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To overcome the shortage of low SNR (signal to noise ratio) of the multipole generator vibration signal which brings rigid
difficulty to the fault diagnosis, a new method which combines the Time-Wavelet Energy Spectrum (TWES) with the Multipoint
Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) algorithm is proposed..is method uses TWES to extract and
enhance the characteristic signal, while employing MOMEDA to optimize the spectrum structure and filter the noise. .e
application of this method to the simulating signal as well as the test stator vibration signal in a 6-pole generator before and after
rotor interturn short circuit fault validates the effectiveness of the method. Moreover, the comparison among the proposed
method and some other general methods such as the Empirical Mode Decomposition (EMD) and the maximum correlative
kurtosis deconvolution (MCKD) suggests that the proposed method is superior to these methods.

1. Introduction

.e generator is a complex system running in a strict condition.
Scholars have taken a lot of energy in exploring different means
for high-accuracy monitoring and fast fault diagnosis. Among
these means, the vibration based method has attracted much
preference due to its easy signal acquisition and rich fault in-
formation [1],2]..ismethod has been proposed and developed
for a long time even since the generator was invented.

Recently, signal processing field has gained a rapid de-
velopment and achieved many new outputs. For instance, to
overcome the shortcomings of Fourier Transform/Fast
Fourier Transform, people proposed the Wavelet Transform
(WT) method which has the advantages in both the local-
ization and adaptive window width [2–5]. However, this
method needs to choose the proper mother wavelet and set
the decomposition layers. Although scholars have tried to
improve this method by different means, for example, the
Adaptive Reinforced Empirical Morlet Wavelet Transform
[6], this method still has drawback. Alternatively, people
proposed the Empirical Mode Decomposition (EMD)
method to adaptively decompose the signal [7–11]. But this

method came across the mode mixture and the end-effect
problems. Subsequently, scholars further proposed the en-
semble empirical mode decomposition (EEMD) method
[12–14] to make the signal distributed in a proper reference
scale and the decomposition more accurate.

Actually, the signal delivering process can be treated as
the linear convolution of the original signal and the transfer
channel [15], while the extraction of the faulty signal can be
treated as the deconvolution procedure. In this view,
scholars proposed the Minimum Entropy Deconvolution
(MED) method [16–18] to enhance the impulse component
of the signal. However, it is found that this method has some
inevitable shortcomings. For instance, it is not a globally
optimal filter but only a locally optimal one which can only
obtain part of the impulse signal. To overcome the side-effect
of MED, Mcdonald and Zhao [19] proposed a special
method named Multipoint Optimal Minimum Entropy
Deconvolution Adjusted (MOMEDA) which employs the
objective vector together with several D norms, and had
obtained wide application [19–24].

However, most of these aforementioned methods are
proposed for the fault diagnosis of rolling bearings, while few
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of them are specifically used for the generators. Unfortunately,
the application of these methods to generators, especially to
the multipole generators does not gain ideally satisfied effect
since much weaker impulse features but meanwhile too many
components (including both frictional components and
multiple harmonics of the basic electrical frequency) are in-
cluded in the generator’s vibration signal due to the large mass
of the generator set and the abundant influential factors such
as the thermal and the electromagnetic forces (affected by not
only mechanical factors but also electrical and other excita-
tions). In other words, the vibration signal of the generator has
different properties from that of rolling bearings..e energy in
the vibration signal is more dispersive and the ratio of signal to
nose (RSN) is much smaller. It is therefore more critical for the
generator vibration signals to enhance the impulse features by
effective algorithms.

Actually, the MOMEDAmethod is a good tool to enhance
the impulse features of the vibration signal, but the authors
found it not enough for the multipole generators. It is found in
[25, 26] that the radial stator vibration components at f, 2f, 3f,
and 4f (f is the fundamental frequency) are the Characteristic
frequency components under the rotor interturn short circuit
faults. However, in practical performing circumstance, these
four components are inferior to other components in the
spectrum, especially when the fault degree is not so serious. In
order to further enhance the impulse features of the gener-
ator’s vibration signal, in this paper, we proposed the Time-
wavelet Energy Spectrum (TWES) method and combine it
with the Multipoint Optimal Minimum Entropy Deconvo-
lution Adjusted (MOMEDA) method for an improvement.
.is proposed method is applied to process the simulating
signal as well as the test stator vibration signal of a 6-pole
synchronous generator to diagnose the rotor interturn short
circuit faults as a validation.

