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Existing runway residual life prediction models need to be modified using the historical data of evaluated airports during
evaluation and management for civil airports in China. If the data measured in the field and the historical data used for model
calibration do not represent the actual historical performance of the evaluated airport, the predicted performance of the revised
model might be poor. This study used measured pavement performance data for local civil airports in Henan Province from 2007
to 2017. The joint-estimation method was used to establish a functional residual life prediction model for local civil airport
pavement with another dataset. A functional residual life prediction model for airport pavement was proposed in consideration of
the influence of aircraft traffic and the thickness of the pavement surface layer. Taking into account the differences between
samples in the two datasets, nonlinear regression with random-effect analysis and joint estimation were used to explain un-
observed heterogeneity at the sample level and heteroscedasticity in the dataset. Based on the results of the established residual life
prediction model, the marginal effect of the model parameters and the prediction performance of the entire model were analyzed
with the measured data from the local airport pavement. Finally, the engineering applicability of the calibrated prediction model

for pavement residual life was further evaluated.

1. Introduction

The civil aviation industry is an important strategic industry
for China’s economic and social development. By the end of
2018, the number of civil aviation transportation airports in
China had reached 235 (excluding Hong Kong, Macau, and
Taiwan). It is estimated that, by the end of 2020, the number
of civil transport airports in China will reach about 260, and
an airport network with reasonable layouts, complete
functions, safety, and efficiency will be essentially completed.
At the same time, problems related to a lack of balance,
coordination, and sustainability remain prominent in the
development of the civil aviation industry. With increased
air transportation volume and aircraft load, aviation man-
agement departments have paid increasing attention to the
status of airport pavement. At present, the management
teams of large Chinese civil aviation hub airports have begun

to develop and use airport pavement management systems
to test, evaluate, and maintain the civil engineering facilities
of airports [1].

In the 1990s, airport field maintenance work in China
met the increasing traffic demand and the requirement for
the safe driving of aircraft by building new airport runways
or upgrading existing runways. In recent years, with the
increase in the service life of Chinese civil airports, runway
damage at busy large- and medium-sized airports has be-
come serious. However, due to increases in materials,
equipment, and labor costs, as well as increased costs of
runway reconstruction, the focus of airport field managers
has gradually shifted from the construction of new runways
to the maintenance of existing runways. The investment of
state and airport authorities in the maintenance of airport
infrastructure roads is limited. Therefore, in order to de-
termine how to properly allocate limited funds to the
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maintenance of airport facilities and how to reduce capital
investment while meeting maintenance requirements as far
as possible, it is necessary to make scientific and reasonable
decisions about runway maintenance.

In the evaluation and management of Chinese civil
airport pavements, the prediction of the residual life of an
airport runway is a relatively important concept. The
existing prediction model for the remaining life of a runway
needs to be revised using the historical data of the airport
being evaluated. If the input and the historical data used for
model revisions do not represent actual historical perfor-
mance data for the evaluated airport, the predicted per-
formance of the revised model may be poor. Therefore, it is
clearly required that the prediction of the functional residual
life of airport pavements should be based on the actual
historical data of airports in different regions in the eval-
uation code for civil airport pavements in China. The
measured data in the field should be used for verification to
improve prediction ability after the establishment of the
prediction model.

In this study, existing international research on airport
pavement performance evaluation was reviewed. Based on
existing domestic airport surface performance evaluation
methods, the functional residual life prediction model for
civil airport pavement was revised using historical data for
local airport pavements in Henan Province. To provide
support for maintenance decisions for airport runways and
provide a reference for the reasonable allocation of limited
operation and maintenance funds by airport management
departments, a functional residual life prediction model was
established for civil airport pavement in consideration of the
local characteristics of Henan Province.

2. Overview of Airport Pavement Performance
Monitoring and Evaluation

2.1. Introduction to Airport Pavement Management System
(APMS). Pavement performance evaluation technology is
one of the core concepts of pavement management
frameworks. The initial research on this topic focused on the
evaluation indicators and standards of pavement damage
[2, 3], and the “Research Report on Air Force Airport
Pavement Maintenance Management System” was com-
pleted in 1981. The Pavement Condition Index (PCI) pro-
posed in the report and its set of investigation, calculation,
analysis, and evaluation methods have been widely adopted
by US military and civil airport pavement management
departments when evaluating airport pavement perfor-
mances. Based on this, the world’s first airport pavement
management system was developed and named PAVER
(now upgraded to MicroPAVER). Since the Construction
Engineering Research Laboratory of the US Army (CERL)
established the research field of airport pavement evaluation,
research on pavement evaluation management technology
has been carried out in various countries, and that research
has continuously expanded and improved the pavement
performance testing and evaluation methods.

The Federal Aviation Administration (FAA) of the US
has conducted a series of technical studies to guide pavement
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test evaluation. Since 2002, the researchers of airport en-
gineering in the US have taken the National Airport
Pavement Test Factory [4] (NAPTF) as the main test and
trial base, and they have conducted research on airport
pavement performance testing, airport pavement design,
and maintenance and reconstruction technologies. The
domestic pavement evaluation technology in China started
late. In 2000, the Airport Division of the Civil Aviation
Administration of China (CAAC) issued a manual for civil
airfield field maintenance in which the airport pavement
investigation and maintenance methods were summarized
based on the current technical level of the management of
domestic airports. The manual has played a positive role in
promoting the development of domestic airport pavement
management technology. The first research institution on
airport pavement management system in China was Tongji
University. In 1995, Tongji University started theoretical
research on airport pavement evaluation and management
based on Shanghai airport. After 2002, Tongji University
developed and established the Shanghai airport pavement
management system (SHAPMS) [5] based on experiences
with the airport pavement evaluation and management
systems in developed countries.

