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&is paper focuses on the optimal reinsurance problem with consideration of joint interests of an insurer and a reinsurer. In our
model, the risk process is assumed to follow a Brownian motion with drift. &e insurer can transfer the risk to the reinsurer via
proportional reinsurance, and the reinsurance premium is calculated according to the variance and standard deviation premium
principles. &e objective is to maximize the expected exponential utility of the weighted sum of the insurer’s and the reinsurer’s
terminal wealth, where the weight can be viewed as a regularization parameter to measure the importance of each party. By
applying stochastic control theory, we establish the Hamilton–Jacobi–Bellman equation and obtain explicit expressions of optimal
reinsurance strategies and optimal value functions. Furthermore, we provide some numerical simulations to illustrate the effects of
model parameters on the optimal reinsurance strategies.

1. Introduction

Since reinsurance is an effective way to spread risk in the
insurance business, the problem of optimal reinsurance for
insurers has drawn great attention in recent years. For ex-
ample, Cai and Tan [1], Tan and Weng [2], Chi [3], and
Román et al. [4] considered the optimal reinsurance
problems in the static models under the criteria of mini-
mizing value at risk, conditional tail expectation, or
multiobjectives.

In a dynamic model, the technique of stochastic control
theory is frequently used to deal with the problem of optimal
reinsurance. For instance, Schmidli [5], Promislow and
Young [6], and Liang and Young [7] investigated the
problem of optimal reinsurance and investment for insurers
in the sense of minimizing the ruin probability. Bäuerle [8],
Delong and Gerrard [9], and Chen and Yao [10] studied
the problem of optimal reinsurance and investment
for insurers under the mean-variance criterion. Since tra-
ditional dynamic mean-variance optimization problem is a

time-inconsistent problem, more and more literature de-
velops time-consistent strategies for mean-variance insurers,
e.g., Li et al. [11], Lin and Qian [12], Wang et al. [13], and
references therein. For the objective of expected utility
maximization, Liu et al. [14] considered the optimal rein-
surance and investment problem with dynamic risk con-
straint and regime switching. Huang et al. [15] introduced
the constrained control variables into the optimal reinsur-
ance and investment problem for a jump-diffusion risk
model. Zheng et al. [16] considered the robust optimal
proportional reinsurance and investment problem for an
insurer under the constant elasticity of variance model. Li
et al. [17] studied the robust optimal excess-of-loss rein-
surance and investment problem in a model with jumps.
Zhang and Zheng [18] investigated an optimal investment-
reinsurance policy with stochastic interest and inflation
rates.

Although research on the problem of optimal reinsur-
ance increases rapidly, only a few papers deal with the
problem with consideration of the joint interest of an insurer
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and a reinsurer. Actually, the reinsurer also aims to increase
her profit, so great attention should also be paid to the
reinsurer. Fang and Qu [19] obtained the optimal reinsur-
ance strategy to maximize the joint survival probability of an
insurer and a reinsurer. Cai et al. [20] focused on the
problem of optimal reinsurance to maximize not only the
joint survival probability but also the joint profitable
probability. In a dynamicmodel, Zeng and Luo [21]modeled
reinsurance as a stochastic cooperation game and discussed
the stochastic Pareto-optimal reinsurance problem. Li et al.
[11] derived the time-consistent reinsurance-investment
strategy for an insurer and a reinsurer under the mean-
variance criterion. Huang et al. [22] discussed the robust
optimal investment and reinsurance problem for the
product of an insurer’s and a reinsurer’s utilities. Li et al.
[23], Li et al. [24], and Zhao et al. [25] considered optimal
reinsurance and investment problems of a general company
including an insurer and a reinsurer under the expected
utility maximization and mean-variance criterion,
respectively.

In this paper, we investigate the optimal reinsurance
strategies taking into account the joint interests of both an
insurer and a reinsurer in a continuous-time model. Dif-
ferent from Li et al. [23], Li et al. [24], and Zhao et al. [25],
the reinsurance premium principles used in this paper are
the variance and standard deviation premium principles,
instead of expected value principle used in most of the
literature. Both variance and standard deviation premium
principles are popular in the actuarial science, and they have
received considerable attention in recent years, such as Chi
[3], Zeng and Luo [21], and Liang and Yuen [26]. Partic-
ularly, Zeng and Luo [21] presented that proportional re-
insurance is the optimal reinsurance way under variance and
standard deviation premium principles. In more detail, the
risk process in this paper is assumed to follow a Brownian
motion with drift, and the insurer can purchase proportional
reinsurance from the reinsurer. By applying stochastic
control theory, we establish the corresponding Hamil-
ton–Jacobi–Bellman (HJB) equation and obtain the explicit
expressions of optimal reinsurance strategies and optimal
value functions. Finally, we present some numerical simu-
lations to show the effects of model parameters on the
optimal reinsurance strategies.

Our paper has three main contributions to the literature
on the optimal reinsurance strategy. (1) &e explicit op-
timal reinsurance strategy for a dynamic model considering
the joint interests of both an insurer and a reinsurer is
derived. In the special case with the weight being equal to 1
or 0, our results can reduce to the corresponding problem
for an insurer or a reinsurer only. &us, our model is more
general than other studies in this aspect. (2) Different from
expected value premium principle, we consider variance
and standard deviation premium principles in this paper.
From the mathematical computation point of view, the
solving process under variance premium principle is more
difficult. (3) &e effects of weight coefficients on the re-
insurance strategies are analyzed, which can give some
suggestions to investors who hold shares of an insurer and a
reinsurer.

&is paper is organized as follows. In Section 2, model
formulation is introduced and the corresponding verifica-
tion theorem for a general case is provided. In Section 3, by
solving the HJB equation, optimal reinsurance strategies and
optimal value functions under variance and standard de-
viation premium principles are derived, respectively. In
Section 4, sensitivity analysis and numerical simulations are
presented to illustrate our results. Section 5 concludes this
paper.