.e remainder of this paper is constructed as follows.
.e algorithm of the proposed method is explained in
Section 2, while the comprehensive processing results and
the processing comparisons between the proposed method
and other general methods for the simulating signal and the
test signal are illustrated in Section 3 and Section 4, re-
spectively. Finally, primary conclusions obtained from the
study are drawn up in Section 5.

2. Algorithm of Proposed Method

2.1. Time-Wavelet Energy Spectrum. For an energy limited
signal, its wavelet transform can be written as

WTx(a, b) �〈x(t),ψa,b(t)〉 �
1
��
a

√ 
R
x(t)ψ∗

t − b

a
 dt,

(1)

where <x, y> is the convolution operation to x and y, ψ∗(t) is
the conjugate of the mother wavelet ψ(t), and ψa,b(t) is the
wavelet basis function produced by the scale performance and
translation transformation to ψ(t), which can be written as

ψa,b(t) � |a|
− (1/2)ψ

t − b

a
 , (2)

where a (a≠0) is the scale factor related to the frequency and
the scale performance, while b is the location parameter
related to the time and the translation transformation.

For a better comparison, here we also list the definition
of Fourier Transform which can be written as

F(ω) � 
R
f(t)e

− iωtdt, (3)

where f(t) is the time-domain signal, and ω is the angular
frequency.

Obviously, there is only one independent variable ω and
therefore can display only the frequency information. How-
ever, there are two variables a and bwhich can display both the
frequency and the time information at the same time for the
Wavelet Transform. .e significance of these two variables is
that it offers the exact time for a specific frequency.

According to the energy conversion principles, it has


+∞

− ∞
|x(t)|
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1

Cψ
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− ∞
WTx(a, b)



2 da db

a2 , (4)

where |WTx(a, b)|2 is the scale figure which is actually the
energy distribution depending on the scale factor a and the
shift factor b. It can be further modified to


+∞

− ∞
|x(t)|
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1

Cψ
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Ebdb,

Eb � 
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(5)

where Eb is defined as the Time-wavelet Energy Spectrum
(TWES) which reflects the energy distribution of the signal
versus time. In a particular moment when there is an im-
pulse, there will be a peak appear in TWES. In this view, the
impulse characteristics can be extracted via spectrum
analysis on the energy distribution.

Since the wavelet transform effect is defectively dependent
on the wavelet basis function, it is significant to select a proper
wavelet basis function which has the similar impulse prop-
erties as the original signal. It is found in [27] that the Morlet
function is one of the optimal selections. .is function is of
square exponential decay and can be expressed as

ψ(t) � π− (1/4) exp − iω0t(  − exp −
ω2
0
2

  exp −
t2

2
 , (6)

where ω0 is the central frequency.

2.2. Processing Method Based on TWES and MOMEDA.
.e actual vibration signal can be expressed as

x � r∗y + u, (7)

where x is the acquisition signal, y is the impulse signal
which includes the faulty information, r is the transfer
function of the whole system, and u is the disturbing signal.

.e function of MOMEDA is to reconstruct the impulse
signal y by a noninteractive means with the optimal filter f, so
that the impact of the noise on the original signal extraction
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can be maximally depressed. .e deconvolution can be
expressed as

y � f∗x � 
N− L

k�1
fkxk+L− 1, (8)

where k � 1, 2, . . . , N − L, N is the data length of f, L is the
original shift distance between f and x.

