically, where the random-
number seed was set as 1 and the number of iterations was
set as 200. *en, the value range of three key hyper-
parameters was set. We let the number of time steps of a
sequence sample, namely, ts, belong to 2, 3, . . . , 60{ }, let the
neuron number of the hidden layer, namely, units, belong to
2, 3, . . . , 60{ }, and let the learning rate, namely, η, belong to
{0.001, 0.003, 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07,
0.1}. *e step sizes of ts and units were all set to be 1, and the
loss function was set as the Mean Square Error (MSE)
according to formula (15). Finally, we ran this program to
traverse all combinations of hyperparameters. According to
the MAPE values, the top five optimal combinations, cor-
responding errors, and time cost are illustrated in Table 3.
Meanwhile, the distributions of predicted workloads and
original workloads are shown together in Figure 13.

From the results, the LSTM model makes a better
prediction for the annual workloads than previous several
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Figure 11: Distribution of predicted values from the SARIMA model.
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approaches. For the several optimal hyperparameter com-
binations, the average accuracy is more than 90%, and the
computational overhead is also low. As can be seen from
Figure 13, the predicted results fit well with the original
series in terms of the level values, the seasonality, the trends,

and the details. Compared with the SVR model, the LSTM
model is superior in terms of overall accuracy and detailed
prediction. *e LSTM model exhibits excellent prediction
performance for long time series, which is mainly attributed
to its strong ability of learning the long-term and short-term
temporal information simultaneously.

7.3. Evaluation for the Optimization Model

7.3.1. Simulations of Resource Provisioning Scenarios.
Ideally, the evaluation for the reservation-contract-pro-
curement-optimization model should be based on a real web
application and its workloads. However, there are only some
public web-traffic datasets are available. Given the simula-
tion of the running of web applications does not affect the
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Figure 13: Distribution of predicted values from the LSTMmodel.

Input: (tsl, tsu, stepts), (unitsl, unitsu, stepunits), η Array, m, seed, epochs, and min_error�+∞
Output: pra_results, best_pred, and min_error
(1) F=normalize (F′);
(2) for each ts in tsl: tsu by stepts
(3) get S, Y from F by ts;
(4) get Str, Ytr, Ste, Yte from S, Y by m;
(5) for each η in η Array

(6) for each q in unitsl: unitsu by stepunits
(7) create pLSTM by ts, q;
(8) initialize pLSTM by seed;
(9) for each step in 1: epochs
(10) Py

tr � pLSTMforward (Str);
(11) get loss from Py

tr, Ytr;
(12) update pLSTM by Adam with loss and η;
(13) for each i in 0: length (Ste) − 1
(14) p

y
i � pLSTM (Ste [i]);

(15) append p
y
i to Py

te;
(16) if i< length (Ste) − 1
(17) Ste [i+ 1][ts − 1][k − 1]� p

y
i ;

(18) Py
te � denormalize (Py

te);
(19) get error by Py

te, Yte;
(20) append [ts, η, q, error] to pra_results;
(21) if error<min_error
(22) best_pred�Py

te; min_error� error;
(23) return pra_results, best_pred, min_error;

ALGORITHM 1: Network training and data predicting.
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Figure 12: Distribution of predicted values from the SVR model.

Table 2: *e best five hyperparameter combinations of the SVR
model.

Rank lag C c Mape Rmse mae time_cost
1 9 16 0.25 13.2% 117 90 4.61
2 45 32 0.004 13.3% 114 85 6.19
3 21 8 0.125 13.7% 120 95 5.17
4 25 2 0.125 14.4% 119 93 5.73
5 12 8 0.25 14.7% 123 97 4.38
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evaluation, we used the predicted workloads of LAcity.org in
2018 from the LSTMmodel to simulate the running of a real
web application. We assumed that the application contained
two elastic components, namely, the web server and the
database server. Meanwhile, we also assumed that Aliyun’s
ecs.g5.large and mysql.n4.medium instances in North China
[3] had been selected for the two servers, respectively. For
the ecs.g5.large and mysql.n4.medium instances, the on-
demand unit prices (namely, hourly rate), the reservation-
contract unit prices, and their corresponding discount rates
of monthly cost compared with the on-demand plan are
listed in Table 4 in turn, where the unit of cost is RMB Yuan.
Apparently, these reservation contracts offer considerable
cost discounts, and the longer the contract duration, the
higher the discount rate.