2. Model Formulation

Consider a filtered complete probability space
(Ω,F, Ft t∈[0,T], P) satisfying the usual condition, where
Ft t∈[0,T] is a filtration with F � FT, and T is a fixed and
finite time horizon. All stochastic processes introduced
below are supposed to be adapted processes in this space.

According to the classical Cramér–Lundberg (C-L)
model, the surplus process of an insurer can be described by

X1(t) � x1 + ct − 

N(t)

i�1
Zi, (1)

where x1 is the initial wealth and c is the premium rate.
Suppose that the premium rate c is calculated according to
the expected value principle, i.e., c � (1 + η)λE[Zi], where η
is the safety loading of the insurer, N(t) is a homogeneous
Poisson process with intensity λ, and the claim sizes
Zi, i≥ 1  are independent and identically distributed pos-
itive random variables with finite expectation and variance.

To proceed, suppose that the insurer can purchase re-
insurance from a reinsurer to transfer the risk. According to
Taksar and Zeng [27], a risk share function can be described
by a nondecreasing function g: [0,∞)⟶ [0,∞) with
g(x) ∈ [0, x]. Let G be the set of all such functions and
Θ ⊂ R be a parameter space. For each ](t) ∈ Θ, we denote
g(x; ](t)): � g(x) ∈ G, representing the insurance busi-
ness retained by the insurer. In other words, when the claim
arrives at time t, the insurer pays g(Zi; ](t)), while the
reinsurer pays the rest part Zi − g(Zi; ](t)). Corresponding
to the risk share function, there is a premium share function
π(·; λ) in each reinsurance contract.

Denote a reinsurance strategy by ]: � ](t), t ∈ [0, T]{ }.
Once the reinsurance strategy ] is chosen, the dynamics of
the wealth processes for the insurer and the reinsurer
become

X
]
1(t) � x1 + 

t

0
c − π Zi − g Zi; ](s)( ; λ(  ds − 

N(t)

i�1
g Zi; ](t)( ,

X
]
2(t) � x2 + 

t

0
π Zi − g Zi; ](s)( ; λ( ds − 

N(t)

i�1
Zi − g Zi; ](t)( ( .

(2)

In addition, we assume that the wealth of both the in-
surer and the reinsurer increases with the interest rate r0.
&en, the diffusion approximation (cf. Promislow and
Young [6]) for the wealth processes of the insurer and the
reinsurer is
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dX
]
1(t) � r0X

]
1(t) + c − π Zi − g Zi; ](t)( ; λ( 

− λE g Zi; ](t)(  dt +

����������������

λE g Zi; ](t)( ( 
2

 



dW(t),

(3)

dX
]
2(t) � r0X

]
2(t) + π Zi − g Zi; ](t)( ; λ(  − λE Zi

− g Zi; ](t)( dt

+

��������������������

λE Zi − g Zi; ](t)( ( 
2

 



dW(t),

(4)

respectively, where W(t) is a standard Brownian motion.
Taking into account the interests of both the insurer and

the reinsurer, the weighted sum process can be described as
follows:

X
]
(t) � αX

]
1(t) + βX

]
2(t), (5)

where weight parameters satisfy α, β ∈ [0, 1].

Remark 1. &e weighted sum process X](t) has abundant
practical implications. On the one hand, the weight in X](t)

can be viewed as a regularization parameter to measure the
importance of each party, and in the extreme case with the
weight being equal to 1 or 0, our model can be reduced to the
corresponding problem only for an insurer or a reinsurer.
On the other hand, our model can also be viewed as the
optimal investment problem for an investor who holds
shares of an insurer and a reinsurer. X](t) can be interpreted
as the total surplus of the investor, i.e., the investor owns
100 α% shares of the insurer and 100 β% shares of the re-
insurer. In reality, there are some such investors, for ex-
ample, in 2015, Central Huijin Investment Limited held
38.8% shares of New China Life Insurance Company

Limited and 85.5% shares of China Reinsurance (Group)
Company; Munich Reinsurance Group held 94.7% shares of
ERGO Insurance Company and 100% shares of Munich
Reinsurance America. In addition, from the risk manage-
ment point of view, it is a natural risk management way for
the investor to implement a risk transfer from the insurer to
the reinsurer. &erefore, our model is more general.

Combining equations (3) and (4) yields the weighted
sum process as follows:

dX
]
(t) � r0X

]
(t) + αc − (α − β)π Zi − g Zi; ](t)( ; λ( 

− (α − β)λE g Zi; ](t)(   − βλE Zi dt

+ α
����������������

λE g Zi; ](t)( ( 
2

 





+ β
��������������������

λE Zi − g Zi; ](t)( ( 
2

 



dW(t).

(6)

In this paper, for an admissible strategy ] ∈ Θ, the value
function V] from state x at time t is defined as

V
]
(t, x) � E U X

]
(T)( 

 X
]
(t) � x , (7)

where U(x) is strictly concave and continuously differen-
tiable on (− ∞,∞). &en, the optimal value function is

V(t, x) � sup
]∈Θ

V
]
(t, x), (8)

with the boundary condition V(T, x) � U(x). &e objective
is to find an optimal reinsurance strategy ]∗(t): t ∈ [0, T]{ }

such that V]∗(t, x) � V(t, x).
Denote by C1,2([0, T] × R) as

C
1,2

([0, T] × R) � ϕ(t, x) | ϕ(t, ·) is once continuously differentiable on[0, T], and ϕ(·, x)is twice continuously differentiable onR .

