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Various control signals of high-speed trains (HSTs) are transmitted through the train communication network. However, the time
delay generated during the transmission will cause a significant threat to the stability and safe operation of the train. To overcome
the effect of time delay on the train control system, based on empirical mode decomposition (EMD) and adaptive quantum
particle swarm optimization (AQPSO) algorithms, a least squares support vector machine (LS-SVM) time delay prediction model
is proposed in this paper. ,e EMD algorithm is used to decompose the time delay sequence into several subsequences, which
emphasizes the different local characteristics of the time delay sequence. By improving the calculationmethod about the successful
value of particle iteration, an AQPSO algorithm with adaptive contraction-expansion coefficient is designed to optimize the
parameters of different LS-SVM models for predicting each time delay component, which improves the prediction accuracy of
network delay. Further, based on actor-critic reinforcement learning algorithm, an improved generalized predictive control
method is proposed for the train network system. ,e actor-critic network is used to predict the future output of the system, and
the recursive least squares identification algorithm with the variable forgetting factor is adopted to identify the future system
model parameters. Combined with the time delay predicted accurately, the control quantity is sent in advance according to the
properly arranged time series, which compensates efficiently the influence of the time delay on the control system. Simulation
results show that compared with other control methods, the proposed method has better robustness and stability, which ensures
the safe operation of high-speed trains under various working conditions.

1. Introduction

At present, HSTs and urban track vehicles all use the train
communication network (TCN) to realize train control and
fault diagnosis [1]. All kinds of control signals are trans-
mitted to the corresponding actuator through the wired
train bus and the multifunction vehicle bus (MVB). How-
ever, the time delay caused by various reasons in the process
of information transmission will seriously affect the safety
and stability of the train control system [2]. In addition to
the end-to-end time delay in the TCN, there is also the time
delay generated by signal processing and control logic

judgment, etc. If the time delay is too long, it will greatly
affect the stability of the control system [3].

,e network environment of HSTs is complex, and key
systems such as traction and braking have obvious nonlinear
characteristics [4]. In order to suppress the adverse effect of
time delay on the control performance, it is necessary to test
and study the real network characteristics of TCN, which
realizes real-time and stable control according to the actual
nonlinear characteristics of the train key control system. In
recent years, some scholars have studied the scheduling
algorithm of train network and the time delay problem of
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composite Ethernet [5, 6], but there are still few reports on
the time delay control of TCN.

Controller design and time delay prediction are two
main problems to be solved in network-controlled systems.
Based on controller design, researchers have closely com-
bined network control with sliding mode control [7], neural
network control [8], H∞ control [9], and other related
theories to conduct extensive research, which provides a
variety of solutions for networked control of nonlinear
systems. Li et al. [7] studied the tracking control problem of
networked control systems of intelligent vehicle with ex-
ternal disturbance and network-induced delay, and a high-
order sliding mode controller was designed to reduce the
effect of external disturbance, and a state observer was used
to compensate the time delay disturbance in the network. Xu
et al. [8] proposed a robust adaptive neural network control
method to compensate the uncertainty and network delay
disturbance of the system, which solves the remote-control
problem of ship course with uncertain time delay. Chen et al.
[9] designed an H∞ sampling controller by constructing the
Lyapunov–Krasovskii functional with delay, which realizes
the networked control of asynchronous traction motor.

For the time delay prediction, some scholars use the
regression model prediction method to accurately model the
time delay sequence samples [10, 11]. However, the process
of solving the model parameters is too complex, so it is not
suitable for the case with a large range of network delay
fluctuation. With the introduction of compensation devices
in the feedback loop, Smith predictor can eliminate the
adverse effect of network delay on the control system
[12, 13]. But in practical application, when the parameters of
the controlled system are unstable or disturbed, the Smith
prediction model will get out of control, which leads to the
control effect getting worse and even oscillating. Due to its
strong nonlinear identification ability and fast operation
speed, neural network can use the past data to predict the
future state of the system, which realizes the time delay
prediction and compensation [14, 15]. Nevertheless, the
neural network prediction method is easy to fall into local
extremum and relies too much on the autocorrelation co-
efficient of the input time delay sequence. Support vector
machine (SVM) has unique advantages in dealing with
nonlinear, small sample, and high-dimensional spatial
recognition problems and has stronger generalization ability
than neural network, which is suitable for network delay
prediction with strong nonlinear characteristics [16].
Suykens and Vandewalle [17] proposed the LS-SVM algo-
rithm to make up for the disadvantages of SVM, such as long
computing time and large computing amount. Under the
condition of equality constraint, the problem of convex
quadratic programming in SVM was transformed into
solving systems of linear equations, which greatly reduces
the training time of the model. Considering the uncertainty
and nonlinearity of the time delay, Tian et al. [18] introduced
EMD into the LS-SVM time delay prediction model, and the
time delay sequence was decomposed into several eigen-
mode functions for classification prediction, which reduces
the modelling complexity. Since the kernel function pa-
rameters of LS-SVM have a great impact on the learning and

generalization ability of the model and it is difficult to de-
termine them uniformly, Tian et al. [19] used genetic al-
gorithm for offline optimization of LS-SVM kernel function
parameters, which effectively improves the prediction ac-
curacy of time delay.

However, the network application environment and
nonlinear controlled object of the above method are com-
pletely different from the train network control system, so it
is difficult to be applied to the high-speed train network
system with high real-time performance requirements. As a
model-based advanced control method, generalized pre-
dictive control (GPC) has the advantages of predictive
model, control optimization, cyclic rolling, keeping output
variable stable, etc., which is widely used for tracking control
of complex nonlinear systems such as HSTs [20], spacecraft
[21], and underwater robots [22]. Li and Yan [20] designed a
GPC fast algorithm based on extreme learning machine for
HSTs to achieve the speed tracking control, and the extreme
learning machine was used to study the parameter mapping
relationship between system model and controller, which
greatly reduces the computational burden of the algorithm.
Chen et al. [21] proposed a GPCmethod with extended state
observer to solve the tracking control problem of the
spacecraft attitude, and according to the hyperbolic tangent
function, the extended state observer was designed to es-
timate and compensate the uncertainties and unknown
disturbances of the system, which achieves high-precision
tracking of spacecraft attitude. Zhu et al. [22] designed an
improved generalized predictive control (IGPC) method for
the motion control of underwater robots, and the incre-
mental proportion integration differentiation (PID) algo-
rithm was used to optimize the generalized predictive
controller in the initial stage, which improves the stability of
the system.

In this paper, an IGPC method based on actor-critic
reinforcement learning algorithm is proposed for the train
key nonlinear network control system, and the EMD-
AQPSO-LS-SVM time delay prediction model is introduced
into the IGPC method for reducing the impact of time delay
on control effect. ,e EMD algorithm is used to decompose
the original time delay sequences into several intrinsic mode
functions (IMFs), and by improving the particle iterative
success value calculation method, an AQPSO algorithmwith
dynamic contraction-expansion coefficient is designed to
optimize the parameters of different LS-SVMmodels, which
improves the predictive accuracy of time delay component.
Using the actor-critic reinforcement learning algorithm and
the recursive least squares (RLS) method with variable
forgetting factor to predict and identify the future param-
eters of the IGPC, respectively, the predictive controllers are
designed for each real-time linear system. Combined with
the accurate forward time delay prediction results, the
output sequence of control signal is adjusted reasonably to
compensate the influence of network delay on control
performance. ,e effectiveness of the proposed method is
verified by simulation experiments on TCN platform.