7.3.2. Determination of Instance Capacity. In real scenarios,
the instance’s average service rate can be obtained through
benchmarking, combined with the specified response time
index; the instance processing capacity can be calculated
according to formulas (18) and (20). However, the capacity is
difficult to be determined without the related application
suite or benchmarking abilities. As this number only has an
influence on the absolute cost figure and does not affect the
evaluation of optimization model. *erefore, we assumed
that the capacity of single web-server instance in the sim-
ulated application was 50 requests per second. Moreover, it
was also assumed that the system performance was optimal
when the instance numbers of web server and database
server meet the ratio of 1 :1.

7.3.3. Determination of Time-Slot Baseline Workload. We
used the YOOCHOOSE dataset to simulate the determi-
nation of baseline workload for time slot. After pre-
processing, the numbers of requests per 10minutes from
June 1, 2014, to August 31, 2014, were obtained. According
to Section 6.2, we treated a day as a time slot and then
calculated the baseline workloads from August 1 to August
31 based on the statistics of workloads from June 1 to July 31.
First, we let fr belong to [0.001, 0.4], namely, the range of
cumulative-peak-workloads ratio and traversed this range in
a step size equaling to 0.002 to calculate the corresponding
tr, namely, the average cumulative-time ratio from June 1 to
July 31. Second, the daily baseline workloads in August were
calculated, respectively, based on each pair of fr and tr above,
and then the average probability that time-slot workloads
were met (let avg_fullfilled_rate represents this probability)
was obtained for each pair of fr and tr. Finally, as presented
in Table 5, the best five results are listed after ranking
avg_fullfilled_rate. In fact, in this way, the baseline workload
is equal to fr/tr times of the average original workload. As
can be seen from Table 5, the best five avg_fullfilled_rates are
above 96%. To obtain a higher avg_fullfilled_rate, the fr/tr
coefficient can be finely increased manually, also resulting in
more resource costs. In short, determining the time-slot’s
baseline workload in this way greatly alleviates the adverse
impact of coarse-grained predicted workloads on resource
planning.

7.3.4. Model Evaluation. Based on the above simulated
scenarios and related data, combined with the predicted
daily workloads of LAcity.org in 2018, the reservation-
contract-procurement-optimization model for the simu-
lated application was constructed and solved in LINGO15.
To evaluate the effect, several resource provisioning schemes
were compared, and the results were presented in Table 6,
where the Reservation Contract Procurement Optimization
Based on Predicted Workload (RCPOBPW) scheme means
to first determine the reservation contract procurement plan
based on the approaches presented in this paper and then
carry out the plan as well as supplement necessary on-de-
mand resources during the future business cycle. *e Res-
ervation Contract Procurement Based on Average Predicted
Workloads (RCPBAPW) scheme means to first purchase the
fixed number of reservation contracts once based on average
predicted workload and then supplement necessary on-
demand resources during the future cycle. *e Using only
Reserved Resources Provisioned by One Kind of Contracts
(URRPOC) scheme means to purchase the fixed number of
reservation contracts once based on the maximum predicted
workload and do not use any on-demand resources. Ad-
ditionally, the Using only Reserved Resources (URR) scheme
and the Using only On-demand Resources (UOR) scheme
mean to use only reserved resources and use only on-de-
mand resources during the future cycle, respectively. *e
Reservation Contract Procurement Optimization Based on
Real Workloads (RCPOBRW) scheme is theoretically op-
timal, which differs from RCPOBPW only in that it de-
termines the reservation plan based on real workloads. In
Table 6, WNC1∼WNC4 are, respectively, the numbers of web
server instances with 1month, 3months, 6months, and
1 year reservation contracts, while DNC1∼DNC4 are, re-
spectively, the corresponding numbers of database server
instances. C, C0/C, and RS denote total resource cost, the
ratio of on-demand resource costs to total costs, and the cost
ratio of each scheme to the RCPOBPW scheme, respectively,
while RSLA denotes the SLA satisfaction rate of each scheme.