(9)

From equation (6), for any φ(t, x) ∈ C1,2([0, T] × R), it
is clear that the infinitesimal generator of X](t) is given
by

A
]φ(t, x) :� lim

ε↓0

Et,x φ t + ε, X](t + ε)( )  − φ(t, x)

ε

� φt(t, x) + r0x + αc − (α − β)π Zi(

− g Zi; ](t)( ; λ − (α − β)λE g Zi; ](t)(  

− βλE Zi φx(t, x) +
1
2
α

����������������

λE g Zi; ](t)( ( 
2

 





+ β
��������������������

λE Zi − g Zi; ](t)( ( 
2

 




2
φxx(t, x),

(10)

where φt, φx, and φxx denote the corresponding first-order
and second-order partial derivatives with respect to (w.r.t.)
the corresponding variables. To solve the above problem, we
use the dynamic programming approach described in
Fleming and Soner [28]. From the standard arguments, we
see that if the value function V(t, x) ∈ C1,2([0, T] × R), then
V(t, x) satisfies the following HJB equation:

sup
]∈Θ

A
]
V(t, x) � 0, (11)

with the boundary condition V(T, x) � U(x).
Using the standard methods of Fleming and Soner [28],

we have the following verification theorem.

Theorem 1. Let W(t, x) ∈ C1,2([0, T] × R) be a classical
solution to equation (11) with the boundary condition
W(T, x) � U(x). �en, V(t, x) � W(t, x). Furthermore, set
]∗ such that A]∗V(t, x) � 0 holds for all (t, x) ∈ [0, T] × R;
then, ]∗(t): t ∈ [0, T]{ } is the optimal strategy.

Mathematical Problems in Engineering 3



In this paper, we consider the exponential utility
function:

U(x) � −
1
c

e
− cx

, (12)

where c> 0 is the constant absolute risk aversion parameter.
As we know, exponential utility function plays an important
role in insurance mathematics and actuarial practice. It is the
only utility function under the principle of “zero utility”
giving a fair premium that is independent of the level of an
insurer’s reserves (see [29]).

3. Optimal Reinsurance Strategy with
Generalized Variance Premium Principle

In this paper, we consider that the premium share function
π(·; λ) is based on the generalized variance premium
principle. So, the premium rate is

π Zi − g Zi; ](t)( ; λ(  � λE Zi − g Zi; ](t)(  

+ θψ λE Zi − g Zi; ](t)( ( 
2

  ,

(13)

where θ represents the safety loading of the reinsurer and
ψ(x) is a positive increasing function. Besides, we assume
that the insurer purchases proportional reinsurance from the
reinsurer, i.e., g(x; ](t)) � ](t)x, and parameter space
Θ � [0, 1]. Denote a � λE[Zi] and b2 � λE[Z2

i ]; then,
equation (6) becomes

dX
]
(t) � r0X

]
(t) + αc − αa − (α − β)θψ (1 − ](t))

2
b
2

  dt

+[α](t)b + β(1 − ](t))b]dW(t),

(14)

and HJB equation (11) can be rewritten as

sup
]∈[0,1]

Vt + r0x + αc − (α − β)θψ (1 − ](t))
2
b
2

  − αa Vx

+
1
2
[α](t)b + β(1 − ](t))b]

2
Vxx � 0.

(15)

From a mathematical point of view, when α � β,
equation (14) reduces to

dX](t) � r0X
](t) + αc − αa dt + αbdW(t), (16)

which is irrelevant to the reinsurance strategy
](t): t ∈ [0, T]{ }. &us, any measurable function
]∗(t): [0, T]⟶ [0, 1] is an optimal reinsurance treaty.
From a practical point of view, for an investor, the role of
reinsurance is transferring the wealth between the insurer
and the reinsurer, and if the investor has the same shares on
the insurer and the reinsurer or the investor pays the same
attention to the insurer and the reinsurer, reinsurance has no
effect on the wealth of the investor. In the following section,
to derive the explicit solutions to the optimization problem,
we discuss two cases: variance and standard deviation
premium principles, respectively, only with α≠ β.

3.1. Variance Premium Principle. Under variance premium
principle, ψ(x) � x, and denote A � 2θ/c and B � Ae− r0T.
By using stochastic control theory, the optimal reinsurance
strategy ]∗(t): t ∈ [0, T]{ } for α≠ β can be obtained ana-
lytically as summarized in &eorem 2. &e expression of the
optimal reinsurance strategy ]∗(t): t ∈ [0, T]{ } is given for
different cases as outlined in Tables 1 and 2.

Theorem 2. Denote

t1 � T −
1
r0
ln

A

β
 ,

t2 � T −
1
r0
ln

A

β − α
 ,

t3 � T −
1
r0
ln

A

α + β
 ,

Kv �
α(c − a) − (α − β)θb2

r0
.

(17)

&e optimal reinsurance strategy and the corresponding
optimal value function for problem (8) with equation (12)
and α≠ β under variance premium principle are as follows.

(1) For Cases I, IV, and VI in Table 1, the optimal re-
insurance strategy is

]∗(t) � 1 −
αcer0(T− t)

(α − β)cer0(T− t) + 2θ
, 0≤ t≤T, (18)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d1(t)( )[ ], 0≤ t≤T, (19)

where

d1(t) � − Kv 1 − e
− r0(T− t)

  +
β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 

− e
r0t


T

t

(α − β)e− r0s

2
·

βcer0(T− s) − 2θ( 
2
b2

(α − β)cer0(T− s) + 2θ
⎡⎣ ⎤⎦ds.