,e rest of this paper is organized as follows. In Section
2, the high-speed train network control system model is
introduced. In Section 3, the LS-SVM time delay prediction
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model is designed based on EMD and AQPSO algorithms,
and the AQPSO algorithm with dynamic contraction-ex-
pansion coefficient is proposed to optimize the LS-SVM
model parameters. In Section 4, the IGPC strategy for HSTs
is designed based on reinforcement learning algorithm.
Section 5 analyses and compares the performance of dif-
ferent time delay prediction models and verifies the real-
time performance and effectiveness of the proposed method.
Section 6 discusses the advantages and limitations of the
proposed method and the future research direction. Section
7 concludes this paper.

2. High-Speed Train Network Control System

,e general train network control system model can be
described as follows:

y(k + 1) � y(k) + χ u k − τca(  − f0(y(k)) − d(k)( , (1)

where y(k) is the speed of train, χ is the acceleration co-
efficient, u(k − τca) is the unit control force of train,
τca � (τca/T), τca is the forward channel time delay, T is the
sampling period, d(k) is the unit additional resistance
caused by the complicated operating environment such as
wind, tunnel, and curve, and f0(y(k)) is the unit general
resistance of train, which can be described as [3]

f0(y(k)) � α0(k) + α1(k)y(k) + α2(k)y
2
(k), (2)

where α0(k) is the rolling mechanical resistance coefficient,
α1(k) is the other mechanical resistance coefficient, and
α2(k) is the external air resistance coefficient.

Combining (1) and (2), the system model can be re-
written as

y(k + 1) � y(k) + χ u k − τca(  − α0(k) − α1(k)y(k)(

− α2(k)y
2
(k) − d(k)),

(3)

where α0(k), α1(k), and α2(k) with high uncertainty change
constantly with the change of operating condition, which
makes the train traction control system have obvious
multiple working conditions and nonlinear characteristics
[3]. In practical application, the high-speed train network
system is composed of an automatic train operation (ATO)
system, traction control system, and sensors. ,e network
simulation system constructed in this paper is composed of
two central control units (CCUs) and a human machine
interface (HMI). CCU1 simulates the controller of the ATO
system, CCU2 simulates the actuator of the traction control
system, and HMI simulates the sensor. Each device com-
municates on the MVB network with process data [23]. ,e
network system structure is shown in Figure 1.

Figure 1 shows that CCU1 simulates ATO function and
sends control signal to CCU2 for realizing nonlinear control
of the train traction system. CCU2 simulates the execution
process of traction and braking and sends the completed
information to HMI. HMI can measure the output signal of
the system and send feedback to CCU1 to realize the whole
network control process. In the communication process, the
transmission time delay of MVB network includes two parts:

forward channel time delay τca and feedback channel time
delay τsc. Due to the large number of nodes and ports, ir-
regular flow changes, uneven network load distribution, and
other reasons, the information in the TCN is always in the
dynamic and uncertain time-varying environment, which
makes the analysis and design of the train network control
system more complex and difficult [24]. With the im-
provement of the performance requirements of HSTs, it is
necessary to obtain higher frequency system information,
which will further increase the transmission delay of control
signals. ,erefore, there is considerable significance to adopt
appropriate control methods to compensate and control the
time delay generated in the TCN.,e premise of controlling
time delay is to master the characteristics of time delay
transmission, which establishes the description or prediction
model.

3. LS-SVM Time Delay Prediction Model
Based on EMD and AQPSO Algorithms

Considering the randomness and nonlinearity of train
network delay, the EMD algorithm is used to decompose the
time delay sequence into several time delay components,
which highlights the local characteristic signals with dif-
ferent time scales of the original data so that the modelling
complexity is reduced. Meanwhile, the LS-SVM algorithm is
used to build prediction models of different time delay
components, and the predicted values are combined and
superposed to obtain the final prediction results. For the
drawbacks of LS-SVM algorithm in which parameters are
difficult to be determined, an AQPSO algorithm with
adaptive contraction-expansion coefficient is proposed to
optimize model parameters offline, which effectively im-
proves the prediction accuracy of network delay.

3.1.TimeDelaySequenceProcessingBasedonEMDAlgorithm.
As a new signal processing method, EMD can adaptively
decompose complex time series into several IMFs easy to
model, which reduces the modelling difficulty. ,us, it is

HMI
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Actuator node

MVB
network

Controller node

CCU2

CCU1

τca

τsc

Figure 1: High-speed train network control system structure.
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suitable for the analysis and processing of nonlinear and
nonstationary time series [25]. In addition, the IMF has to
meet the following two conditions: (1) for a column of data,
the number of extreme points and zero crossings must be
equal or at most slightly different; (2) at any point, the
average value of the envelope formed by local maxima and
minima is zero [26]. For the forward channel delay sequence
τca(t), the EMD algorithm is presented in Algorithm 1.

3.2. Time Delay Sequence Modelling Based on LS-SVM
Algorithm. As a novel SVM algorithm, LS-SVM can
transform the inequality constraint problem into the solu-
tion problem of linear matrix and has the advantages of
simple operation, fast training speed, and strong general-
ization ability, which is widely used in the prediction
modelling of complex data sequences [27]. ,erefore, we
adopt the LS-SVM algorithm to conduct training modelling
for time-delay subsequences processed by EMD. For a given
training set U � (xi, yi)|xi ∈ Rn, yi ∈ R, i � 1, 2, . . . , l ,
the LS-SVM model can be built as

y(x) � w
Τφ(x) + b, (4)

where x is the input vector, y is the output vector, w is the
weight vector, b is the offset vector, φ(x) is the nonlinear
mapping function, and φ(x) can be used to map the input
space to the high-dimensional feature space, which makes
the nonlinear fitting problem in the input space become the
linear fitting problem in the high-dimensional feature space.
According to the criteria of structural risk minimization, the
objective function can be described as [17]

min, J( w, e ) �
1
2
w
Τ
w +

1
2

c 

l

i

e
2
i , c> 0,

s.t. yi � w
Τφ( xi ) + b + ei,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where ei is the error of estimation and c is the regularization
parameter indicating how much to penalize the error
function. To solve the above optimization problem,
Lagrange multiplier is introduced into (5) to obtain

L(w, e, λ, b) � J(w, e) − 
l

i�1
λi w
Τφ xi(  + b + ei + yi ,

(6)
where λi is the Lagrange multiplier; taking partial derivatives
of w, e, λ, and b, respectively, the following equations can be
obtained:

zL

zw
� 0⟹w � 

l

i�1
λiφ( xi ),

zL

zei

� 0⟹ λi � cei,

zL

zλi

� 0⟹w
Τφ( xi ) + b + ei + yi � 0,

zL

zb
� 0⟹ 

l

i�1
λi � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Eliminating w and e, the optimization problem is
converted to solving the following linear equations:

0 I
Τ

I Ω + c
− 1

E

⎡⎣ ⎤⎦
b

λ
  �

0

y
 , (8)

where y � [y1, y2, . . . , yl]
Τ, λ � [λ1, λ2, . . . , λl]

Τ,
I � [1, 1, . . . , 1]Τ, E is the l × l dimensional identity matrix,
Ωij � K(xi, xj), i, j � 1, 2, . . . , l, and K(xi, xj) is the kernel
function.