To obtain a better effect, the maximization problem is
introduced into MOMEDA by proposing multipoint D
norms which can be written as

MultiD − Norm � MDN(y, t) �
tTy

‖y‖
,

MOMEDA � max
f

MDN(y, t) � max
f

t · y

‖y‖
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

where t is a constant vector that defines both the location and
the weight factor of the objective impulse for deconvolution,
y is the signal, and T is the deconvolution period (also the
faulty signal period). .e more similar t is to y, the better the
deconvolution effect will be. .e best solution will appear
when the multipoint D norms obtain the max value. At this
moment, the group of filters is the optimal one. .en, the
solution to equation (9) converts to

d
df

tTy

‖y‖
  � 0, (10)

where f � f1, f2, . . . , fL; t � t1, t2, . . . , tN− L.
Based on (9) and (10) there is
d
df

tTy

‖y‖
  � ‖y‖

− 1
t1M1 + t2M2 + · · · + tKMK(  − ‖y‖

− 3
t
T
yX0y � 0,

(11)

where k� 1, 2, . . ., N − L.
Let X0 � [M1, M2, . . . , MK], (11) can be simplified as

t · y

‖y‖
X0y � X0t. (12)

Substituting y � XT
0 f into (12) it has

t · y

‖y‖2
f � X0X

T
0 

− 1
X0t. (13)

.e solution to (13) is the optimal group of filters and
can be written as

f � X0X
T
0 

− 1
X0t. (14)

Feed (14) into y � XT
0 f, the reconstructed signal y can be

obtained.

2.3. Processing Flow of Proposed Method. Due to the large
mass and volume of the rotor and stator, the faulty vibration
signal of the generator appears to be more stable so that the
characteristic components are not so evident. For multipole
generators, the components are even richer since the fun-
damental mechanical frequency (the rotating frequency of
the rotor) is smaller (signal components should be multiple
times of the fundamental frequency). In this case, the signal
to noise ratio (SNR) is usually low and the fault diagnosis
(especially when the fault is under a light degree) is always
hard.

To solve the very problem, in this paper, we propose the
method which combines EWES with MOMEDA for the
characteristic component enhancement and the fault de-
tection. .e key flow is illustrated in Figure 1, and the
detailed process is as follows:

(1) Calculate the wavelet time-energy spectrum of the
original signal, using the Morlet wavelet as the basis
function.

(2) Calculate the value of T. T is the period of the
deconvolution. For the generator studied in this
paper, the fundamental frequency f0 is 50Hz, while
the sampling frequency fs is 5000Hz.

T �
fs

f0
�
5000Hz
50Hz

� 100. (15)

(3) Enhance the impulse components in the wavelet
time-energy spectrum by MOMEDA.

(4) Diagnose the fault based on the signal spectrum.
According to [25, 26], the key point for the fault
identification and diagnosis lies in the amplitude
comparison in the 2nd harmonic and the 4th har-
monic. As the occurrence and the increment of rotor
interturn short circuit, the 2nd harmonic will be de-
creased, while the 4th harmonic will be increased.

3. Application to Simulating Signal

In order to validate the proposed algorithm, a group of
simulating signal is employed for processing comparison.
According to [25, 26], the faulty signal includes vibration
harmonics at f, 2f, 3f, and 4f (f is the fundamental frequency
of the electricity and is 50Hz in this paper).

y(t) � g(t) + n(t),

g(t) + 0.1 sin(2π ∗ 50t) + 0.1 sin(2π ∗ 100t) + 0.1 sin(2π ∗ 150t) + 0.1 sin(2π ∗ 200t),

n0(t) � rand(length(g(t))),

n1(t) � n0(t) − mean n0(t)( ,

n(t) � 10∗ n1(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)
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where g(t) is the characteristic signal, rand(length(g(t))) is
the random function to generate the noise set which has the
same data amount as g(t), and n(t) is the noise signal. .e
amplitudes of the characteristic signal and the noise signal
are set by taking the reference of the actual vibration signal.
.e simulating signal without processing is illustrated in
Figure 2(a).

