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)e target of current work is to propose a new approach to deal with multiattribute decision-making (MADM) problems with
interval-valued Pythagorean fuzzy set (IVPFS) based on the concepts of covering-based rough set (CRS) and TOPSIS and give its
application in MADM problems. To begin with, we integrate the fuzzy rough set (FRS), IVPFS and CRS and define the covering-
based interval-valued Pythagorean fuzzy rough set (CIVPFRS). Firstly, the relative notions of the CIVPFRSmodel are introduced.
In addition, the distance measure of interval-valued Pythagorean fuzzy numbers (IVPFNs) is defined; based on the proposed
distance, the rough and precision degrees of CIVPFRS are discussed. )irdly, on the basis of the theoretical analysis for CIVPFRS
models, an interval-valued Pythagorean fuzzy TOPSIS method is designed to deal with the MADM problems with interval-valued
Pythagorean fuzzy information (IVPFI). Last of all, the validity andmerits of the proposed approach are illustrated by an example,
and the sensitivity analysis of the parameters and the comparison with the existing related methods are carried out.β

1. Introduction

Fuzzy set theory (FS) [1] and rough set theory (RS) [2] are
both used to address some problems with uncertainty. RS
describes the target set by two definite sets, which are upper
approximation set and lower approximation set. )e de-
scription process does not need any prior knowledge, it is
completely based on the given data for analysis and judg-
ment, so RS has been employed in many fields, for instance,
data mining, artificial intelligence, decision analysis, and
many other fields. Different from RS, FS needs prior
knowledge to describe the object, such as expert experience,
which has better applicability. )ere is a strong comple-
mentarity between RS and FS. )erefore, the integration of
the two has become a new research hotspot, which has
aroused the research interest of scholars [1, 3–6].

Intuitionistic fuzzy sets (IFSs) [7] are an effective ex-
tension of FSs, which can describe the fuzziness of the

objective world from three aspects: support, opposition, and
neutrality. As an IFS can consider both the membership
degree (MD) and nonmembership degree (NMD) of ele-
ments belonging to the set at the same time, therefore, IFS is
widely concerned by decision makers and fruitful results
have been achieved. Wan and Dong [8] studied the theory
and method of decision-making based on interval-valued
intuitionistic fuzzy sets. However, IFSs have some limita-
tions in the application of MADM. For example, it can only
describe the fuzzy phenomenon that the sum of MD and
NMD is not more than one, but it cannot do anything to the
phenomenon that the sum of MD and NMD is more than
one. For this reason, Yager and Abbasov [9] put forward the
Pythagorean fuzzy set (PFS) to solve the abovementioned
limitations.)emain difference between IFS and PFS is that,
in PFS the sum of squares of MD and NMD are real numbers
between zero and one. Based on Yager’s research, many
scholars have studied the PFS and obtained some research
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results. Among them, Garg [10] developed some new op-
erational laws and their corresponding weighted geometric
aggregation operators. Garg [11] extended the traditional
Maclaurin symmetric mean operator to hesitant Pythago-
rean fuzzy environment. Liu et al. [12] constructed the
multiattribute group decision-making (MAGDM) approach
with linguistic Pythagorean fuzzy (LPF) information based
on generalized LPF aggregation operators. )en, Liu et al.
[13] investigated MADM problems with Pythagorean lin-
guistic information based on some new aggregation oper-
ators. Zhang and Xu [14] studied the TOPSIS method under
PFS environment; Akram et al. [15] extended the TOPSIS
method to solve MCGDM problems with Pythagorean fuzzy
data. Wan et al. [16] developed a three-phase method for
solving MAGDM using PFNs. Wan et al. [17] also developed
a PF mathematical programming method to solve the
MAGDM problem in the PF environment. )en, Wan et al.
[18] proposed a new order relation for PFNs and applies to
MAGDM. In order to express the more complicated un-
certainty information, Peng and Yang [19] extended the PFS
to the IVPFS and built decision approach for MADM
problems with IVPFI based on some proposed aggregation
operators. After that, some research studies on IVPFS have
emerged in succession. Such as Wei et al. [20] established
some MADM methods based on proposed interval-valued
Pythagorean fuzzy (IVPF) Maclaurin symmetric average
operator and IVPF-weighted Maclaurin symmetric average
operator. Garg [21] presented the mean and geometric
aggregation operators in interval-valued Pythagorean fuzzy
environment. Khan and Abdullah [22] introduced the
concept of IVPF Choquet integral average operator. Wang
et al. [23] proposed interval-valued hesitant Pythagorean
fuzzy sets (IVHPFSs) and investigated some properties of
IVHPSs.