According to the given time delay data set U, using (8) to
solve λ and b, the LS-SVM time delay prediction model can
be obtained:

y(x) � 
l

i�1
λiK x, xi(  + b, (9)

where K(x, xi) selects radial basis function (RBF) as the
kernel function:

K x, xi(  � exp
− x − xi

����
����
2

2σ2
⎛⎝ ⎞⎠, (10)

where xi is the centre vector and σ is the Gaussian kernel
width.

It can be seen from the above modelling process that λ
and σ determine the learning accuracy and generalization
ability of the LS-SVM model. If λ is too small and σ is too
large, the penalty degree of the error function will decrease
and the kernel function will tend to 1, resulting in under-
fitting of the model. On the contrary, λ is too large and σ is
too small. As a result, the generalization ability of the model
becomes worse and the kernel function tends to 0, which
makes the model overfit the samples. ,us, we propose an
AQPSO algorithm to optimize λ and σ of the LS-SVM
model, which not only improves the prediction accuracy but
also enhances the generalization ability of the model for
samples with different time delays.
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3.3. Parameter Optimization Based on AQPSO Algorithms.
As an extension of particle swarm optimization (PSO) in
quantum space, quantum particle swarm optimization
(QPSO) algorithm has the advantages of few control pa-
rameters, fast convergence speed, strong search ability, etc.,
which is suitable for the processing of complex optimization
problems [28]. Based on the δ quantum well, QPSO algo-
rithm can obtain the probability density function of particles
at a certain point by solving the Schrodinger equation, and it
uses the Monte Carlo method to obtain the evolution
equation of particles [29]:

p
(t)
i � βpbest(t)

i +(1 − β)gbest(t)
,

x
(t+1)
i � p

(t)
i −

L
(t)
i

2
ln

1
μ

 , μ> 0.5,

x
(t+1)
i � p

(t)
i +

L
(t)
i

2
ln

1
μ

 , μ≤ 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where p
(t)
i is the centre random position with δ quantum

well of the ith particle in the tth iteration, pbest(t)
i is the best

position of the ith particle in the tth iteration, gbest(t) is the
best position of the population in the tth iteration, x

(t+1)
i is

the position of the ith particle in the t + 1th iteration, β and μ
are uniformly distributed random numbers in the interval
[0, 1], and L

(t)
i is the δ quantum well characteristic length of

the ith particle in the tth iteration, which is defined as

L
(t)
i � 2α

1
N



N

i�1
pbest(t)

i − x
(t)
i




, (12)

where N is the size of the particle population and α is the
contraction-expansion coefficient, which determines the
convergence performance of the Algorithm. A larger α value
is conducive to improve the global searching ability of
particles and prevent local convergence, and a smaller α
value is beneficial to enhance the local searching ability of
particles and improve the convergence accuracy. It is noted
that α< 1.781 is the convergence condition of QPSO algo-
rithm; otherwise, it will lead to divergence of algorithm [29].

On the basis of ensuring algorithm convergence, how to
control the α value is the key to improve algorithm per-
formance and efficiency. At present, discussions and studies
on this coefficient in QPSO algorithm mainly focus on fixed
value [29], linear decline [30], and nonlinear decline [31].
Compared with the fixed value, the dynamic decline method
can improve the global search performance of the algorithm
by taking a larger α value in the early stage of iteration, while
taking a smaller α value in the late stage of iteration to
enhance the local search performance of the algorithm.
However, these dynamic decline methods only take into
account the value of contraction-expansion coefficient
changing with the number of iterations, which obviously
cannot fully reflect the state changes in the actual evolution
process of particles and cannot handle complex and non-
linear optimization problems well to some extent. In con-
sideration of the limitations of the above parameter

Initialization
Determine all local extreme points of the original signal τca(t).
Procedure

(1) repeat
(2) Obtain the upper envelopment e1 and lower envelopment f1 by means of cubic spline fitting of all maximum and minimum

points
(3) Calculate the average envelopment as m1 � ((e1 + f1)/2)

(4) Set h1(t) � τca(t) − m1
(5) until h1(t) satisfies the IMF conditions
(6) Let h1(t) � c1(t) and c1(t) is the first IMF of the τca(t)

(7) Separate c1(t) from τca(t)

(8) Let r1(t) � τca(t) − c1(t)

(9) Let r1(t) be the original signal
(10) for i � 2: n do
(11) repeat
(12) Obtain ei and fi by means of cubic spline fitting of all maximum and minimum points
(13) Calculate mi � ((ei + fi)/2)

(14) Set hi(t) � τca(t) − mi

(15) until hi(t) satisfies the IMF conditions
(16) Let hi(t) � ci(t)

(17) Separate ci(t) from τca(t)

(18) Let ri(t) � τca(t) − ci(t)

(19) end for
(20) Obtain n IMF components ci(t) and a margin rn(t) of the τca(t)

Output: τca(t) � 
n
i�1 ci(t) + rn(t)

End Procedure

ALGORITHM 1: EMD algorithm for τca(t).
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evaluationmethods, we introduce the concept of success rate
of particle swarm iteration [32, 33]. By improving the cal-
culation method of success value of particle iteration in
literature [33], we propose an adaptive contraction-expan-
sion coefficient evaluation strategy that comprehensively
reflects the changes of particle position state.

α(t) � αmax − αmin( Ps(t) + αmin, (13)

where αmax and αmin are the maximum value and minimum
value of the contraction-expansion coefficient, respectively,

and Ps(t) is the success rate of population in the tth iteration,
which can be described as follows:

Ps(t) �
1
N



N

i�1
Si(t), (14)

where Si(t) is the success value of the ith particle in the tth

iteration, which is expressed as in literature [33]:

Si( t ) �

1, f pbest(t)
i <f pbest(t− 1)

i &f pbest(t)
i <f gbest(t)

 ,

0.5, f gbest(t)
 ≤f pbest(t)

i <f pbest(t− 1)
i ,

0, f pbest(t)
i  � f pbest(t− 1)

i ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

where f(pbest(t)
i ) is the fitness of the optimal position of the

ith particle in the tth iteration and f(gbest(t)) is the fitness of
the global optimal position of the population in the tth it-
eration. From (15), it can be seen that Si(t) value greater than
0 represents the success of optimization; otherwise, it rep-
resents the failure of optimization [33]. However, the above
method is only a simple piecewise constant function, which
ignores the comparison of the state changes between the
optimal position of the particle and the optimal position of

the population during the evolution process. As a result, the
calculation of Ps(t) and α(t) is not accurate enough, which
makes the algorithm unable to effectively balance the global
and local search capabilities and easy to fall into the local
optimal solution. In view of the inaccuracy of the above
calculation method about Si(t), we make a more detailed
evaluation of the particle position and state, which improves
the calculation method again as follows:

Si(t) �

1, f pbest(t)
i <f pbest(t− 1)

i &f pbest(t)
i <f gbest(t)

 ,

1 −
f pbest(t)

i  − f gbest(t)
 

f pbest(t)
i 

f gbest(t)
 ≤f pbest(t)

i <f pbest(t− 1)
i ,

0, f pbest(t)
i  � f pbest(t− 1)

i .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

From (15), it can be seen that when the particle iteration
is successful, the closer its optimal position is to the global
optimal solution, the closer f( pbest(t)

i ) is to f( gbest(t) ),
which makes Si(t) larger. On the contrary, the optimal
position of particles is far from the global optimal solution,
and there is a big gap between f( pbest(t)

i ) and f( gbest(t) ),
which makes Si(t) smaller. ,erefore, the calculation ac-
curacy of Ps(t) and α(t) is obviously improved after con-
sidering the change of particle position state so that an
AQPSO algorithm that can dynamically balance global and
local search capabilities can be obtained.