In 2009, the airport department of CAAC, along with
Tongji University and the Shanghai airport group, compiled
industrial technical standards in the field of civil airport
pavement evaluation management in China, that is, the
“Technical Specification of Aerodrome Pavement Evaluation
and Management” MH/T 5024-2009 [6]. The specification
describes in detail the methods for performance evaluation
and service life prediction for airport pavement in China.
Additionally, the manual specifies that the PCI, SCI
(Structural Condition Index), friction coefficient, and In-
ternational Roughness Index (IRI) of pavement can be used
in the performance evaluation of airport pavement. For this
evaluation, the specific evaluation method is similar to the
MicroPAVER of the FAA, which adopts an empirical re-
gression analysis and pavement design reversal method to
analyze PCI in order to predict pavement performance.

2.2. Review of Airport Pavement Residual Life Prediction
Model. The prediction of airport pavement performance [7]
is guided by the theory of road and airport engineering and
by forecasting theory. Through a specific method, based on
investigation and statistics, with the qualitative analysis and
quantitative calculation as the means, by processing airport
current and historical data, it has been revealed through
analysis that the pavement character and evolution rule in
the process of prediction.

Road pavement management systems have been applied
earlier in foreign countries and a large amount of road
condition data has accumulated. This data is used by na-
tional regulatory agencies to establish and develop models
applicable to the respective management systems based on
the performance of the pavements in their countries or
regions. These models include the linear extrapolation
model, “S” curve model, and constrained polynomial model
[3], among others. The prediction model in the “PAVER”



Mathematical Problems in Engineering

pavement management system is the most representative
empirical model applied to airport pavement performance
prediction. This model is a regression model based on the
“pavement family” method, which was established and
developed by Shahin et al. based on PCI. [8] In the model,
the pavement condition index PCI was used as the predictive
index, and a higher-order polynomial was used as the
function form whose parameters were estimated with the
least-squares method based on the actual data.

Compared with the empirical model, the mechanistic
model [9] has a clear theoretical basis and it requires few
parameters to be calibrated. In order to make use of the
advantages of mechanics and empirical methods, it is a
common practice to select the variables and functions in
empirical models with mechanical methods and to revise or
calibrate the mechanical models through a large number of
laboratory and outdoor experiments or empirical regression
methods, that is, the mechanistic-empirical model. In recent
years, more and more scholars have been inclined towards
the mechanistic-empirical model. However, the mechanis-
tic-empirical model inherited the shortcomings of the
mechanical model. For example, the calculation process is
complicated and the workload is large, only the mechanical
index or the material performance index (e.g., stress, strain,
deflection, and modulus) model can be established, and it is
difficult to update the model. In 1995, the FAA proposed a
pavement design method [10] for a new generation of large
aircraft based on the cumulative damage principle, elastic
layer system theory, and pass-to-coverage ratio, and the
reverse of the design procedure method was taken as the
prediction model for the remaining life of a pavement
structure. This model was a typical representative of an
airport pavement mechanistic-empirical model. Based on a
method that was the reverse of the design procedure in this
model, Tongji University established a prediction model for
the remaining life of rigid pavement structures of airports
[11] based on the design specifications of airport pavement
in China. Then, the model was applied and verified in the
pavement structural evaluation of several civil airports in
China.

At present, many PMS software programs have devel-
oped a prediction model for pavement performance using a
probabilistic model. Probabilistic prediction models take
into account the probability associated with future pavement
performance as a random variable, hence predicting the
pavement condition at a certain probability level based on
engineering judgment or analyses of historical data. Prob-
abilistic prediction models include the residual curve
probabilistic prediction model [12], Bayesian probabilistic
prediction model [13], Semi-Markov probabilistic predic-
tion model [14], and Markov probabilistic prediction model
[15], among which the Markov process model [16-22] is the
most widely applied and the most perfect.

In recent years, more and more intelligent algorithms
have been used to predict pavement performance. These
intelligent models mainly include the Artificial Neural
Network, genetic algorithms, gray theory models, and
modern time series models. Among these models, the gray
prediction model has been widely applied in China, for

example, Liu et al. [23-25] applied the gray theory model to
predict pavement performance, which has rarely been ap-
plied in other countries. However, modern time series
methods are rarely used in China, while relatively more of
them are applied in other countries. For example, Ben-Akiva
et al. [26-28] applied modern time series methods to predict
pavement performance.

In pavement performance evaluation and remaining life
estimation, PCI is generally used as the evaluation index of
pavement damage in most airports in the world. Some
Chinese scholars have also proposed the use of the broken
slab ratio (for cement) and the cracking ratio (for asphalt) as
additional evaluation indexes for pavement damage. With
the continuous development of the research field of airport
pavement evaluation, people have found that the service
characteristics of airport pavement cannot be fully repre-
sented using only the surface condition of pavement.
Therefore, people have begun to pay attention to the
structural condition and structural capacities of airport
pavement and to take these as one of the main concepts of
pavement performance evaluation. At the same time, more
evaluation indexes have been introduced in the evaluation of
airport pavement performance, such as skid resistance,
roughness, and drainage capacity. Hence, the evaluation
theory of airport pavement performance has kept being
expanded and improved upon, and a relatively complete
pavement evaluation system has gradually formed.