As shown in Figure 2(a), the noise completely covers the
characteristic signal. .e simulating signal processed by the
Time-wavelet energy spectrum (TWES) method, the MED
method, the maximum correlative kurtosis deconvolution
(MCKD) method [28], the EMD method, and the proposed
method are illustrated in Figures 2(b)–2(f), respectively.
During processing byMCKD andMED, the parameter T is set
to 100 (see equation (15)), and the filter length is set to 40.
.ese two parameters are set by taking the reference in [28].
For TWES, the window length is set to 30, and the n-level is set
to 512 [6]. For MOMEDA, the filter size L� 1000 [19], the
period T is set to 100 (see equation (15))..e same parameters
will be used behind in the test vibration signal processing.

As shown in Figures 2(b)–2(e), the characteristic har-
monics, namely, the 1st (50Hz), 2nd (100Hz), 3rd (150Hz),
and the 4th (200Hz) harmonics, are not prominent after
processing by the TWES spectrum method, the MED
method, the MCKD method, and the EMD method. On the
contrary, the proposed method can effectively remove the
noise signal and enhance the spectrum to highlight the
characteristic harmonics. .e proposed method displays a
superior result to the other aforementioned methods.

4. Practical Application to
Experimental Generator

4.1. Experimental Signal Acquisition. .e experimental vi-
bration signal is tested and sampled from the stator of aMJF-

30-6 prototype generator in State Key Laboratory of Al-
ternate Electrical Power Systems with Renewable energy
Sources, China, as shown in Figure 3(a). .e primary pa-
rameters of the generator are listed in Table 1.

.e generator is driven by a Z2-91 type DC motor, as
illustrated in Figure 3(a), while the slot and winding dis-
tribution are indicated in Figure 3(b). During the experi-
ment, the generator is taking about 500W load. .e exciting
voltage is 95V, and the exciting current is 1 A. .e stator
vibration signal is sampled by the velocity sensors (the
sensitivity is 30mv/mm/s), setting the sampling frequency as
5000Hz which is 100 times of the fundamental frequency, as
illustrated in Figure 3(c).

.ree groups of data are sampled:

(1) Normal condition: .e generator is running in
normal condition, and the stator vibration signal is
collected as the reference for further comparison.

(2) 1.5% rotor interturn short circuit fault: .e exciting
windings in the rotor are manually shorted by
connecting the short circuit taps C1C2 on the gen-
erator with a rheochord, see Figure 3(a).

(3) 2.5% rotor interturn short circuit fault: .is is an-
other faulty condition, with a severer faulty degree.
.e interturn short circuit degree is controlled by
adjusting the value of the rheochord and calculated
via

Fd �
If
′

If

× 25%, (17)

where I′f is the short circuit current, while If is the exciting
current. For Group (2), the short circuit current is 0.06 A
(1.5%) while for Group (3) the short circuit current is 0.1 A
(2.5%).

4.2. Results and Discussion. .e original vibration signal of
normal condition, 1.5% rotor interturn short circuit, and
2.5% rotor interturn short circuit without any processing is
illustrated in Figure 4 as a reference. In the meantime, the
stator vibration signal is processed by TWES, MED, EMD,
MOMEDA, MCKD, and the proposed method, respectively,
see Figures 5–10. In theory, the maximum frequency of the
spectrum should be equal to the half of the sampling fre-
quency (the left side and the right side of the spectrum
should be symmetric). Since the amplitudes of the higher
order harmonics are comparatively much smaller than the
characteristic components, in this paper, we set the max
frequency to 400Hz which is twice of the max characteristic
component’s frequency, to show the result with a proper
resolution. Also, to show the time-domain waves under a
proper resolution, we set the maximum time as 0.6 s which is
thirty times of the period (the fundamental frequency is
50Hz and the period is 0.02 s).