During the algorithm iteration, larger Ps(t) indicates
that the distance between the position of population and the
global optimal solution is far, so α(t) should be improved to
enhance the global searching ability of the algorithm, which
improves the diversity of population. Smaller Ps(t) indicates
that the position of population is close to the global optimal

solution, and α(t) should be reduced to enhance the local
search ability of the algorithm, which ensures the conver-
gence accuracy of the optimization algorithm. To optimize
the regularization parameters and kernel function width of
the LS-SVM model, the AQPSO algorithm is proposed in
Algorithm 2. ,e fitness function to evaluate the candidate
solution of the algorithm is constructed as follows:

f x
(t)
i (c, σ)  �

1
2



l

j

y
∗
j − yj(c, σ) 

2
, (17)

where l is the total number of samples, y∗j is the actual value
of the jth sample, and yj(c, σ) is the predicted value of the jth

sample.

3.4. LS-SVMTimeDelay PredictionModel Based on EMDand
AQPSO Algorithms. Assume that the TCN time delay
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sequence τca(t) can be expressed as the following time delay
sequence after EMD processing:

τ � τ1, τ2, . . . , τl , (18)

where l is the sequence length. Sorting and transforming the
time delay sequence τ, the input and output training sets of
the LS-SVM model can be obtained:

X �

τ1 τ2 . . . τm

τ2 τ3 . . . τm+1

. . . . . . . . . . . .

τl− m τl− m+1 . . . τl− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

Y �

τm+1

τm+2

·

τl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where X is the input training set, Y is the output training set,
and m is the embedded dimension. According to (19) and
(20), the LS-SVM model can use the time delay data of the
previousm moment to predict the time delay data of the next
moment, and the LS-SVM time delay prediction model
based on EMD and AQPSO algorithms is shown in Figure 2.

,e establishment process of hybrid delay prediction
model in Figure 2 is as follows. First, the TCN time delay
sequence is decomposed into several IMFs and a remain (R)
by EMD algorithm. Second, all IMFs and R data are nor-
malized, and the input and output training sets of each LS-
SVMmodel are generated by using (19) and (20). In the next
step, AQPSO algorithm is used to optimize kernel function

parameters of different LS-SVMmodels offline and establish
prediction models of each time delay component. Finally,
the prediction results of each time delay component are
unnormalized, and the final prediction results are obtained
by summing the equal weights.

4. IGPC Strategy for HSTs Based on
Reinforcement Learning Algorithm

Considering that HSTs are disturbed bymany factors such as
operating conditions, line ramps, and curve resistance, the
model parameters are highly uncertain, which has a great
impact on the control effect. ,us, the actor-critic neural
network in reinforcement learning is used to approximate
the actual operating conditions of the train and predict the
actual output of the train traction system in the future.
Meanwhile, the LS-SVM hybrid time delay prediction model
is adopted to predict the forward channel time delay to
overcome its influence on the control performance. In
combination with the prediction results, the RLS algorithm
with variable forgetting factor is used to identify the time-
varying model parameters, which improves the IGPC law for
achieving the smooth control parameter mutation situation
and time delay compensation effectively in real time. ,e
nonlinear network control structure is shown in Figure 3.

As shown in Figure 3, the ATO system sends the cal-
culated control quantity u(k − τca) and forward timestamp
Tca into a process data packet to the train traction control
system through the MVB network, and the actuators in the
traction control system execute the latest control law and
record the actual forward channel time delay τca, and the
sensor node periodically acquires the output y(k) according

Initialization
Set the size of population N, the maximum number of iterations T0, the tolerable error lr, and the random positions of the
particles x

(t)
i .

Procedure
(1) while t≤T0

����f(gbest(t))> lr do
(2) for i � 1: N do
(3) Calculate the fitness value of ith particle by (17)
(4) if f( x

(t)
i ( c, σ ) )<f( pbest(t− 1)

i )

(5) Update the pbest(t)
i

(6) end if
(7) if f( pbest(t)

i )<f( gbest(t) )

(8) Update the gbest(t)

(9) end if
(10) Calculate the iteration success value of each particle Si(t) by (16)
(11) end for
(12) Calculate the success rate of population Ps(t) by (14)
(13) Calculate the contraction-expansion coefficient α(t) by (13)
(14) for i � 1: N do
(15) Calculate the δ quantum well characteristic length of each particle L

(t)
i by (12)

(16) Update the position of each particle x
(t+1)
i by (11)

(17) end for
(18) end while

Output: the current global optimal solution gbest(t)

End Procedure

ALGORITHM 2: AQPSO algorithm for the LS-SVM model.
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to the set sampling time and sends y(k), feedback timestamp
Tsc, and τca into a process data packet to the ATO system
through the MVB network. ,e ATO system can analyse the
actual output y(k) combined with the speed and control
quantity at the previous moment, and the actor-critic neural
network is used to predict the future output y(k) of the
system. Furthermore, combined with the RLS identification
and IGPC algorithm, the appropriate control quantity u(k) is
obtained in advance. Meanwhile, with the prediction results
of LS-SVM hybrid time delay prediction model, the time
series are arranged reasonably to send out the appropriate
u(k − τca) in advance, which compensates the influence of τca

on the control performance. In addition, due to the incon-
sistent clock of each subdevice, it is also necessary to perform
clock correction while receiving the timestamp.

4.1. Actor-Critic Neural Network Multistep Prediction.
Neural network has become a common method to deal with
nonlinear systems, due to its good fitting characteristics. ,e
control method based on neural network can effectively
solve the problems caused by the uncertainty and nonlin-
earity of the system [34]. Based on the neural network
technology, reinforcement learning is a control method with
stronger learning ability and higher robustness. It empha-
sizes that agents modify their action strategies through the
return of the environment after each action in the inter-
action with the external environment so as to achieve op-
timization decision, which has been widely applied in
artificial intelligence and intelligent control [35, 36]. In
reinforcement learning algorithm based on the actor-critic
structure, the actor network is responsible for learning

TCN time delay 
sequence

EMD

IMF1 IMF2 IMFn Rn + 1...

Data 
normalization

Data 
normalization

Data 
normalization

Data 
normalization...

AQPSO-
LS-SVM 
model 1

AQPSO -
LS-SVM 
model 2

AQPSO-
LS-SVM 
model n

AQPSO-
LS-SVM 

model n + 1
...

Data inverse 
normalization

Data inverse 
normalization

Data inverse
normalization...

Summation 

Prediction 
results
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Figure 2: LS-SVM time delay prediction model based on EMD and AQPSO algorithms.

Reference
yr (k)

ATO

LSSVM time delay 
prediction model 

based on EMD and 
AQPSO algorithms

Actor-critic
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–
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Figure 3: IGPC structure diagram of nonlinear network system for HSTs.
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optimal decisions so that the agent can choose the best one
for different environmental states, and the critic network is
responsible for fitting the value function, which enhances the
intelligence ability of the agent to the environment, and the
combination of the two networks ensures the effectiveness
and robustness of the reinforcement learning algorithm
[37, 38]. In [37], an actor-critic-based reinforcement
learning algorithm is used to approximate the value function
and uncertainty of system, respectively, which effectively
solves the deterministic nonlinear discrete-time tracking
control problem in the presence of input constraints. In [38],
an actor-critic reinforcement learning algorithm based on
fractional gradient descent RBF neural network is proposed
to control the inverted pendulum system, which improves
the convergence speed and stability.