As can be seen from theWN andDN columns, except for
the UOR, all schemes use reserved resources, and the res-
ervation contracts with the longest duration are purchased
the most. Except that the RCPBAPW and URRPOC scheme
only purchase the longest-duration contracts based on fixed
workloads, other schemes using reserved resources (e.g.,
RCPOBPW, URR, and RCPOBRW) have purchased various
contracts. From the total cost, the UOR scheme using only
on-demand resources is the highest, the URRPOC scheme
using only reserved resources provided by one kind of
contracts is the second, and followed by the RCPBAPW and
URR. Obviously, our RCPOBPW is the least costly practical
scheme, and its cost is only 0.4% more than the theoretical
optimal scheme. From the SLA satisfaction rate, all schemes
can fully meet the demands except for the URRPOC and
URR schemes, which do not use on-demand resources.
Overall, our RCPOBPW scheme is the best among the five
practical schemes. Finally, several conclusions can be drawn
as follows: (1) it is not appropriate to use completely on-
demand resources, which will result in huge expenditures;
(2) it is also not appropriate to use completely reserved
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resources, as it is likely that some unexpected workloads
cannot be handled; and (3) it is advisable to use a combi-
nation of on-demand and reserve resources and take as
many contracts as possible into account to maximize the
share of reserved resources so as to achieve the greatest cost
discounts while meeting the demand.

8. Conclusions and Future Work

In this paper, we investigated the resource-reservation-
planning problems for cloud-based web applications. First,
we developed an integer linear program model for opti-
mizing the reservation-contracts procurement. *en, we
designed the LSTM-based algorithm for predicting the
business cycle’s workloads of web applications. *ereafter,
the approaches for determining the instance capacity and the
baseline workload of time slot were also presented. Finally,
experimental evaluations were carried out based on several
real datasets. From the comparison of predicted results, our
LSTM-based algorithm achieves better effect than the

Holter–Winters, SARIMA, and SVR models, with an ac-
curacy of about 90%. *is result is attributed to the LSTM
network’s good memory and learning ability for long time
series and also related to its learning of workload-related
information such as date and time. Meanwhile, from the
comparative results of several typical practical provisioning
schemes, the scheme based on the optimization model
presented in this paper achieves the least resource cost while
entirely satisfying future demands.

However, for a cloud-based web application, although
the optimal resource-reservation plan can be obtained based
on the proposed solution in this paper, the problem of how
to dynamically provision on-demand resources during the
business cycle remains to be solved, which is worth in-depth
study.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Table 3: *e best five hyperparameter combinations of the LSTM model.

Rank ts lr units Mape (%) Rmse mae time_cost (s)
1 42 0.05 36 9.12 104 65 5.87
2 42 0.05 33 9.31 106 66 5.21
3 45 0.007 45 9.34 106 68 7.23
4 45 0.005 33 9.37 107 68 6.95
5 36 0.05 30 9.40 107 67 4.65

Table 4: *e unit prices and discount rates of on-demand plans and reservation contracts for the cs.g5.large and mysql.n4.medium
instances.

Duration 1 hour 1 month 3 months 6 months 12 months
Price1 0.91 256.25 692.25 1308.00 2437.80
Discount rate1 0 60.9% 64.8% 66.7% 69.0%
Price2 1.03 346 975.63 1821.72 3387.84
Discount rate2 0 53.3% 56.1% 59.1% 61.9%

Table 5: *e best five pairs of fr and tr as well as corresponding results.

fr tr fr/tr avg_fullfilled_rate (%)
0.111 0.061 1.828 96.5
0.125 0.068 1.827 96.5
0.141 0.077 1.825 96.5
0.137 0.075 1.821 96.4
0.113 0.062 1.820 96.4

Table 6: Comparison of several typical resource provisioning schemes.

Scheme WNC1 WNC2 WNC3 WNC4 DNC1 DNC2 DNC3 DNC4 C CO/C (%) RS (%) RSLA (%)
RCPOBPW 3 2 2 18 4 3 2 17 123611 6.85 100 100
RCPBAPW 0 0 0 16 0 0 0 16 134183 33.4 108.6 100
URRPOC 0 0 0 27 0 0 0 27 157292 0 127.2 98.33
URR 14 5 1 19 14 5 1 19 130588 0 106 96.67
UOR 0 0 0 0 0 0 0 0 277079 100 224.2 100
RCPOBRW 7 1 2 18 8 8 8 18 123174 6.2 99.6 100
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