3. Calibration Methods and Prediction
Analysis Techniques

3.1. Random-Effect Analysis Model. The random-effect
analysis model can flexibly and effectively combine infor-
mation from different sources and explain different sources
of error, so it is especially suitable for the study of panel data
[29]. The mixed effects of the model include fixed effects and
random effects. When an interindividual variation cannot be
fully explained by the fixed effects in the model, the random
effects within an individual level are introduced to char-
acterize this additional difference in the sample. The dif-
ference between a fixed-effect model and a random-effect
model alone relies on whether it is desirable to make in-
ferences about the particular levels of the classification factor
defined in the experiment or to make an inference about the
experimental units from which the levels are drawn.
According to the types of response variables in the models,
random-effect analysis models can be divided into linear
mixed-effect models and nonlinear mixed-eftect models.
The deterioration characteristics of pavement with the
same structural composition are similar, while pavements
with the same function and similar environmental condi-
tions with the same structure type are more similar. This
constitutes a two-level, three-level, or even multilevel data
structure (that is, Panel Data). In the research on pavement
performance prediction, more is paid attention to the overall
deterioration features of pavement performance affected by
various factors rather than the performance change char-
acteristics of an individual pavement area. This inevitably
involves the processing and analysis of multilevel



heterogeneous observation data. Traditional models have no
optionality, and random-effect models are optimal for these
analyses.

The random-effect model is used to combine both types
of effects within one model, with fixed-effect parameters
explaining the behavior of the population means between a
given set of treatments (intraindividual variation) and the
random effects representing the variability among testing
units (interindividual variation). Therefore, the random-
effect model can quantitatively analyze the source of vari-
ation of pavement performance observation data, and it can
more reasonably be used for group pavement.

A simple model is used to illustrate the mixed-effect
framework. The linear mixed-effect model [30] includes two
level 1 explanatory variables x; and z;; and one level 2
explanatory variable w, ;. A dependent variable y is modeled
as a simple linear function of a covariate x as follows:

Yij = Boj + a1 xy;j + Prjzuij + i (1)
Boj = Yoo + Yorwy + Uy (2)
Bij = Vo + YuWwyij + ty)> (3)

where y;; is the jth observation of the dependent variable for
the experimental unit i. B,; and f3;; are the fixed-effect pa-
rameters related to the entire population. ug; and u,; are
random-effect parameters associated with unit j. For unit j,
these represent deviations from the population parameters
Boj and By, respectively. e;; is the error term for observation j
on unit 4 it is normally assumed to be distributed as N(0, 0°),
where ¢” is the variance of ¢;;. It is also commonly assumed
that these errors are independent and that they have con-
stant variance (all these hypotheses need to be corrected if
not satisfied). a; and y;; are the regression coefficients of the
level 1 and level 2 variables.

Equation (1) is a level 1 equation for analyzing y;; var-
iation. The subscript “j” in the level 1 intercept (f;) indicates
that the level 1 intercept changes across level 2 units. The
effect of the level 1 variable x;;; on y;; does not vary across
level 2 units, but the effect of the variable z;; on y;; varies
with level 2 units. That is, there is a level 1 fixed slope «; and a
level 1 random slope f;;. Corresponding to the level 1
random regression coefficients ffo; and f3;; are two level 2
equations, namely, equations (2) and (3). In these equations,
the level 1 random regression coefficient becomes the de-
pendent variable (or response variable).

For the statistical analysis of nonlinear repeated mea-
surement data, the method of the approximation regression
model of a nonlinear function is commonly used to solve the
nonlinear problem. There is autocorrelation between the
nonlinear repeated observation data and the random vari-
ance can be divided into at least two levels, that is, inter-
individual ~ variance and intraindividual repeated
measurement variance. This model is also called the hier-
archical nonlinear model. The nonlinear mixed-effect model
can not only identify and estimate the variation between and
within individuals but also take into account the nonlinear
relationship between explanatory variables and response
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variable parameters, allowing fixed effects and random ef-
fects to enter the nonlinear part of the model. The probability
density functions of the response variables in the nonlinear
mixed-effect model can be normal, binomial, or Poisson.
The performance deterioration equation of road pave-
ments (or other pavements) around the world has been
comprehensively considered, and the performance deteri-
oration equation of airport pavements in MH/T 5024-2009
was combined in this study. The specific form is shown in
equation (4). This equation could accurately reflect the entire
process of pavement performance deterioration and fit
various deterioration models. Theoretically, the perfor-
mance index (including PCI or Riding Quality Index (RQI))
should have been reduced monotonically with the increase
of the service life or the cumulative axial load times.
Equation (4) met the necessary boundary conditions. The
equation was simple in form, and the parameter definition
was clear, so the equation could provide a basis for the
prediction of the functional residual life of airport pavement:

Y=Y, (1 — e ) (4)

where Y is the pavement performance index (which can be
PCI, RQ], or IRI). Y is the value of the pavement perfor-
mance index at a certain time. Generally, it is the initial value
of a pavement performance index when the pavement is put
into use. t is the service time of the pavement. a and f3 are the
model parameters of the deterioration equation, which are
related to the individual characteristic variables.

3.2. Joint-Estimation Methods for Multiple Data Sources.
The joint-estimation method is a preferred statistical method
when using multiple data sources for parameter estimation
because joint estimation can determine not only the ex-
planatory variables common to all data sources but also the
explanatory variables unique to each data source [31]. The
joint-estimation method was first used by Morikawa et al.
[32] to model travel demand. Archilla and Madanat [33] and
Prozzi and Madanat [34] used the joint-estimation method
to build a pavement performance deterioration model.