Referring to the above literature design ideas, we adopt
the RBF neural network to construct the critic and actor
neural network for approximating the value function and
action function, respectively, which learns the nonlinear
characteristics of the traction system and predicts the output
of the system in future.

4.1.1. Design of Critic Neural Network. ,e following state
value function is defined to represent the discount sum of the
expected revenue of a certain strategy at the beginning of the
k time [37]:

V(k) � R(k + 1) + c0R(k + 2) + c
2
0R(k + 3) + · · ·

� 
∞

q�0
c

q
0R(k + q + 1),

(21)

where c0 ∈ [0, 1] is the discount factor, which determines
the present value of the benefits. If c0 � 0, it represents the
agent that is short-sighted and only concerned with maxi-
mizing immediate benefits. Instead, as c0 gets closer to 1, the
discounted returns will take more account of future returns,
which means agents will become more far-sighted. R(k) is
the utility function, and it is designed as [37]

R(k) �
0, e

2
(k)≤ ξ,

1, e
2
(k)> ξ,

⎧⎨

⎩ (22)

where e(k) � yr(k) − y(k) represents the error between the
desired speed of train and the actual speed of train, ξ is the
threshold, and R(k) represents the current system perfor-
mance index, that is, R(k) � 0 stands for ideal tracking
performance and R(k) � 1 indicates poor tracking
performance.

Time difference (TD) error ec(k) reflects the actor neural
network selected action decisions of the degree of excellence.
Rewriting (21) into a recursive form, it is defined as [36]

ec(k) � c0V(k) − (V(k − 1) − R(k)), (23)

where ec(k)> 0 indicates that the actual effect is better than
expected, and the next decision will be more inclined to
choose this action; ec(k)< 0 means that the actual effect is
worse than expected, and the next decision will reduce the
propensity to choose this action.

V(k) is approximated by the RBF neural network as

V(k) � w
Τ
c (k)φc(x(k)), (24)

where wc(k) is the estimate of the ideal network weight
wc(k); the weight error is defined as wc(k) � wc(k) − wc(k),
φc(x(k)) is the Gaussian basis function.

Substituting (24) into (23), we obtain

ec(k) � R(k) + c0 w
Τ
c (k)φc(x(k)) − w

Τ
c (k − 1)φc(x(k − 1)).

(25)

,e cost function of critic neural network is defined as

Ec(k) �
1
2

e
Τ
c (k)ec(k). (26)

Partial derivatives of (26) can be obtained as follows:

zEc(k)

zwc(k)
�

zEc(k)

zec(k)

zec(k)

zwc(k)
�

zec(k)

z wc(k)
ec(k). (27)

Take the partial of (25) as

zec(k)

z wc(k)
� c0φc(x(k)). (28)

Substituting (25) and (28) into (27), we get

zEc(k)

zwc(k)
� c0φc(x(k)) R(k) + c0 w

Τ
c (k)φc(x(k)) − w

Τ
c (k − 1)φc(x(k − 1)) . (29)

According to the gradient descent method, the weight
update law for wc(k) is given by

wc(k + 1) � wc(k) − ηc

zEc(k)

zwc(k)
, (30)

where ηc is the learning rate of the critic neural network
weight.

Substituting (29) into (30), (30) is rewritten as

wc(k + 1) � wc(k) − ηcc0φc(x(k)) R(k) + c0 w
Τ
c (k)φc(x(k)) − w

Τ
c (k − 1)φc(x(k − 1)) . (31)
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Note that there are no convergence guarantees with the
weight update since it is an approximation to gradient
descent but it proved successful in the simulations in this
paper. One can refer to [38, 39] for an exact gradient descent
algorithm with improved convergence guarantees.

4.1.2. Design of Actor Neural Network. Actor neural network
can use historical data to predict the dynamic output of the
system in the future; its ideal model is as follows:

y(k) � wa(k)φa(x(k)) + ε(k), (32)

where wa(k) is the ideal network weight, φa(x(k)) is
the Gaussian basis function (the network input is selected
as x(k) � [y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k−

nu)]), ny and nu are order of output and control sequence,
y(k) is the train speed at the next moment, and ε(k) is the
error of estimation.

,e actual output of actor neural network is as follows:

y(k) � w
Τ
a (k)φa(x(k)), (33)

where wa(k) is the estimate of wa(k) and y(k) is the
predicted speed; the weight error is defined as
wa(k) � wa(k) − wa(k).

,e error of actor neural network is defined as

ea(k) � w
Τ
c (k)φc(x(k)) + w

Τ
a (k)φa(x(k)) − wa(k)φa(x(k))

− ε(k),

� w
Τ
c (k)φc(x(k)) + wa(k)φa(x(k)) − ε(k).

(34)

,e cost function of actor neural network is defined as

Ea(k) �
1
2

e
Τ
a (k)ea(k). (35)

From (35), the gradient is derived as

zEa(k)

z wa(k)
�

zEa(k)

zea(k)

zea(k)

zwa(k)
�

zea(k)

zwa(k)
ea(k). (36)

Take the partial of (34) as

zea(k)

zwa(k)
� φa(x(k)). (37)

Substituting (34) and (37) into (36), we obtain
zEa(k)

zwa(k)
� φa(x(k)) w

Τ
c (k)φc(x(k)) + wa(k)φa(x(k)) − ε(k) .

(38)

According to the gradient descent method, the updating
law of actor neural network weight is as follows:

wa(k + 1) � wa(k) − ηa

zEa(k)

zwa(k)
, (39)

where ηa is the learning rate of the actor neural network
weight.

Substituting (38) into (39), (39) is rewritten as

wa(k + 1) � wa(k) − ηaφa(x(k)) w
Τ
c (k)φc(x(k)) + wa(k)φa(x(k)) − ε(k) . (40)

Note that the convergence proof of the actor-critic
network during learning is provided in [37, 40].

In the ATO system, the control output sequence needs to
be reconstructed and sent in advance. Considering that the
forward channel time delay is generally several times the
sampling period, the number of recursive prediction steps is
taken as d � (τca− max/T), i.e., the maximum forward channel
time delay under the current configuration is divided by the
sampling period. On the basis of obtaining relevant input
and output information at k moment, actor-critic neural
network can be used to perform real-time online recursive
prediction of the output sequence within d period. ,e
prediction process is shown in Figure 4.

Figure 4 shows that the actor and critic networks are
represented by the RBF neural network, and the external
environment is composed of relevant input and output
sequences of the system at k moment. Actor networks can
use the output and control of previous moments to predict
future train speed y(k) in one step and update the next
decision based on the TD error ec(k) obtained by the critic
network. Meanwhile, the critic network can use the same

ec(k) to adjust the state value function, and the critic net-
work computes the ec(k) using theR(k) andV(k) to prepare
for the next prediction after the actor network outputs the
predictions to the environment. It is noted that the actor
network does not get R(k) directly, and the critic network
does not get y(k) directly in the actor-critic neural network
prediction process.