(20)

(2) For Cases II and V in Table 1, the optimal rein-
surance strategy is

]∗(t) �

0, 0≤ t< t1,

1 −
αcer0(T− t)

(α − β)cer0(T− t) + 2θ
, t1 ≤ t≤T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

and the optimal value function is

4 Mathematical Problems in Engineering



V(t, x) �

−
1
c

e
− c er0(T− t) x− d2(t)( )[ ], 0≤ t< t1,

−
1
c

e
− c er0(T− t) x− d1(t)( )[ ], t1 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)

where

d2(t) � − Kv 1 − e
− r0(T− t)

  +
β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 

− e
r0t


T

t1

(α − β)e− r0s

2
·

βcer0(T− s) − 2θ( 
2
b2

(α − β)cer0(T− s) + 2θ
⎡⎣ ⎤⎦ds,

(23)

and d1(t) is given by equation (20).
(3) For Case III in Table 1 and Cases VII, XIII, and XVI

in Table 2, the optimal reinsurance strategy is

]∗(t) � 0, 0≤ t≤T, (24)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d3(t)( )[ ], 0≤ t≤T, (25)

where

d3(t) � − Kv 1 − e
− r0(T− t)

  +
β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 .

(26)

(4) For Cases VIII, X, XIV, and XV in Table 2, the
optimal reinsurance strategy is

]∗(t) �
1, 0≤ t< t3,

0, t3 ≤ t≤T,
 (27)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− d4(t)( )[ ], 0≤ t< t3,

−
1
c

e
− c er0(T− t) x− d3(t)( )[ ], t3 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(28)

where

d4(t) � −
α(c − a)

r0
1 − e

− r0 t3− t( )  +
α2b2c
4r0

· e
r0(T− t)− er0 T+t− 2t3( )

  − Kv e
− r0 t3− t( ) − e

− r0(T− t)
 

+
β2b2c
4r0

e
r0 T+t− 2t3( ) − e

r0(T− t)
 ,

(29)

and d3(t) is given in equation (26).
(5) For Cases IX, XI, and XII in Table 2, the optimal

reinsurance strategy is

]∗(t) � 1, 0≤ t≤T, (30)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d5(t)( )[ ], 0≤ t≤T, (31)

where

d5(t) � −
α(c − a)

r0
1 − e

− r0(T− t)
  +

β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 .

(32)

Proof. See Appendix A. □

Remark 2. We consider two special cases:

(1) If α � 1, β � 0, the optimal reinsurance problem
under variance premium principle reduces to the
case only for an insurer. &e optimal reinsurance
strategy is

]∗(t) � 1 −
cer0(T− t)

cer0(T− t) + 2θ
, 0≤ t≤T, (33)

Table 1: Different cases with β< α and variance premium principle.

Parameters Case
A≤ 1
β≤B I
B< β≤A II
A< β III
B≤ 1<A

β≤B IV
B< β V
1<B

β< α VI

Table 2: Different cases with α< β and variance premium principle.

Parameters Case
A≤ 2
β≤B − α VII
B − α< β≤min B + α, A − α{ } VIII
A − α< β≤B + α IX
B + α< β≤A − α X
max B + α, A − α{ }< β≤A + α XI
A + α< β XII
β≤B − α
B≤ 2<A XIII
B − α< β≤B + α XIV
B + α< β XV
2<B

α< β XVI

Mathematical Problems in Engineering 5



and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d6(t)( )[ ], 0≤ t≤T, (34)

where

d6(t) �
c − a − θb2

r0
e

− r0(T− t)
− 1  − e

r0t


T

t

2θ2b2

cer0T + 2θer0s
ds.

(35)

From equation (33), we find that the optimal rein-
surance strategy is similar to those in Liang and Yuen
[26], Lin and Yang [30], and Wen [31], which
considered the optimal reinsurance strategies under
variance premium principle only for an insurer.

(2) If α � 0, β � 1, the optimal reinsurance problem
under variance premium principle becomes the case
only for a reinsurer. &ere is almost no literature
considering this case. For Cases I, IV, and VI in
Table 3, the optimal reinsurance strategy is

]∗(t) � 0, 0≤ t≤T, (36)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d7(t)( )[ ], 0≤ t≤T, (37)

where

d7(t) � −
θb2

r0
1 − e

− r0(T− t)
  +

b2c

4r0
e

r0(T− t)
− e

− r0(T− t)
 .

(38)

For Cases II and V in Table 3, the optimal reinsurance
strategy is

]∗(t) �

1, 0≤ t<T −
1
r0
lnA,

0, T −
1
r0
lnA≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− d8(t)( )[ ], 0≤ t<T −

1
r0
lnA,

−
1
c

e
− c er0(T− t) x− d7(t)( )[ ], T −

1
r0
lnA≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(40)

where

d8(t) � −
θb2

r0
e

− r0(T− t)+lnA
− e

− r0(T− t)
  +

β2b2c
4r0

· e− r0(T− t)+2 lnA − er0(T− t)( ,

(41)

and d7(t) is given in equation (38).
For Case III in Table 3, the optimal reinsurance strategy

is

]∗(t) � 1, 0≤ t≤T, (42)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− d9(t)( )[ ], 0≤ t≤T, (43)

where

d9(t) �
b2c

4r0
er0(T− t)

− e− r0(T− t)
 . (44)

3.2. Standard Deviation Premium Principle. Under standard
deviation premium principle, ψ(x) �

��
x

√
, and denote C �

θ/bc and D � Ce− r0T. By stochastic control theory, the
optimal reinsurance strategy ]∗(t): t ∈ [0, T]{ } for α≠ β can
be obtained analytically as summarized in &eorem 3. &e
expression of the optimal reinsurance strategy
]∗(t): t ∈ [0, T]{ } is given for different cases as outlined in
Tables 4 and 5.

Theorem 3. Denote

t4 � T −
1
r0
ln

C

β
 ,

t5 � T −
1
r0
ln

C

α
 ,

Ks1
�
α(c − a) − (α − β)θb

r0
,

Ks2
�
α(c − a) − αθb

r0
.

(45)

For problem (8) with equation (12) and α≠ β under
standard deviation premium principle, the optimal rein-
surance strategy and the corresponding optimal value
function are as follows.

(1) For Cases I, VII, and X in Table 4 and Case XVI in
Table 5, the optimal reinsurance strategy is

]∗(t) � 1, 0≤ t≤T, (46)

Table 3: Different cases with α � 0 and β � 1 and variance pre-
mium principle.