Specifically, as indicated in Figures 4–10, themean values
of the processed signal in time-domain by different methods
are different. .is phenomenon reflects the varied noise-

Original signal

TWES operation 

MOMEDA

Transient energy signal 

Begin

Output signal for fault diagnosis 

Enhanced spectrum signal 

End

Figure 1: Flow chart of the algorithm.
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Figure 2: Simulating signal (a) without processing, (b) by the Time-wavelet energy spectrum method, (c) by the MED method, (d) by the
MDCK method, (e) by the EMD method, and (f) by the proposed method.
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Figure 3: Continued.
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removing effect as well as the characteristic signal en-
hancement effect of different methods. On one hand, when
the value of the noise (whose mean value is not zero) is much
larger than the characteristic signal, i.e., in a very low RSN
ratio case, the noise-removing degree will directly affect the
mean value. On the other hand, the processing algorithm
itself will also lead to varied mean values. For example,
during the TWES processing, the energy spectrum is actually
the absolute value, whichmeans themean value as well as the
transient value will be positive, see Figures 2(b) and 5.

As indicated in Figure 4, there is no significant difference
in both the time-domain waves and the spectra between the
normal and the faulty conditions. .e characteristic com-
ponents at 50Hz (f ), 100Hz (2f), 150Hz (3f), and 200Hz
(4f ) are completely covered by the noises. In this case, it is
pretty hard to identify the fault.

.e processed results by TWES and MED are illustrated
in Figures 5 and 6, respectively. It is shown in these two
figures that there are differences between the normal and the
faulty signals, and the amplitudes of the characteristic
components are superior to others. .is means TWES and

MED have the qualified function in characteristic compo-
nent enhancement. Consequently, a coarse fault assessment
can be made. However, the noise amplitude is still evident,
and the processing result for the components at 150Hz and
200Hz is not satisfied.

.e processed result by EMD is illustrated in Figure 7. It
is shown that the four characteristic harmonics as well as
their developing tendencies are not evident. However, the
result still displays the effectiveness of EMD in compressing
the noise and highlighting the key components, especially at
100Hz and 200Hz. Although this method has obtained
satisfied effect in the fault diagnosis for rolling bearings, it is
not sufficient for the rotor interturn short circuit fault
identification in multipole generators.

.e processed results by MOMEDA, MCKD, and the
proposed method are illustrated in Figures 8–10, respec-
tively. Comparatively, the spectra by these three methods are
pretty clean, and the amplitudes are concentrated in the
multiple times of the fundamental frequency..is means the
aforementioned three methods have the qualified noise
filtering effect. Comparing with Figures 5–7, a more accurate
fault assessment can be obtained. However, it is suggested in
Figure 8 that the MOMEDA method is somewhat over-
filtering, since the amplitudes of the characteristic har-
monics are too small. Consequently, the amplitude
differences between varied fault degrees are not evident
enough. For instance, the amplitudes at 50Hz for the three
running conditions seem to be generally the same. On the
contrary, the MCKD method and the proposed method
show a clearer tendency in the characteristic harmonic
variations. In another word, the proposed method as well as
MCKD has the better processing effect for the experimental
vibration signal.

For a better comparison, the amplitudes of each char-
acteristic harmonic before and after rotor interturn short

Table 1: Primary parameters of MJF-30-6 prototype generator.

Parameter Value
Rated capacity 30 kVA
Stator slots 54
Rated rotating speed nr � 1000 r/min
Radial air-gap 0.85mm
Synchronous reactance xs � 2.0308Ω
Rated voltage 400V
Slot number per phase per pole 3
Pole-pairs p � 3
Stator winding turns in series 72
Power factor 0.8

A+
A–
B+
B–

C+
C–
Field+
Field–

24
54 52

48
50

42
46

44

8

6
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14 40
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2624
22

20
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34
323028

16

N

S

y

x

N

N

S

S

z

(b)

Velocity sensors for 
stator vibration test

Velocity sensors for 
rotor vibration test 

(c)