4.2. Online Model Parameter Identification with RLS
Algorithm. IGPC needs to obtain the linear model pa-
rameters of the controlled object. ,us, based on the output
of future time predicted by actor-critic network and output
and control quantity of past time, the RLS algorithm with
variable forgetting factor is used to identify the model pa-
rameters of IGPC strategy at different times. ,e model
parameters are θ(k) � [a1, . . . , ana

, b1, . . . , bnb
]Τ, and the

corresponding identification formula is as follows [41]:

θ(k) � θ(k − 1) + K(k) y(k)t − nh
Τ
q(k)hθ(k − 1) ,

(41)
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where
h(k) � [− y(k − 1), . . . , − y(k − na), u(k − 1), . . . , u(k − nb)]

is the set of system input and output samples, na and nb

represent the input and output orders respectively, and K(k)

is the gain matrix, which can be represented as

K(k) � P(k − 1)h(k) λ0(k) + h
Τ
(k)P(k − 1)h(k) 

− 1
,

(42)

where P(k) is the covariance matrix of the error and
λ0( k ) ∈ (0, 1] is the forgetting factor, which is a parameter
to correct the performance index in order to prevent “data
saturation.” Its value is determined by error ε(k) and pa-
rameter σ. λ0(k) and P(k) can be expressed as follows:

λ0(k) � 1 − ε(k)
2 σ 1 + h

Τ
(k)P(k − 1)h(k)  

− 1
,

P(k) �
P(k − 1) − K(k)h

Τ
(k)P(k − 1)

λ0(k)
 ,

(43)

and we set the initial value as P(0) � 106I, where I is the unit
matrix.

4.3. Design of Improved Generalized Predictive Controller.
,e train network control system identified at different
moments is the following controlled autoregressive moving
average (CARIMA) model [42]:

A z
− 1

 y(k) � B z
− 1

 u k − τca(  +
C z

− 1
 ζ(k)

Δ
, (44)

where Δ � 1 − z− 1 is the difference operator, z− 1 is the delay
operator, ζ(k) is the white noise sequence with a mean of 0,
and A(z− 1), B(z− 1), and C(z− 1) are the following poly-
nomials of z− 1; the order is na, nb, and nc, respectively.

A( z
− 1

) � 1 + a1z
− 1

+ a2z
− 2

+ · · · + +ana
z

− na ,

B( z
− 1

) � b0 + b1z
− 1

+ b2z
− 2

+ · · · + +bnb
z

− nb ,

C( z
− 1

) � 1 + c1z
− 1

+ c2z
− 2

+ · · · + +cnc
z

− nc ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(45)

where ai is the polynomial coefficient, in which
i � 1, 2, . . . , na, bi is the polynomial coefficient, in which
i � 1, 2, . . . , nb, and ci is the polynomial coefficient, in which
i � 1, 2, . . . , nc.

Define the following variables:

Ej z
− 1

  � e1 + e2z
− 1

+ · · · + ejz
− (j− 1)

,

Fj z
− 1

  � f1 + f2z
− 1

+ · · · + fn+1z
− n

,

Gj z
− 1

  � g1 + g2z
− 1

+ · · · + gjz
− (j− 1)

,

Hj z
− 1

  � h1 + h2z
− 1

+ · · · + hn− 1z
− (n− 2)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where ei is the polynomial coefficient, in which
i � 1, 2, . . . , j, fi is the polynomial coefficient, in which
i � 1, 2, . . . , n + 1, gi is the polynomial coefficient, in which
i � 1, 2, . . . , j, and hi is the polynomial coefficient, in which
i � 1, 2, . . . , n − 1.

Solve the Diophantine equation:

1 � Ej z
− 1

 A z
− 1

 Δ + z
− j

Fj z
− 1

 Ej z
− 1

 B z
− 1

  � Gj z
− 1

  + z
− j

Hj z
− 1

 . (47)
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Figure 4: Actor-critic neural network multistep prediction process.
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According to (47), we can obtain Fj(z− 1), Gj(z− 1), and
Hj(z− 1). ,e performance index of CARIMA is defined as
follows:

J � E 
P

j�1
y(k + j) − yr(k + j) 

2
+ 

M

j�1
λ Δu k + j − τca − 1(  

2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(48)

where P is the prediction horizon, M is the control horizon,
and λ is the control weighting factor; the performance index
J is minimized to derive the control law:

Δu k − τca(  � K1 Yr − f(Fy(k) + HΔU) ,

u k − τca(  � u k − τca − 1(  + Δu k − τca( ,
 (49)

where ΔU � [Δu(k − τca), Δu(k − τca + 1), . . . ,Δu
(k − τca + M)]Τ, Yr � [yr(k), yr(k + 1), . . . , yr(k + P)]Τ,
and K1 is the first row of the matrix (GTG + λI)− 1GT. ,e
above process is based on the latest acquired data packet
information, which can realize the rolling optimization of
each real-time sublinear model.

5. Simulation and Analysis

To verify the effectiveness of the proposed method, CRH3
train [2] is taken as the controlled object. ,e main pa-
rameters of the CRH3 train are as follows: the maximum
running speed is 350 km/h, the sustained running speed is
300 km/h, the total train weight is 400 tons, and the rotary
turning coefficient is 0.06. Control parameter settings are
shown in Table 1. ,e TCN simulation platform is built by
CCU1, CCU2, and HMI. ,e model of the train traction
control system is set up in CCU2. ,e latest speed infor-
mation is analysed in CCU1, and the LS-SVM hybrid delay
prediction algorithm, actor-critic neural network algorithm,
recursive RLS algorithm with variable forgetting factor, and
IGPC algorithm are inserted into it. ,e task execution
period of each device was configured to be 50ms, and all the
transceiver data modules, algorithm, and model modules
were executed in the same task to achieve synchronous
calculation [23]. In practical application, the characteristic
period of each port is usually selected as a multiple of 64ms.
,erefore, the sampling period T is selected as 64ms.

5.1. Construction of TCN Simulation Platform. Setting up an
operating environment consistent with the actual train
operating environment and the functions of each node, the
semiphysical simulation platform of TCN is shown as in
Figure 5. During the test, the task period is set to 50ms, the
load rate is set to 45%, and the characteristic period of the
source port is set to 64ms and 128ms, respectively.

Figure 5 shows that all vehicle control signals are
transmitted through the MVB network. As the controller
node, CCU1 can simulate the ATO system, while as the
actuator node, CCU2 can simulate the train traction control
system. In the control process, CCU1 sends the control
instruction to CCU2, which simulates the train traction and
braking execution process and sends the completed exe-
cution information to the sensor node. As the sensor node,

HMI can measure the output signal of the system and feed it
back to CCU1. When the data are transmitted through the
MVB network, the computer connects the network analyser
through RS-232 serial line and Ethernet data line, tests the
forward and feedback channel delay of the MVB network,
and analyses the delay data sample according to the captured
process data.

5.2. Performance Analysis of Different Time Delay Prediction
Models. In order to verify the prediction performance of the
proposed time delay prediction model, we compare the
proposed model with the LS-SVM model based on EMD
(EMD-LS-SVM) [25], LS-SVM model [27], Elman neural
network model (ELMANNN) [43], and the least mean
square algorithm based on ARmodel (LMS-AR) [44]. For all
prediction models, the training set is 500 sets of data, the test
set is 50 sets of data, the input end of each model is
X � [τ(k − 1), τ(k − 2), τ(k − 3)], and the output end is
Y � τ(k). ,e parameters of the EMD-LS-SVM model are
set as follows: c � 1854.945 and σ2 � 0.842. ,e parameters
of the LS-SVM model are set as follows: c � 943.571 and
σ2 � 0.598. ,e parameters of the ELMANNNmodel are set
as follows: the maximum number of training is 5000, the
training target is 0.01, the learning rate is 0.1, and the
number of neurons is 50. ,e parameters of the LMS-AR
model are set as follows: the order number is 20 and the
convergence factor is 7.8×10− 7. When the characteristic
period is 64ms, the time delay prediction results of different
models are shown in Figure 6(a). Figure 6(b) shows the time
delay prediction results of different models when the
characteristic period is 128ms. In order to better measure
the prediction effect of each model on the time delay series,
the root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and
prediction time are used to evaluate the overall performance
of each prediction model. ,e performance indexes of each
prediction model under different characteristic periods are
recorded in Table 2. ,e RMSE, MAE, and MAPE are de-
fined as follows:

eRMSE �

������������������

1
L



L

k�1
τ∗(k) − τ(k)( 

2




,

eMAE �

����������������

1
L



L

k�1
τ∗(k) − τ(k)







,

eMAPE �
1
L



L

k�1

τ∗(k) − τ(k)

τ∗(k)




× 100%,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where L is the length of the time delay sequence, τ∗(k) is the
real time delay value at the k moment, and τ(k) is the
predicted delay value at the k moment.