To illustrate the joint-estimation method, in this study, it
was assumed that two different data sources A and B were
considered. Both databases contained the same dependent
variable PCI (which was also the object of this project) and
several influencing factors (explanatory variables) such as
the frequency of aircraft departure and landing and the
thickness of the pavement surface. Specifically, each of these
datasets could use the following expression to represent each
model:

E<PCIA | xA,w> = gA( AN w), (5)

E(PCIB |xB,z> = g° (8% =" . 2), (6)

where E (PCI* | ) is the conditional expectation function of
PCI with the functional forms g* (-) and g® (-) for Models A
and B, respectively. PCI* and PCI” represent Models A and
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B of the PCI, x* and x” are vectors of the explanatory
variables shared by Models A and B, and w is the vector of
the explanatory variables unique to Model A and dataset A. z
is the vector of the explanatory variables unique to Model B
and dataset B, a and y are the vectors of the model pa-
rameters related to w and z, respectively, and * and ® are
vectors of the model parameters related to x* and x%
respectively.

Depending on the explanatory variables, different sce-
narios are possible. Only the most common scenario was
considered in this study, for which both datasets shared
some explanatory variables and had some variables with
predefined levels for each source. In this case, some of the
estimated parameters were common to both datasets and
others were unique to a dataset. The potential advantages of
this scenario were that it allowed the identification of ex-
planatory variables that might not have been available in
some datasets, and it permitted determination of the bias
parameters to account for the different marginal effects
estimated for the explanatory variables in common between
datasets. In terms of the models shown previously, the values
of the set of common parameters might have been different,
that is, * # 8°. Therefore, the relationship between the ith
element of the set of parameters of each model could be
expressed as ﬁ,-Azﬁ,-B +6; or ﬁiA =y,-ﬁ,-B, where §; and y; are
bias parameters or bias correction coeficients. This feature
was called bias correction and it was one of the main ad-
vantages of joint estimation. Two other advantages were
identification and statistical efficiency. Identification relates
to the complementary characteristics of the datasets. For
example, one dataset might have contained explanatory
variables with no variability in other datasets, thus allowing
the identification of the effects of these variables from a
single dataset. In this study, this was different from a missing
relevant explanatory variable (which would have led to
biases). Instead, these variables were not really missing but
rather had a predefined single level in some datasets. Sta-
tistical efficiency was achieved when a parameter estimate
common to all datasets was determined using all available
data. Because of the larger sample size, this resulted in lower
variance of the parameter estimate. In this study, the joint-
estimation method was used for two historical datasets
containing different pavement structural types, aircraft
traffic, and test conditions. The detailed analysis is discussed
in Section 4.

4. Airport Pavement Data Preparation

The historical data of an airport is the basis for establishing a
model for estimating the remaining life of airport pavement.
In the past two decades, China has accumulated pavement
test data for the PCI for more than 60 civil airports. On the
one hand, this data can represent the pavement surface of
Chinese civil airports. On the other hand, the data can also
represent the typical characteristics of airport pavement
performance field test data. In this study, two history
datasets of airport pavement tests with different charac-
teristics were used as data sources for analysis. The first
dataset was the field test history dataset for PCI on domestic

airport pavement, and the second dataset was the field test
dataset for Henan local airport runways from 2007 to 2017.
The on-site detection is shown in Figure 1. The character-
istics and details of the first dataset can be found in [35].
Only the second dataset is briefly introduced here.

The second dataset was the time series data of the
runway and taxiway pavement of a southern flight area in
2007, 2013, and 2017 at a local airport in Henan. The south
runway of the airport was 3,400 m long and 45m wide,
while the north runway was 3600 m long and 60 m wide.
This was the Chinese trunk transport airport and a na-
tional first-class aviation port. In 2016, the passenger
throughput of the airport ranked the 15th among civil
airports in China. The airport was opened to traffic in
1997, and its south flight area has been used for 22 years.
With the continuous increase of air traffic at the airport,
the south airfield was approaching its designed service life
at the time of the study.

To comprehensively grasp the situation of the pavement
in the southern flight area and provide a basis for the
management and renovation plan of the flight area, the
airport management department developed a detailed in-
spection plan. In 2007, 2013, and 2017, the airport man-
agement department carried out comprehensive tests on
runways, taxiways, and contact surfaces in the south flight
area of the airport, and the department conducted com-
prehensive analyses of the field test data to form a high-value
database. The main content of the database included the
history of pavement maintenance and rehabilitation (M&R),
aviation portfolios, and the combination of aircraft types, the
degradation of the pavement condition index PCI, pavement
roughness IRI, pavement surface sliding resistance coeffi-
cient, pavement deflection value, structural capacity of
pavement, joint load transfer, and condition of the pavement
void, pavement radar detecting data, and strength of the
concrete pavement.

In order to avoid new errors in the process of data
preprocessing, this research was based on the characteristics
of data sources and data processing methods in the literature
[36]. The second dataset was divided into groups consisting
of pavement areas that had the same amount of average
annual aircraft traffic and the same pavement structures. It
was assumed that the PCI in the same group was homo-
geneous. Due to the different observation time periods of
individual pavement, the time series data in the group could
be extended by a “time lapse.” At the same time, the indi-
vidual data that was special or doubtful was eliminated.
Finally, 91 sets of rigid pavement data were obtained. Some
of this data is shown in Table 1.