Figure 3: MJF-30-6 type nonsalient fault simulating generator: (a) picture of generator and rotor interturn short circuit taps, (b) slot and
winding distribution, and (c) sensor set to test vibration signal.
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Figure 4: Original waves and spectra without any processing: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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Figure 5: Waves and spectra processed by TWES: (a) normal, (b) 1.5% short circuit, (c) 2.5% short circuit.
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Figure 6: Waves and spectra processed by MED: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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circuit by the proposed method and MCKD are listed in
Table 2. As indicated in Table 2, by using the proposed
method, the 2nd harmonic of the stator vibration shows a
decreasing tendency, while the 1st, the 3rd, and the 4th
harmonics, especially the 4th harmonic, are showing an
increasing tendency. .is harmonic developing

phenomenon accords well with [25, 26]. However, the
processing result byMCKDdoes not show such a developing
tendency. .e amplitude variation of the four characteristic
components cannot match well with the theoretical devel-
oping trend and therefore will cause confusion to the
technical people. Consequently, the rotor interturn short
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Figure 7: Waves and spectra processed by EMD: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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Figure 8: Waves and spectra processed by MOMEDA: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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Figure 9: Waves and spectra processed by MCKD: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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Figure 10: Waves and spectra obtained by the proposed method: (a) normal, (b) 1.5% rotor short circuit, (c) 2.5% rotor short circuit.
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circuit cannot be accurately identified by this method. .us,
it can be concluded that the proposed method is superior to
MCKD in diagnosing the rotor interturn short circuit fault
based on the vibration signal in multipole generators.

In addition to the processing effect, the consuming time
is also significant. For the same data processing (with the
signal data length of 24992), the detailed consuming time for
TWES, MED, EMD, MOMEDA, MCKD, and the proposed
method is 2.8346 s, 0.2015 s, 4.2719 s, 2.6584 s, 0.4155 s, and
2.8614 s, respectively. .e MED method consumes the least
time, while the EMD algorithm consumes the most. .e
proposed method consumes much more time than MED
and MCKD but 35% less time than EMD, while generally
similar time as TWES and MOMEDA.

On the other hand, it should be noted that there is also
shortcoming in the proposed method. .e vibration ampli-
tudes after processing are much smaller than the actual ones,
though the spectra structure has been enhanced. .is am-
plitude compressing effect is primarily caused by MOMEDA
(see Figure 8), since the proposed method combines TWES
and MOMEDA. A possible quick way to modify the ampli-
tudes is to multiply a coefficient to all of the amplitude values
for each harmonic. However, to find what is the exact value of
the coefficient needs further investigation. We will carry out
the further work in this topic in the short future.

5. Conclusion

In this paper, we propose a new vibration signal processing
method for the rotor interturn short circuit fault identifi-
cation in multipole generators. .is proposed method
combines the Time-Wavelet Energy Spectrum (TWES) with
the multipoint optimal minimum entropy deconvolution
adjusted (MOMEDA) algorithm, to filter the noise mean-
while enhancing the characteristic components.

.e primary contribution/novelty of this paper lies in two
aspects: (1) an effective processing method for the pretty low
SNR stator vibration signal in multipole generator has been
proposed. .is method, which well highlights the character-
istic harmonics and removes the noise, shows the actual fault
developing tendency and is superior to some other general
methods such as EMD, MED, MCKD, etc., and (2) differently
from most other researches, in this paper, the stator vibration
signal for the particular rotor interturn short circuit fault of
multipole generator is employed as the study object, while
most previous studies concentrated in the vibration signals of
rolling bearings/rotors. .e research work in this paper is
beneficial for the fast fault identification for the rotor interturn
short circuit fault, since it is more convenient to collect the

stator vibration signal than the rotor vibration signal (for
example, in wind turbine generators, the bearings are covered
inside the stator housing and the bearing/rotor vibration signal
are not so easy to collect).

Based on the study in this paper, it is found that the original
vibration signal without any processing is far away from the
accurate fault diagnosis since the key characteristic components
are completely covered by the noise..e TWES algorithm has a
good signal enhancement property for the characteristic
components, while MOMEDA method has the qualified noise
filtering effect. However, neither of these two methods is sat-
isfied enough for the exact fault detection. Comparatively, the
proposed method in this paper which combines these two
methods together can not only filter the noise but also enhance
the characteristic components properly. .is method is of high
potential to be carried out for the practical application.
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