Figure 6 shows that with the increase of the characteristic
period of the source port, the decoding and access time of
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MVB process data becomes longer, resulting in the severe
time delay jitter of the system. Compared with other pre-
dictionmodels, the proposed prediction model can maintain
high prediction accuracy in the face of different degrees of
delay jitter, which effectively overcomes the impact of
network delay on the train control system and ensures the
real-time performance of control signal transmission.

Table 2 shows that the prediction accuracy of the pro-
posed prediction model is significantly higher than that of
other prediction models. ,e main reason is that after the
original delay sequence is processed by EMD, different local
characteristics of time delay components are highlighted,
and the components of frequency components and wave-
form changes become simpler and more regular, which

effectively reduces the difficulty to predict. At the same time,
the proposed model optimized by AQPSO algorithm has
more accurate kernel function parameters, which effectively
improves the prediction accuracy compared with the EMD-
LS-SVM model. On the other hand, since the prediction
results of the proposed model are composed of the predicted
values of different components generated by EMD, the al-
gorithm takes a little longer to execute but the prediction
accuracy is greatly improved, and the one-step delay pre-
diction time of the proposed model is far less than the task
execution period, which can meet the real-time require-
ments of high-speed train network control system.

5.3. Comparison of Optimization Performance of Different
PSO Algorithms. To validate the AQPSO algorithm opti-
mization performance, we select the QPSO algorithm based
on linear contraction-expansion coefficient (QPSO-LDCE)
[30], QPSO algorithm based on nonlinear decreasing con-
traction-expansion coefficient (QPSO-NDCE) [31], PSO
algorithm based on swarm success rate descending inertia
weight (SSRDIWPSO) [32], and PSO algorithm based on
adaptive inertia weight (AIWPSO) [33] to compare with the
proposed algorithm. ,e above algorithms are simulated in
CCU. ,e hardware configurations of CCU are Intel (R)
Core (TM) I5-7300HQ cpu@2.50GHz processor and
8.00GB memory. For all optimization algorithms, the
maximum iteration time is selected as 30 times, the pop-
ulation number is selected as 50, and the tolerance error is
set as 0.01. After testing, the parameters of AQPSO algo-
rithm are set as follows: αmax � 1 and αmin � 0.5. ,e pa-
rameters of QPSO-LDCE algorithm are set as follows: m � 1
and n � 0.5. ,e parameters of QPSO-NDCE algorithm are
set as follows: αinitial � 1 and n � 2. ,e parameters of
SSRDIWPSO algorithm are set as follows: wstart � 0.9 and

Table 1: Control parameters.

Parameters Value
α0(k) α0(k) ∈ [0.53, 0.58]

α1(k) α1(k) ∈ [0.0039, 0.0041]

α2(k) α2(k) ∈ [0.000114, 0.0001176]

χ χ � (1/(1 + 0.06))

d(k) d(k) � sin((0.01 + 0.1∗ rand)k)

ci

c1 � 48.883, c2 � 39.932, c3 � 4172.392, c4 � 1365.056,

c5 � 384.804, c6 � 2746.093, c7 � 0.063, c8 � 139.116

σ2i
σ21 � 0.007, σ21 � 0.014, σ23 � 0.237, σ24 � 0.162,

σ25 � 1.084, σ26 � 328.113, σ27 � 1.146, σ28 � 291.540
c0 c0 � 0.9
ξ ξ � 0.5
wc wc � [0.82, 0.91, 0.13, 0.91, 0.63]

wa wa � [0.10, 0.28, 0.55, 0.96, 0.97]

ηc, ηa ηc � 0.5, ηa � 0.5
ny, nu ny � 2, nu � 2
na, nb na � 2, nb � 2
d d � 3
P P � 5
M M � 3
λ λ � 0.1

PC HMI
Network analyzer 

CCU1 CCU2

Ethernet
RS-232 COM
MVB

Figure 5: TCN semiphysical simulation platform.
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wend � 0.4. ,e parameters of AIWPSO algorithm are set as
follows: wmax � 1 and wmin � 0. For the time delay com-
ponent model, each algorithm runs independently for 20
times. Figure 7(a) shows the average optimal fitness of
different PSO algorithms, and Figure 7(b) shows the average
running time of different PSO algorithms.

Figure 7 shows that compared with other PSO algo-
rithms, the AQPSO algorithm has better convergence per-
formance in optimizing parameters of models with different
time delay components. ,e main reason is that PSO al-
gorithm is extended to the quantum space and represents the
motion state of particles in the form of wave function, which
simplifies the evolution mode and enables the particle to
appear at any position in the entire search solution space
with a certain probability. ,us, the AQPSO algorithm has a
stronger global search performance compared with
SSRDIWPSO and AIWPSO algorithms. On the other hand,
the AQPSO algorithm comprehensively considers the po-
sition and state changes of particles in the iterative process
and designs the adaptive contraction-expansion coefficient
so that the proposed algorithm can dynamically balance the
global and local searching ability of particles. ,erefore, the
AQPSO algorithm has higher average convergence precision

and stability compared with QPSO-LDCE and QPSO-
NDCE algorithms. In terms of running time, the proposed
algorithm does not increase significantly compared with
other PSO algorithms, and the running time of each algo-
rithm under a given tolerance error is basically the same.

5.4. Time Delay Compensation Effect of Different Character-
istic Periods. In order to analyse the influence of time delay
compensation on the control method under different
characteristic periods, the characteristic period of the source
port is set as 64ms and 128ms, respectively, the sine wave
trajectory is selected as the reference input, the sampling
time is set as 64ms, and the initial control quantity is set as 0.
Figure 8(a) represents the time delay compensation effect
when the characteristic period is 64ms, and Figure 8(b)
represents the time delay compensation effect when the
characteristic period is 128ms.

Figure 8 shows that when the characteristic period is
64ms, the proposed method can track sine wave quickly and
accurately with almost no overshooting after adding time
delay compensation, and the traction and braking effect is very
ideal. If the time delay is not controlled, the output will oc-
casionally oscillate and be unstable at different time points.
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Figure 6: ,e prediction results of time delay under different characteristic periods. (a) ,e prediction results of time delay under 64ms
characteristic period. (b) ,e prediction results of time delay under 128ms characteristic period.

Table 2: Comparison of performance indexes of different prediction models.