In Table 1, the age represents the number of years since
the airport was built and operation was started. The region
was divided into a runway area and a taxiway. The runway
was further divided into a section with a concrete thickness
of 38 cm and a section with a concrete thickness of 34 cm.
The average annual aircraft traffic [6] was the average cu-
mulative number of equivalent main aircraft type operations
in the airport in the test year. The thickness was the design
thickness of the concrete surface layer of the airport
pavement.
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FiGURE 1: Field inspection of airport runway: (a) inspection equipment; (b) crack detection.
TaBLE 1: Part of the second dataset.
Group ID  Age (years) PCI  Runway or taxiway Region Average annual aircraft traffic ~ Thickness (cm)
1 99 Runway Runway 38 cm thick 74325 38
17 15 81 Runway Runway 38 cm thick 74325 38
19 76 Runway Runway 38 cm thick 74325 38
1 99 Runway Runway 34 cm thick 74325 34
50 15 80 Runway Runway 34 cm thick 74325 34
19 73 Runway Runway 34 cm thick 74325 34
1 99 Taxiway Taxiway 38 cm thick 74325 38
76 15 83 Taxiway Taxiway 38 cm thick 74325 38
19 75 Taxiway Taxiway 38 cm thick 74325 38
. . _ . g
5. Specification of Random-Effect Nonlinear PCI, = PCL,— 100 & 4y, 7)

Mixed Model

The curve shape of the function expressed by equation (4) was
mainly controlled by the parameters « and f3, but 3 was more
sensitive to the influence of the curve shape than «. When the
combination of « and 5 was appropriate, the shape of the curve
could be close to a straight line. Therefore, there was a one-to-
one relationship between any complex pavement performance
curve and « and f3, so a two-dimensional point (&, f8) could be
used to describe the decay process of the pavement perfor-
mance and the development rules of the performance quan-
titative analysis. At the same time, an important inference could
be drawn, that is, « and 8 could be represented as functions of
the factors that affected «a or . For example, « = f (axle load,
structural strength, surface layer thickness, base layer type,
environmental conditions, and material type), and = f (axle
load, structural strength, surface layer thickness, base layer type,
environmental conditions, and material type), where f(:) is an
arbitrary function.

As mentioned above, the expected function of the model
determined by equation (7) was taken as the objective
function. Equation (7) is the transformation form of
equation (4). Considering the characteristics of the two
datasets, the joint-estimation method and the random-effect
model were used to determine the mixed model for pre-
dicting the remaining life of the airport pavement. The
following sections present detailed steps for the aforemen-
tioned mixed model:

where PCI, is the PCI of the pavement at time ¢ and PCl, is
the PCI of the pavement at the initial time f,. Its value was
related to the structural type of the airport pavement, the
amount of aircraft traffic, and other influencing factors, and
the value was generally within the range of 90~100. y;; is the
random normal variance; the meanings of other parameters
are the same as those of equation (4).

Because all of the factors affecting the performance of the
pavement surface also affected the parameters « and f, the
individual model measurement parameters were combined
through an exploratory analysis, and the logarithmic trans-
formation of « and 3 was converted into a linear expression in
order to obtain the group structure model as follows:

(loga; = loga, +a,logN +aslog H + logb;

=k, +k,log N + k;log H + uy,,
4 logB; =logc, +c,logN +c;log H +logby; (8)
=m,; +m,log N + mylog H + uy;

| u; ~ N(0,0’D),

where N is the aircraft traffic volume, H is the pavement
surface thickness (cm), the individual model parameters «;
and f3; are normal random variables, where a and c are fixed
effect parameters, and b;; is a random-effect term.

In order to improve the prediction efficiency, a random-
effect method was used to establish a prediction model. The
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random-effect mixed model combined two types of effect
factors within one model, with the fixed effects explaining
the behavior of the population means between a given set of
treatments (intraindividual variation) and the random ef-
fects representing the variability among testing units (in-
terindividual variation). Then, the source of variation of the
pavement performance observation data could be quanti-
tatively analyzed with the mixed-effect model. This model
could present the deviation of each individual from the
population mean and the unobserved heterogeneity in the
population. The nonlinear random-effect mixed model was
obtained through random effects, and the parameters used
in the model were the parameters as those in equation (8).

According to the joint-estimation method described in
Section 3.2, the dummy variable DS was further introduced
to represent different data sources, that is, when the data
belonged to dataset 1, the value of DS was 0; when the data
belonged to dataset 2, the value of DS was 1.

After exploratory analysis, the model parameters were
calibrated by random effects, all of the parameters that were not
statistically significant (significance level of 0.05) were removed,
and the significance of the other parameters was re-evaluated.
Finally, the random-effect nonlinear mixed model was obtained:

PCI, = PCL,, — 100 - &

PClL,, = ¢y,

loga = k; + (ky + u,DS)log N + (ks + u;DS)log H + uy;,

log B = my + (m, + 1,DS)log N + (m; + A;DS)log H + uy;,
9)

where c;, k;, and m; are the fixed effect coeflicients of the
model, u;; is the normal random variance of the jth indi-
vidual in the ith population, and y; and A; are the bias
correction coeflicients for the joint estimation.

6. Results and Discussion

After the aforementioned modeling exploration, a “final”
model could be established. However, a model with good fit
data (such as -2LL (-2 log likelihood) or less bias, with a
smaller Akaike Information Criterion (AIC) and a smaller
Bayesian Information Criterion (BIC)) [30] was not nec-
essarily a satisfactory model. As emphasized in statistics,
model selection is a process driven by statistics and research
theory. The purpose of the modeling was not only to find a
satisfactory statistical model for data fitting but also to es-
tablish a simple model with interpretable results.

6.1. Estimation of the Nonlinear Mixed Model. The param-
eters of the residual life prediction model with equation (9)
were estimated using the random-effect approach, taking
into account the joint-estimation method. The estimated
parameters and the asymptotic statistics are given in Table 2.

It can be seen from Table 2 that the estimated variance of
the random-effect mixed model when using the joint-esti-
mation approach and including the explanatory variables logN
and logH was ¢”=1.565. Compared with the nonlinear model

(in the exploratory modeling, the nonlinear least-squares
method was used to establish the nonlinear fixed-effect model,
and the estimated variance was 3.228), the coefficient was
reduced by half, and the reduction proportion was nearly 50%.
This indicated that the random-effect method played a sig-
nificant role in improving the fitting efficiency of the model and
this method could better explain the heteroscedasticity of the
population and the intergroup effect.