Parameters Case
A≤ 2
1≤B I
B< 1≤A II
A< 1 III
B≤ 2<A

1≤B IV
B< 1 V
2<B VI
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and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− f1(t)( )[ ], 0≤ t≤T, (47)

where

f1(t) � −
α(c − a)

r0
1 − e

− r0(T− t)
  +

α2b2c
4r0

· er0(T− t) − e− r0(T− t)( .

(48)

(2) For Cases II and VIII in Table 4, the optimal rein-
surance strategy is

]∗(t) �

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, 0≤ t< t5,

1, t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(49)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f2(t)( )[ ], 0≤ t< t5,

−
1
c

e
− c er0(T− t) x− f1(t)( )[ ], t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(50)

where

f2(t) � − Ks2
1 − e

− r0 t5− t( )  −
θ2

2cer0(T− t)
t5 − t( 

−
α(c − a)

r0
e

− r0 t5− t( ) − e
− r0(T− t)

  +
α2b2c
4r0

· e
r0 T+t− 2t5( ) − e

− r0(T− t)
 ,

(51)

and f1(t) is given by equation (48).
(3) For Case III in Table 4 and Case XIII in Table 5, the

optimal reinsurance strategy is

]∗(t) � −
β

α − β
+

θ
(α − β)bcer0(T− t)

, 0≤ t≤T, (52)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− f3(t)( )[ ], 0≤ t≤T, (53)

where

f3(t) � − Ks2
1 − e− r0(T− t)(  −

θ2

2cer0(T− t)
(T − t).

(54)

(4) For Cases IV and IX in Table 4, the optimal rein-
surance strategy is

]∗(t) �

0, 0≤ t< t4,

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, t4 ≤ t< t5,

1, t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f4(t)( )[ ], 0≤ t< t4,

−
1
c

e
− c er0(T− t) x− f2(t)( )[ ], t4 ≤ t< t5,

−
1
c

e
− c er0(T− t) x− f1(t)( )[ ], t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

Table 4: Different cases with β< α and standard deviation pre-
mium principle.

Parameters Case
C≤ 1
α≤D I
β≤D< α≤C II
β≤D<C< α III
D< β< α≤C IV
D< β≤C< α V
C< β VI
α≤D

D≤ 1<C VII
β≤D< α VIII
D< β IX
1<D

β< α X

Table 5: Different cases with α< β and standard deviation pre-
mium principle.

Parameters Case
C≤ 1
β≤D XI
α≤D< β≤C XII
α≤D<C< β XIII
D< α< β≤C XIV
D< α≤C< β XV
C< α XVI
β≤D

D≤ 1<C XVII
α≤D< β XVIII
D< α XIX
1<D

α< β XX
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where

f4(t) � − Ks1
1 − e

− r0 t4− t( )  +
β2b2c
4r0

· e
r0 T− t4( ) − e

r0 T+t− 2t4( )  − Ks2

· e
− r0 t4− t( ) − e

− r0 t5− t( )  −
θ2

2cer0(T− t)
t5 − t4( 

−
α(c − a)

r0
e

− r0 t5− t( ) − e
− r0(T− t)

  +
α2b2c
4r0

· e
r0 T+t− 2t5( ) − e

− r0(T− t)
 ,

(57)

and f1(t), f2(t) are given in equations (48) and (51),
respectively.

(5) For Case V in Table 4, the optimal reinsurance
strategy is

]∗(t) �

0, 0≤ t< t4,

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, t4 ≤ t≤T,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(58)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f5(t)( )[ ], 0≤ t< t4,

−
1
c

e
− c er0(T− t) x− f3(t)( )[ ], t4 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(59)

where

f5(t) � − Ks1
1 − e

− r0 t4− t( )  +
β2b2c
4r0

· e
r0(T− t)

− e
r0 T+t− 2t4( )  − Ks2

· e
− r0 t4− t( ) − e

− r0(T− t)
  −

θ2

2cer0(T− t)
T − t4( ,

(60)

and f3(t) is given by equation (54).
(6) For Case VI in Table 4 and Cases XI, XVII, and XX in

Table 5, the optimal reinsurance strategy is

]∗(t) � 0, 0≤ t≤T, (61)

and the optimal value function is

V(t, x) � −
1
c

e
− c er0(T− t) x− f6(t)( )[ ], 0≤ t≤T, (62)

where

f6(t) � − Ks1
1 − e

− r0(T− t)
  +

β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 .

(63)

(7) For Cases XII and XVIII in Table 5, the optimal
reinsurance strategy is

]∗(t) �

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, 0≤ t< t4,

0, t4 ≤ t≤T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(64)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f7(t)( )[ ], 0≤ t< t4,

−
1
c

e
− c er0(T− t) x− f6(t)( )[ ], t4 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(65)

where

f7(t) � − Ks2
1 − e

− r0 t4− t( )  −
θ2

2cer0(T− t)
t4 − t(  − Ks1

· e
− r0 t4− t( ) − e

− r0(T− t)
  +

β2b2c
4r0

· e
r0 T+t− 2t4( ) − e

− r0(T− t)
 ,

(66)

and f6(t) is given in equation (63).
(8) For Cases XIV and XIX in Table 5, the optimal

reinsurance strategy is

]∗(t) �

1, 0≤ t< t5,

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, t5 ≤ t< t4,

0, t4 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f8(t)( )[ ], 0≤ t< t5,

−
1
c

e
− c er0(T− t) x− f7(t)( )[ ], t5 ≤ t< t4,

−
1
c

e
− c er0(T− t) x− f6(t)( )[ ], t4 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)
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where

f8(t) � −
α(c − a)

r0
1 − e

− r0 t5− t( )  +
α2b2c
4r0

· e
r0(T− t)

− e
r0 T+t− 2t5( )  − Ks2

· e
− r0 t5− t( ) − e

− r0 t4− t( )  −
θ2

2cer0(T− t)
t4 − t5( 

− Ks1
e

− r0 t4− t( ) − e
− r0(T− t)

  +
β2b2c
4r0

· e
r0 T+t− 2t4( ) − e

− r0(T− t)
 ,

(69)

and f6(t) and f7(t) are given by equations (63) and
(66), respectively.