Evaluation index Proposed model EMD-LS-SVM LS-SVM ELMANNN LMS-AR

Characteristic period: 64ms

RMSE 0.034 0.773 5.755 7.208 5.619
MAE 0.026 0.539 2.507 4.131 3.123
MAPE 0.019 0.41 1.81 2.938 2.267

Time (ms) 3.473 3.877 0.54 1.833 0.062

Characteristic period: 128ms

RMSE 0.085 4.399 7.851 8.169 9.862
MAE 0.062 2.323 2.901 3.774 11.203
MAPE 0.044 1.532 1.988 2.597 6.126

Time (ms) 3.886 3.983 0.521 1.806 0.056
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When the characteristic period is 128ms, the forward and
feedback channel delay will continue to increase, and the sum
will exceed 300ms. If the delay control strategy is not applied,
the output oscillation is very severe. ,e reason for its os-
cillation is that the time delay is random change and the time
when the control quantity arrives at the actuator is not fixed,
which leads to the failure of control method at many mo-
ments. It is worth noting that the characteristic period is larger,
the time delay is greater, and the oscillation is more serious. In
the future, the data transmission of the train will be more and
more frequent, and the time delay of the forward channel will
be several times or even more than the sampling period.,us,
the key to realize fast and stable control of traction and braking

is that we should adopt effective methods to compensate the
influence of time delay on the train control system.

5.5. Comparison of Tracking Effects between Different Control
Methods. In order to verify the real-time performance and
tracking performance of the proposed method, the non-
singular fast terminal sliding mode control method
(NFTSM) [2], RBF neural network adaptive control method
(RBFNN) [34], and proportional-integral-differential con-
trol method (PID) [45] are selected for comparison with the
proposed method. ,e parameters of the NFTSM control
method are set as follows: β � 0.05, δ � 0.35, K1 � 0.042,
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Figure 7: ,e optimization results of different PSO algorithms. (a) ,e average optimal fitness of different PSO algorithms. (b) ,e average
running time of different PSO algorithms.
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Figure 8: ,e time delay compensation effect under different characteristic periods. (a) ,e time delay compensation effect under 64ms
characteristic period. (b) ,e time delay compensation effect under 128ms characteristic period.
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K2 � 1.012, c1 � 1.047, c2 � 0.467, α1 � 0.411, α2 � 0.891,
and ϖ � 1.225. ,e parameters of the RBFNN control
method are set as follows: c1 � − 0.1, β � 0.06, c � 0.001,
G � 50000, and εf � 0.003. ,e parameters of the PID
control method are set as follows: kp � 50, ki � 20, and
kd � 5. ,e characteristic period of the source port is 64ms,
the reference input selects the sine wave and the actual
working condition, respectively, the sampling time is set to
64ms, and the initial control quantity is set to 0. Figures 9(a)
and 9(b), respectively, show the speed tracking results and
errors of each control method under sine wave. Figures 10(a)
and 10(b), respectively, show the speed tracking results and
errors of each control method under actual working con-
dition. Table 3 records the statistical results of tracking errors
of different control methods under actual working
conditions.

Figure 9 shows that compared with the proposedmethod
and NFTSM method, the tracking effect of RBFNN adaptive
control method and PID control method is poorer.
Meanwhile, the speed tracking error fluctuation is bigger
with the rapid change of sine wave, which illustrates that
these control methods are difficult to be applied to high-
speed train network control system with strong nonlinear
change and uncertainty. Compared with other control
methods, the proposed method has the smaller speed
tracking error and has higher tracking accuracy and faster
response speed at different moments, which can accurately
track the rapid change of sine wave trajectory with better
real-time performance. ,e advantage of the proposed
method lies in the fact that the actor-critic neural network
used in the control process to continuously interact with the
environment gives full play to the learning ability of rein-
forcement learning algorithm to complex system. ,us, the
actor-critic neural network can accurately predict the output
of the traction control system in future, which effectively
improves the control accuracy of the proposed method.

Figure 10 shows that during the alternations of tracking
signals from acceleration to braking, compared with other
control methods, the control performance of the proposed
method is good in the whole speed and braking phase. ,e
proposed method realizes smooth transition in different
static working points and has faster response speed and
dynamic performance, which can guarantee the high-pre-
cision tracking of the train at a given speed. ,erefore, the
proposed method fully meets demands to the safe operation
of HSTs under complex conditions.

It can be seen from Table 3 that the proposed method has
more ideal tracking performance and real-time performance
compared with other control methods, which can provide
effective means for the safe and reliable operation of HSTs.
In addition, the proposed method is simple in structure,
small in computation, and easy to be applied to train
communication engineering.

6. Discussion

To predict the train network delay with the uncertainty and
nonlinearity, the LS-SVM time delay predictionmodel based on
EMD and AQPSO algorithms is designed. After EMD pro-
cessing, the original time delay sequence is transformed from
long correlation sequence to short correlation sequence, which
highlights the different local characteristics of the original signal
and effectively reduces the modelling complexity. By improving
the calculation method about the successful value of particle
iteration, an AQPSO algorithm with adaptive contraction-ex-
pansion coefficient is proposed to optimize the parameters of
LS-SVMmodel, which enhances the prediction performance of
the time delay prediction model and overcomes the effect of
time delay on the train control system.

Considering the nonlinear characteristics of the train in
the process of traction and braking, the actor-critic network
is used in the control process to continuously interact with
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Figure 9: ,e speed tracking results of different control methods under sine wave. (a) ,e speed tracking results of different control
methods. (b) ,e speed tracking errors of different control methods.
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the environment and accurately predict the future output of
the system, and the RLS identification algorithm with the
variable forgetting factor is adopted to identify the future
system model parameters, which realizes the predictive
control of the nonlinear train network system. Further,
combined with effective time delay prediction and com-
pensation methods, the IGPC scheme for the train key
nonlinear network system is implemented.

In this paper, we compensate the time delay generated in
TCN without further considering the actual impact of packet
loss on the train control system. However, in the process of
time delay testing, it is found that when the port characteristic
period increases, a small number of packets are lost in the data
transmission through MVB network, so an effective method
should be proposed to suppress the influence of both time delay
and packet loss.,us, wewill design amore efficient and robust
train network control method for such situations in the future.

7. Conclusions

In this paper, a LS-SVM time delay prediction model based
on EMD and AQPSO algorithm is proposed to accurately
predict the forward channel time delay for compensating the
effect of network delay on train control performance. Based
on the actor-critic reinforcement learning algorithm, an
IGPC method is designed for HSTs, and the actor-critic
reinforcement learning network is used to predict the output

of the system by multiple steps in future moment, and
according to the output prediction, the RLS algorithm can
identify the system model parameters in the future. Com-
bined with the forward delay prediction results, the suitable
control quantity is sent in advance, which realizes the time
delay compensation control of the train nonlinear network
control system. Simulation results show that the proposed
method can track the change of reference signal quickly and
has good real-time performance, robustness, and stability.
,e research in this paper provides reference for the optimal
control of train communication network and plays an im-
portant role in further enhancing the economy, safety, and
reliability of high-speed train operation.
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Figure 10: ,e speed tracking results of different control methods under actual working conditions. (a) ,e speed tracking results of
different control methods. (b) ,e position tracking results of different control methods.

Table 3: Tracking error statistics.

Evaluation index Proposed method NFTSM RBFNN PID

Speed tracking error RMSE 0.565 0.55 1.481 3.218
MAE 0.054 0.316 1.096 2.343

Position tracking error RMSE 2.5×10− 3 2.31× 10− 2 3×10− 2 4.06×10− 2

MAE 2.4×10− 3 1.88×10− 2 2.43×10− 2 3.69×10− 2
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