In order to further illustrate the overall superiority of the
model, the following analysis process was conducted. In the
process of modeling using the random-effect nonlinear
mixed model, the results of all levels of nesting used in the
model could be displayed. The default was to display the
intergroup fitting value, which included random effects and
fixed effects. This model was called the mixed-effect model in
this study. By changing the random-effect term, only the
population fitting value could be displayed, that is, only the
fixed effect could be considered without the random effect.
This model was called the no-mixed-effect model in this
study. To illustrate the difference between the models with
and without random effects, a comparison of the fit values
and the predicted values was made. The results are shown in
Figure 2(a) (no-mixed-effect) and Figure 2(b) (mixed-
effect).

It can be seen from Figure 2 that the data points were
generally clustered at the diagonal of 45°, indicating that the
nonlinear model could fit the data set well regardless of whether
random effects were taken into account. By comparing
Figures 2(a) and 2(b), it could be concluded that for dataset 2,
the horizontal line pattern of the data point aggregation in
Figure 2(a) no longer existed in Figure 2(b) (the data distri-
bution is more uniform along the Y-axis). As expected, the
model with mixed effects interpreted the data much better than
the model with only fixed effects. This was because when using
the mixed-eftect approach, each individual in each population
predicted by the model contained two factors of the random
effects, one of which was u; in the o parameter and the other of
which was u; in the 8 parameter. In other words, the error of
each individual could be explained with two independent
random errors, so the mixed-effect model was significantly
better than the no-mixed-effect model.

6.2. Validity of Assumptions of Regression for Random-Effect
Nonlinear Mixed Model. The normality assumption for the
standardized residuals could be validated using box-and-
whiskers plots. A box plot of the standardized residuals for
all of the individuals of the mixed-effect model is shown in
Figure 3. In the figure, the black marker points represent the
median of the within-specimen residuals. The samples 1-16
comprised dataset 1, and the other samples comprised
dataset 2. In the figure, the two datasets are demarcated by
the red vertical line. As can be seen from Figure 3, the
median distribution of the sample residual box line of the
test samples was larger in proportion to the value of 0. A
small number of zero values were not included in the sample
residual range (i.e., box line length) in the two datasets. This
showed that, by allowing for random effects in the model, it
was possible to capture the deviations from the overall mean
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TABLE 2: Parameter estimation n for random-effect nonlinear mixed model.

Estimate Standard error T-statistic P value Annotation
Fix-effect parameter
k; 1.13E+00 1.22E-01 9.28 <0.0001 Intercept
k, -8.37E-02 1.12E-02 -7.51 <0.0001 Gradient
ks 3.46E - 01 1.05E-01 3.30 0.0013 Gradient
my —1.10E+ 00 3.36E-01 -3.26 0.0015 Intercept
my -1.05E-01 2.88E-02 -3.65 0.0004 Gradient
ms 1.11E+00 2.83E-01 3.93 0.0002 Gradient
Cy 9.89E-01 1.19E-03 833.55 <0.0001 Intercept
Yo -2.70E-01 1.85E-01 —-1.46 0.1476 Bias coefficient
Us 1.04E+00 5.81E-01 1.79 0.0767 Bias coefficient
A, 5.22E-01 2.55E-01 2.05 0.0431 Bias coefficient
As —1.84E+00 8.00E - 01 -2.30 0.0234 Bias coeflicient
Random-effect parameter
Ug 2.21E-04 1.53E-04 1.45 0.1508 Variance
Uy 1’E-03 3.86E-04 3.28 0.0014 Variance
o2 1.57E+ 00 1.52E-01 10.33 <0.0001 Variance
n =345, R = 0.972 n = 345, R*=0.989 &
95 o 9 1 ©
0 °
<
o K
o° 85
585 A 3 .
< <
g g
E & < E (o)
K] O ooaIy) 9 o Q@
3 75 2 75 4
& S, S0 = 2N o
S °9 o S o
9 9’8
00
S0 O
65 A ol 65 ¢
<>
0 &0
<&
<><>
55+ 55
T T T T T | T T T T
55 65 75 85 95 55 65 75 85 95
PCI observed values PCI observed values
Dataset Dataset
o1 o1
o 2 o 2

()

()

FIGURE 2: Observed and predicted values of PCI in the mixed model: (a) no-mixed-effect (n =345, R*=0.972); (b) mixed-effect (1 =345,

R*=0.989).

and thus improve the modeling of the data generation
process. It also showed that the random effects could capture
unobserved heterogeneities between specimens and elimi-
nate them from the error term.

In order to verify the parameter estimation of the
random-effect nonlinear mixed model, it was assumed that
the variance conformed to the normal distribution, so the
two graphs of the normality assumption for the standardized
residuals and the random effects were plotted (due to space
limitations, the two graph are not displayed.)

The following conclusions could be drawn from the
figures. The assumption of the normality of the random

effects made for the model estimation was also empirically
verified. The hypothesis test of all of the parameter esti-
mates in the mixed-effect model provided more reliability
than the nonlinear least-squares fit model. The assump-
tion of the normality of the sample residuals for the
mixed-effect model was verified.

6.3. Evaluation of the Prediction Performance of the Revised
Model. This section describes the assessment of the model
in terms of its reasonableness in order to account for
several characteristics. Several figures are presented,
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FIGURE 3: Box plot of mixed model residuals (classified by dataset).

showing how the model approached the actual measured
values. Other plots are shown to illustrate the sensitivity of
the model predictions when certain variables were varied.
In order to avoid the randomness of sample selection,
when presenting the graph for each sample in each group,
a sample with a large residual that contained the char-
acteristics of the parameter to be analyzed was selected in
the dataset. For example, when analyzing the influence of
aircraft traffic on the prediction performance of the
model, the samples 1/3/4 with large residuals between the
predicted PCI and the measured PCI with different air-
craft traffic in dataset 1 were selected. In addition, it
should be noted that the symbol “s14-IgN=3.62" in
Figure 4(a) represents the PCI data of the 14th group of
airport pavement with logN=3.62 (the logarithm of the
aircraft traffic). “S116-H15 cm” represents the PCI data of
the 116th group of pavement with a surface concrete
thickness of 15cm. The other symbols have similar
meanings.