(9) For Case XV in Table 5, the optimal reinsurance
strategy is

]∗(t) �

1, 0≤ t< t5,

−
β

α − β
+

θ
(α − β)bcer0(T− t)

, t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(70)

and the optimal value function is

V(t, x) �

−
1
c

e
− c er0(T− t) x− f9(t)( )[ ], 0≤ t< t5,

−
1
c

e
− c er0(T− t) x− f3(t)( )[ ], t5 ≤ t≤T,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(71)

where

f9(t) � −
α(c − a)

r0
1 − e

− r0 t5− t( )  +
α2b2c
4r0

· e
r0(T− t)

− e
r0 T+t− 2t5( )  − Ks2

e
− r0 t5− t( ) − e

− r0(T− t)
 

−
θ2

2cer0(T− t)
T − t5( ,

(72)

and f3(t) is given in equation (54).

Proof. See Appendix B. □

4. Sensitivity Analysis and
Numerical Illustration

&is section illustrates the effects of parameters on the
optimal reinsurance strategy by sensitivity analysis and

numerical examples. For the following numerical illustra-
tions, unless otherwise stated, the basic parameters are given
by r0 � 0.05, θ � 0.2, c � 0.6, and b � 2.

Firstly, we provide sensitivity analysis about the effects
of parameters on the optimal reinsurance strategy under
variance and standard deviation premium principles,
respectively. From&eorem 2, we find that for α< β, when
0≤ t< t2, ]0(t)≥ 1, then ]∗(t) � 1, and when t2 ≤ t≤T, the
left side of HJB equation (11) is a parabola opening up-
wards w.r.t. ]; then, ]∗(t) equals to 0 or 1. &erefore,
]∗(t)≠ 0, 1 only appears in the case of α> β, and we mainly
analyze this case. Under variance premium principle,
according to equation (A.5), for ]∗(t)≠ 0, 1, we can derive
partial derivatives of the optimal reinsurance strategy (see
Table 6) w.r.t. different parameters, which imply that the
optimal reinsurance strategy ]∗(t) increases w.r.t. time t

and safety loading of the reinsurer θ, but decreases w.r.t.
risk-free interest rate r0 and risk aversion coefficient of the
investor c.

Different from variance premium principle, the op-
timal reinsurance strategy under standard deviation
premium principle is dependent on b. From equation
(B.4), for ]∗(t)≠ 0, 1, we can obtain partial derivatives of
the optimal reinsurance strategy (see Table 7) w.r.t. dif-
ferent parameters, which imply that when α > β, the op-
timal reinsurance strategy ]∗(t) increases w.r.t time t and
safety loading of the reinsurer θ, but decreases w.r.t. risk-
free interest rate r0, risk aversion coefficient of the in-
vestor c, and volatility rate b, and when α< β, the effects of
parameters on the optimal reinsurance strategy are op-
posite to the cases of α> β.

From the above sensitivity analysis, we derive that the
effects of parameters t, r0, θ, and c on ]∗(t) under var-
iance premium principle are the same as those under
standard deviation premium principle for the case of
α> β. &e economic explanation for α> β has been given
in most existing studies which consider the case only with
an insurer, i.e., α � 1, β � 0 (cf. Lin and Yang [30]), and
the results for α< β are opposite to those for α> β.
&erefore, we omit numerical simulations about the
impacts of parameters t, r0, θ, and c on ]∗(t) under
variance premium principle and standard deviation
premium principle. For the effect of b on ]∗(t) under
standard deviation premium principle, since larger b

implies larger claims, when α> β, the investor holds more
shares in the insurer, and he/she will follow the insurer’s
preference to purchase more reinsurance and undertake
less risks. When α< β, the investor holds more shares in
the reinsurer, and the reinsurer’s preference is paid more
attention and the reinsurer would like to accept less
reinsurance; then, the risk retained by the insurer in-
creases w.r.t. b. Since using variance premium principle
neutralizes the effect of volatility of claim, the optimal
reinsurance strategy under variance premium principle is
independent of b.

In the following, we will discuss the influence of weight
coefficients α and β on the optimal reinsurance strategy ]∗(t)

in detail with numerical simulations. Under variance pre-
mium principle, we have
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z]∗(t)

zα
� −

2θ − βcer0(T− t) cer0(T− t)

(α − β)cer0(T− t) + 2θ 
2 ,

z]∗(t)

zβ
� −

αc2e2r0(T− t)

(α − β)cer0(T− t) + 2θ 
2,

(73)

and thus when β>Ae− r0(T− t), ]∗(t) is an increasing function
of α, and when β<Ae− r0(T− t), ]∗(t) is a decreasing function
of α. Meanwhile, ]∗(t) decreases with β all the time. For the
case under standard deviation premium principle, we derive

z]∗(t)

zα
�

βbcer0(T− t) − θ
(α − β)2bcer0(T− t)

,

z]∗(t)

zβ
� −

αbcer0(T− t) − θ
(α − β)2bcer0(T− t)

.

(74)

So, when β>Ce− r0(T− t), ]∗(t) increases w.r.t. α, and
when β<Ce− r0(T− t), ]∗(t) decreases w.r.t. α. Meanwhile,
when α>Ce− r0(T− t), β exerts a negative influence on ]∗(t),
and when α<Ce− r0(T− t), β exerts a positive impact on ]∗(t).