6.3.1. Prediction of the Model with Varying Flight Traffic.
In order to evaluate the prediction performance of the
random-effect mixed model for the pavement performance
of different traffic levels, samples with the same pavement
thickness but different traffic levels were selected for analysis.
Specifically, sample S14 (logN = 3.62) and sample S9 in data
set 1 were selected for analysis, along with (logN=4.29),
sample S15 (logN =4.42), and sample S2 (logN =4.56). The
thickness of the concrete pavements of these individual
samples was 32 cm. The PCI prediction curve is shown in
Figure 4(a).

As can be seen from Figure 4(a), when the service life
of the pavement (f) was less than 10 years, the PCI
prediction curve of the mixed-effect model with different
aircraft traffic levels was generally similar, and the

difference was not obvious. However, after t> 10 years,
the PCI prediction curve with different aircraft traffic
levels showed significant differences. With the increase of
the aircraft traffic, the value of the PCI decreased, and the
higher the level of aircraft traffic was, the greater the
degraded rate of the PCI was. This result indicated that,
with the increase of aircraft departure and landing fre-
quencies, the deterioration rate of the airport pavement
surface layer also increased, leading to the decrease of the
PCI value. This also proved that the mixed-effect model
could capture the PCI deterioration trend of individuals
with different aircraft traffic levels (limited to the aircraft
traffic range included in the dataset).

It is worth noting from Figure 4(a) that, in the initial
service years of the airport pavement (about 10 years as
shown in the graph), due to the structure or material
characteristics of the airport pavement itself, the aircraft
traffic had little impact on the pavement deterioration.
However, when the service time of the airport pavement was
longer than a certain number of years, the aircraft traffic had
a significant impact on the pavement deterioration. This also
showed that the aircraft load had a certain cumulative effect
on the damage of the airport pavement. The determination
of whether this effect was linear cumulative or nonlinear
cumulative requires further study.

In addition, it was noted that the predicted curves of the
aircraft traffic volume logN =4.29 and logN =4.42 generally
coincided with each other (with the other parameters being
the same), which indicated that the performance deterio-
ration trend of the airport pavement at these two traffic
volume levels was essentially the same. However, the pre-
diction curves of the aircraft traffic volume logN = 4.42 and
logN =4.56 were significantly different (with the other pa-
rameters being the same), which indicated that the per-
formance deterioration trend of the airport pavement at the
two traffic volume levels was significantly different. The
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FIGURE 4: Model prediction of levels of parameters: (a) different flying traffic volumes (H =32 cm) and (b) different track surface thickness

grades.

following reasons were considered. In this study, the loga-
rithmic conversion of aircraft takeoff and landing fre-
quencies was used to analyze the values, so the logarithmic
values of the three levels of traffic had a small pairwise
difference (4.42-4.29 =0.13 and 4.56-4.42 = 0.14). However,
the actual traffic volume difference of the three levels was
about 6,804, which was quite different.

This might have indicated that, in the case of a cement
concrete surface thickness of 32 cm, the damage trend of the
airport pavement performance would change suddenly after
the aircraft load times reached a certain quantity level. In
other words, for an airport of a certain level, the aircraft
traffic volume had an extreme point. When the number of
aircraft loads exceeded this extreme point, it might cause
relatively significant damage to the airport surface, that is,
for an airport with a certain grade index in the flight area (for
example, 4F or 3C) [37], there was an extreme point in the
frequencies of aircraft takeoffs and landings. When the
amount of aircraft traffic exceeded this extreme point, there
might have been significant damage to the airport pavement
surface.

6.3.2. Prediction of the Model with Varying Pavement
Thicknesses. In order to evaluate the prediction perfor-
mance of the model in this study for the pavement per-
formance of different pavement thickness levels, the samples
S2 (IgN=4.56, H=32cm), S1 (IgN=4.56, H=34cm), S8
(lgN=4.65, H=36 cm), and S6 (IgN =4.65, H=40 cm) with
similar aircraft traffic levels were selected from dataset 1
according to the principle of large residuals. The prediction
performance curve is shown in Figure 4(b).

It can be seen from Figure 4(b) that the prediction curve
of the mixed-effect model could better fit the PCI of the
pavement of different pavement thickness levels (when the

volume of the aircraft traffic was constant). The PCI de-
graded curves of different pavement thickness levels were
significantly different. As the thickness decreased, the value
of the PCI decreased, and the smaller the thickness was, the
greater the degraded rate of the PCI was. This result indi-
cated that, with the decrease of the pavement thickness, the
pavement structural load-bearing capacity decreased, which
led to greater damage for the pavement at the same aircraft
traffic level when the PCI value was smaller. This also proved
that the mixed-effect model could capture the deterioration
trends of individual pavement surfaces with different
thickness levels better (limited to the pavement thickness
range included in the dataset).

It is worth noting from Figure 4(b) that the remaining
life of the corresponding pavement was approximately in-
creased by three years when the pavement thickness in-
creased by 8cm (H40-H32). In the literature [38], it was
pointed out that the residual life of the pavement was related
to the third power of the pavement thickness, and it was not
reasonable to calculate the residual life of cement concrete
pavement with the pavement design reversal method.
Compared with the literature [38], the sensitivity of the
performance model determined by the mixed-effect and
joint-estimation method in this study for the residual life of
airport pavement was reduced. The estimation result of the
residual life was more reasonable. The accuracy still needs
further study.