&e following figures also provide the relationships.
Figure 1 shows the impacts of weight coefficients α and β on
the optimal reinsurance strategy ]∗(t) under variance
premium principle. As mentioned above, ]∗(t)≠ 0, 1 exists
in the case of α> β. With α> β, the investor holds more
shares of the insurer. If β is small enough (β<Ae− r0(T− t)), a
larger α yields a smaller ]∗(t), and later, the optimal rein-
surance strategy becomes 0.Meanwhile, ]∗(t) decreases with
β. Figure 2 illustrates the effects of weight coefficients α and β
on the optimal reinsurance strategy ]∗(t) under standard
deviation premium principle. In Figure 2(a), since param-
eters in the numerical simulation satisfy β>Ce− r0(T− t) for
t ∈ [0, T], ]∗(t) (]∗(t)≠ 0, 1) increases w.r.t. α. As α in-
creases, ]∗(t) becomes 1 and 0, respectively. In Figure 2(b),
parameters satisfy α>Ce− r0(T− t) for t ∈ [0, T], and thus
]∗(t) (]∗(t)≠ 0, 1) is a decreasing function of β. With the
increase of β, ]∗(t) also becomes 0 and 1, respectively.

From the analysis under variance premium principle,
]∗(t) only takes the extremes strategy, 1 or 0 under the case
of α< β, and thus we consider the case of α> β. α> β implies
that the investor holds more shares of the insurer, and the
investor pays more attention to the insurer. If β is small
enough, β<Ae− r0(T− t), to maximize the utility of the in-
vestor, the investor is suggested to cede more risk from the

Table 6: Partial derivatives of the optimal reinsurance strategy under variance premium principle.

Derivatives z]∗(t)/zt z]∗(t)/zr0 z]∗(t)/zθ z]∗(t)/zc

α> β >0 <0 >0 <0

Table 7: Partial derivatives of the optimal reinsurance strategy under standard deviation premium principle.

Derivatives z]∗(t)/zt z]∗(t)/zr0 z]∗(t)/zθ z]∗(t)/zc z]∗(t)/zb

α> β >0 <0 >0 <0 <0
α< β <0 >0 <0 >0 >0
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Figure 1: (a) &e effect of α on ]∗(t) under variance premium
principle (β � 0.5). (b) &e effect of β on ]∗(t) under variance
premium principle (α � 0.5).
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insurer to the reinsurer as the shares of the insurer, α, in-
crease, while if β>Ae− r0(T− t), the investor is suggested to let
the insurer undertake more claim risks as α increases.
Moreover, to gain more benefits, the investor is suggested to
transfer more claim risks from insurer to reinsurer, when the
shares of reinsurer, β, increase, no matter the value of α.

From the analysis under standard deviation premium
principle, ]∗(t)≠ 0, 1 appears in both cases that the investor
holds more or less shares of the insurer, i.e., the cases of both
α> β and α< β. &e effect of α on ]∗(t) under standard
deviation premium principle is similar to that under vari-
ance premium principle. &erefore, the investor is suggested
to make a decision like the case of variance premium
principle.&emain reason is that the aim of the investor is to
maximize the utility of his/her total wealth (the weighted
sum of the insurer’s and the reinsurer’s wealth). Different
from variance premium principle, the effect of β on ]∗(t)

under standard deviation premium principle is also de-
pendent on the value of α. If the investor holds less shares of
the insurer, α<Ce− r0(T− t), the investor is suggested to let the
insurer accept more claim risks as the shares of the reinsurer,
β, increase to maximize his/her utility, while if the investor
holds more shares of the insurer, α>Ce− r0(T− t), the investor
is suggested to cede more risk from the insurer to the re-
insurer with β increasing.

5. Conclusion

In this paper, we consider the optimal reinsurance
problem with joint interests of both an insurer and a
reinsurer. &e risk process is assumed to follow a
Brownian motion with drift and the insurer transfers part
of the risk to the reinsurer via proportional reinsurance.
Meanwhile, the reinsurance premium is calculated
according to the variance and standard deviation

premium principles. &e objective is to maximize the
expected exponential utility of the weighted sum of the
insurer’s and the reinsurer’s terminal wealth, where the
weight can be viewed as shares held by the investor in the
insurer and the reinsurer or a regularization parameter to
measure the importance of each party. By applying sto-
chastic control theory, we establish the HJB equation and
obtain the explicit expressions of optimal reinsurance
strategies and optimal value functions. Furthermore, we
provide some sensitivity analyses and numerical simu-
lations to illustrate the effects of model parameters on the
optimal reinsurance strategies.

In future work, a more general premium principle will be
considered in the optimal reinsurance problem for an in-
surer and a reinsurer. Moreover, we will consider the op-
timal reinsurance problem among multiple insurers and
reinsurers, which is also an interesting extension of this
paper.

Appendix

A. Proof of Theorem 2

In the case of variance premium principle, the differential
operator A] becomes

A
]
V(t, x) :� Vt(t, x) + r0x + αc − αa − (α − β)θ

· (1 − ](t))
2
b
2
Vx(t, x) +

1
2
[α](t)b

+ β(1 − ](t))b]
2
Vxx(t, x).

(A.1)

Differentiating equation (15) w.r.t. ], from first-order
optimality condition, we have
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Figure 2: (a) &e effect of α on ]∗(t) under standard deviation premium principle (β � 0.5). (b) &e effect of β on ]∗(t) under standard
deviation premium principle (α � 0.5).
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]0 � 1 −
αVxx

(α − β)Vxx − 2θVx

. (A.2)

To proceed, we conjecture the solution in the following
form

V(t, x) � −
1
c

e
− c er0(T− t)(x− d(t))[ ], (A.3)

with the boundary condition d(T) � 0. &en,

Vt � − c − r0e
r0(T− t)

(x − d(t)) − dt(t)e
r0(T− t)

 V,

Vx � − ce
r0(T− t)

V,

Vxx � c
2
e
2r0(T− t)

V.