6.3.3. Extrapolation Performance of Random-Effect Mixed
Model. In order to further analyze the performance of the
mixed-effect model obtained in this study to predict data
outside the dataset used, that is, the extrapolation perfor-
mance of the model, the parameter values estimated with the
above nonlinear mixed-effect evaluation model equation (9)
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FIGURE 6: Analysis of model extrapolation performance for different pavement thickness levels: (a) dataset 5; (b) dataset 6.

were used. By setting different levels of aircraft traffic volume
and different pavement thickness levels, the mixed-effect
model was used to predict the deterioration curve of the PCI
of the airport pavement. The results are shown in Figures 5
and 6.

Taking Figure 5(a) for an example, the data in dataset 3
was used for extrapolation analysis. That is, at the level of
pavement surface thickness of H =32 cm, the PCI values of
the samples S108, S109, S110, and S111 with service lives of 1
year, 5 years, 10 years, 15 years, and 25 years were predicted
when the IgN were 2.0, 3.0, 4.0, and 5.0 at the aircraft traffic
levels, respectively, and the PCI deterioration curve was
plotted. Figure 5(b) is similar to Figure 5(a), except that

Figure 5(b) shows the extrapolation capability analysis of
dataset 4. In addition, Figure 6 shows similarity to the
method shown in Figure 5, except Figure 6 shows the ex-
trapolation capability analysis of different pavement thick-
ness levels at the same aircraft traffic level.

It can be seen from Figure 5(a) that the mixed-effect model
using the estimated value of data parameters in dataset 3 had
good predictive extrapolation ability for the PCI at different
aircraft traffic levels, and the influence characteristic of the
aircraft traffic on the PCI was consistent with the conclusions
described in the previous section. However, as shown in
Figure 5(b), the predictive extrapolation performance of the
model was poor and no obvious rules could be obtained.
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For Figures 6(a) and 6(b), the mixed-effect model with
the estimated values of the parameters in the two datasets
had good extrapolation ability, and the influence charac-
teristic of the pavement thickness on the PCI was consistent
with the conclusions described in the previous section.

Based on the comprehensive analysis of the above
graphs, the following conclusions could be drawn: the
mixed-effect model of airport pavement performance pre-
diction was more sensitive to the pavement surface thickness
than the aircraft traffic volume; specifically, the model could
better predict the PCI decay peculiarity of different thick-
nesses of pavements. That is, the model had better predictive
extrapolation performance. However, the prediction per-
formance for the aircraft traffic levels was poor, as shown by
the fact that the model could better predict the decay pe-
culiarity of the performance of samples contained in the
dataset, while the model had poor extrapolation ability for
samples outside the dataset (e.g., Figure 5(b) shows that
there was no discipline).

In addition, by comparing the above four figures, it could
be concluded that the influence of the pavement surface
thickness on the prediction performance of the mixed-effect
model was greater than that of the aircraft traffic. It is also
shown in the figures that the extrapolation capacity of the
aircraft traffic volume varied greatly, while the extrapolation
capacity of the pavement thickness was relatively significant.
These characteristics were not due to a problem with the
dataset itself, but rather were determined by the poor ex-
trapolation ability of the mixed-effect model for the data that
was not included in the modeling data.

7. Conclusions

Through the joint estimation of two datasets, a random-
effect nonlinear mixed model was used to calibrate a
functional residual life prediction model for a local civil
airport road in Henan Province. A pavement condition
index (PCI) prediction model considering the influence of
aircraft traffic and the thickness of the pavement surface was
proposed. The marginal effect of the validated model was
analyzed using actual data. The following conclusions can be
derived from the analysis and evaluation of the model.
The joint estimation had the advantages of high identifi-
cation and significant statistical efficiency. Dataset 1 may have
contained unique explanatory variables that were not present in
dataset 2. The joint estimates could identify the effects of these
unique variables from the different data sources, thereby de-
termining the parameter estimates for the unique variables.
Joint estimation could use all available data (two different
datasets 1 and 2) to determine the parameter estimation
common to all data sources. Due to the combination of the two
data sources, the overall sample size of the model increased, so
the variance of the parameter estimation value of the function
was smaller, and the statistical efficiency was significant.
Through the analysis of the relationship between the
standardized residuals and the predicted value of two different
datasets adopted in the model calibration, the results showed
that the normality assumption of the residuals of the pre-
diction model established by the random-effect method
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combined with the joint-estimation approach was easier to
satisfy than the nonlinear least-squares method. This also
indicated that the statistical results of the random-effect
nonlinear mixed model were more reliable, and the fitting
effect of the model was significant.

According to the parameter estimation results of the
random-effect nonlinear mixed models, using variable differ-
ence analysis combined with the prediction performance curve
graphic method, the decay rules of the PCI were analyzed for
the different aircraft traffic levels and the different thicknesses
of the cement concrete pavement surface layers. The prediction
performance of the random-effect nonlinear mixed model was
illustrated with the graphical method. The mixed-effect model
of the airport pavement performance prediction was more
sensitive to pavement surface thickness than the aircraft traffic
volume was. However, the prediction performance for aircraft
traffic levels was poor. The model could better predict the decay
peculiarity of the performance of the samples contained in the
dataset while the model had poor extrapolation ability for
samples outside the dataset. In addition, the influence of
pavement surface thickness on the prediction performance of
the mixed-effect model was greater than that of the aircraft
traffic. The extrapolation capacity of the aircraft traffic volume
varied greatly while the extrapolation capacity of pavement
thickness was relatively significant.
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