(A.4)

Substituting the above derivatives into equation (A.2)
implies

]0 � 1 −
αcer0(T− t)

(α − β)cer0(T− t) + 2θ
. (A.5)

When α> β, we have ((z2A]V(t, x))/z]2)< 0 and ]0 ≤ 1.
Let us denote F(]): � A]V(t, x). &erefore, F(]) is a pa-
rabola opening downwards w.r.t. ]. To proceed, define

A1 � (t, x) ∈ [0, T] × R; 0≤ ]0 ≤ 1 ,

A2 � (t, x) ∈ [0, T] × R; ]0 < 0 .
(A.6)

For (t, x) ∈ A1, the supremum of equation (15) over ] is
attained at ]0 given by equation (A.5). Substituting equation
(A.2) into equation (15) gives

Vt + r0x + αc − αa − (α − β)θb
2

 Vx +
1
2
β2b2Vxx

−
α − β
2

·
βVxx + 2θVx( 

2
b2

(α − β)Vxx − 2θVx

� 0.

(A.7)

For (t, x) ∈ A2, equation (15) reaches its maximum at
]∗ � 0. Consequently, equation (15) becomes

Vt + r0x + αc − αa − (α − β)θb
2

 Vx +
1
2
β2b2Vxx � 0.

(A.8)

When α< β, we have z2A]V(t, x)/z]2 < 0 if and only if
t< t2. At this time ]0 ≥ 1, the maximum in equation (15) is
attained at ]∗ � 1. If z2A]V(t, x)/z]2 � 0, then F(]) is an
increasing function w.r.t. ]. &us, ]∗ � 1. When t> t2, we
derive z2A]V(t, x)/z]2 > 0 and F(]) is a parabola opening
upwards. To proceed, define

A3 � (t, x) ∈ [0, T] × R; ]0 ≥
1
2

 ,

A4 � (t, x) ∈ [0, T] × R; ]0 <
1
2

 .

(A.9)

For (t, x) ∈ A3, the supremum of equation (15) over ] is
attained at ]∗ � 0. Introducing ]∗ � 0 into equation (15)
reduces to equation (A.8). Similarly, the maximum of

equation (15) on A4 is ]∗ � 1. Substituting ]∗ � 1 into
equation (15) yields

Vt + r0x + αc − αa Vx +
1
2
α2b2Vxx � 0. (A.10)

Equations (A.7)–(A.10) can be solved by the same
procedure, and we demonstrate the procedure with equation
(A.7) only. Substituting Vt, Vx,and Vxx into equation (A.7),
we derive

dt(t) − r0d(t) − αc + αa +(α − β)θb
2

+
β2b2cer0(T− t)

2

−
α − β
2

·
βcer0(T− t) − 2θ( 

2
b2

(α − β)cer0(T− t) + 2θ
� 0.

(A.11)

Considering the boundary condition, we obtain

d(t) � − Kv 1 − e
− r0(T− t)

  +
β2b2c
4r0

e
r0(T− t)

− e
− r0(T− t)

 

− e
r0t


T

t

(α − β)e− r0s

2
·

βcer0(T− s) − 2θ( 
2
b2

(α − β)cer0(T− s) + 2θ
ds.

(A.12)

Based on the above discussion, we can derive the optimal
reinsurance strategy for each case outlined in Tables 1 and 2.
According to the procedure demonstrated above for solving
equations (A.7)–(A.10), as well as the continuity of the
function V(t, x), we can obtain the corresponding optimal
value function under variance premium principle which is
summarized in &eorem 2.

B. Proof of Theorem 3

In the case of standard derivation premium principle, the
differential operator A] becomes

A
]
V(t, x) :� Vt(t, x) + r0x + αc − αa − (α − β)θ

· 1 − ](t))b( ]Vx(t, x) +
1
2
[α](t)b + β

· 1 − ](t))b]
2
Vxx(t, x).

(B.1)

&e first-order condition for the optimal reinsurance
strategy gives

]0 � −
β

α − β
−

θVx

(α − β)bVxx

, (B.2)

and according to Vxx < 0, we find z2A]V(t, x)/z]2 < 0 holds
all the time. Similar to the case of variance premium
principle, we try to find the solution with the following
structure:

V(t, x) � −
1
c

e
− c er0(T− t)(x− f(t))[ ], (B.3)

and the boundary condition is f(T) � 0. &en, ]0 becomes
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]0 � −
β

α − β
+

θ
(α − β)bcer0(T− t)

. (B.4)

To proceed, define

B1 � (t, x) ∈ [0, T] × R; ]0 > 1 ,

B2 � (t, x) ∈ [0, T] × R; 0≤ ]0 ≤ 1 ,

B3 � (t, x) ∈ [0, T] × R; ]0 < 0 .

(B.5)

For (t, x) ∈B1, the supremum of equation (15) over ] is
attained at ]∗ � 1. If (t, x) ∈B2, equation (15) reaches its
maximum at ]0 given by equation (B.2). Similarly, the
maximum of equation (15) over ] on B3 is attained at
]∗ � 0. &e procedure of computation is similar to the case
of variance premium principle. &erefore, we omit it here.

&rough the above discussion, we can derive the optimal
reinsurance strategy for each case listed in Tables 4 and 5. To
proceed, we note that the supremum in equation (15) is
attained at ]∗ � 0 for ]0 < 0 and ]∗ � 1 for ]0 > 1; moreover,
from equation (B.2), 0≤ ]0 ≤ 1 if and only if t4 ≤ t≤ t5 (for
α> β) or t5 ≤ t≤ t4 (for α< β). With the procedure as
demonstrated in the case of variance premium principle, as
well as the continuity of the function V(t, x), we can obtain
the corresponding optimal value function under standard
derivation premium principle which is summarized in
&eorem 3.
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