Zakowski’s [24] CRS is a generalization model of the
classical RS. It is an extension of the partition of Pawlak RS to
the covering of RS. On this basis, two rough approximation
operators are constructed and many conclusions are ob-
tained. After that many scholars investigated many kinds of
RS models based on covering from different angles. In 2003,
Zhu and Wang [25] put forward the generalized rough set
model of covering and studied the reduction and axiomatic
properties of the model. )en, they put forward three dif-
ferent types of CRS models based on the known models and
described many important properties. In 2016, Safari and
Hooshmandasl [26] introduced twelve kinds of coverage
approximation operators and studied the structural prop-
erties and interrelations of these twelve types of CRS models.
Furthermore, Ma [27] replaces the classical equivalence
relation with the general binary relation (neighborhood
relation), thus generalizes the CRS. In recent years, many
scholars have extended the classical CRS to the fuzzy en-
vironment. Dubios and Prade [28] presented the rough fuzzy
set (RFS) and fuzzy rough set (FRS). Researchers have
carried out some research studies on CFRS. Ma [29] in-
troduced the generalized structure of CFRS. Deer et al.
[30, 31] presented the concept of fuzzy β-neighborhoods and
fuzzy neighborhoods. Hussain et al. [32] presented q-rung
orthopair fuzzy TOPSIS (q-ROF-TOPSIS) methodology for

the MADM problem which depends on the covering-based
q-rung orthopair fuzzy sets (Cq-ROFRSs) model. Zeng et al.
[33] proposed a method to solve MADM problem based on
covering-based spherical fuzzy rough set (CSFRS) models
and built TOPSIS method to deal with MADM problem.
Hussain et al. [34] presented the notions of rough Py-
thagorean fuzzy ideals in semigroups. Zheng et al. [4] put
forward the extended uncertainty measurement criterion of
CRIFSs and introduced an improved roughness method. By
combining PFS and FRS, Zhang and Li [5] put forth the
concept of Pythagorean fuzzy rough set (PFRS).

As can be seen from the latest hot research directions, the
CIVPFS model is an important tool for dealing with un-
certainty in the real world. )erefore, it is necessary to build
the CIVPFRS model by integrating the IVPFS and CFRS in
order to deal with some information with more complicated
uncertainty. As far as we know, there is no concept of IVPF
rough set in IVPF β-neighborhood systems. In order to fill
this research space, this paper attempts to study CIVPFRS
model through IVPF β-neighborhood systems. )is paper
proposes a new approach to deal with MADM problems
with IVPFS information based on the concepts of CRS and
TOPSIS and gives its application in MADM problem. In real
life, CIVPFRS model is a vital tool to handle complexity and
uncertainty. Based on the concept of CRS, IVPFS, and FRS,
the idea of building CIVPFRS model by IVPF β-neigh-
borhoods is studied. In addition, by adjusting the value of
0≤ (μU(x)) + (]U(x))≤ 1, it is found that CIVPFRS is an
important extension of cover-based interval-valued intui-
tionistic fuzzy rough set (CIVIFRS). By adjusting the value of
μL � μU and ]L � ]U, it is an important extension of cover-
based Pythagorean fuzzy rough set (CPFRS). By adjusting
μL � μU, ]L � ]U, and 0≤ (μU(x)) + (]U(x))≤ 1, it is an
important extension of cover-based intuitionistic fuzzy
rough set (CIFRS). )is shows that CIVPFRS model has
stronger ability to deal with uncertainty than IFS, interval-
valued intuitionistic fuzzy set (IVIFS), and PFS.

Based on the abovementioned ideas, the present paper
introduces the CIVPFRS model based on IVPF β-neigh-
borhoods and its utilizations in MADM problem.)e rest of
this paper is arranged as follows: the basic concepts of PFS
and IVPFS and their generalization are introduced in Sec-
tion 2. In Section 3, the concept of CIVPFRSmodel based on
IVPF β-neighborhoods is proposed along with the corre-
sponding axiomatic system. Apart from these, the roughness
and precision degrees of CIVPFRS model are also mainly
discussed in this section. In Section 4, based on the analysis
of CIVPFRS model, we introduce the interval-valued Py-
thagorean fuzzy TOPSIS (IVPF-TOPSIS) method to solve
the MADM problem with IVPFI. Furthermore, we also
construct a method based on CIVPFRS model to solve the
MADM problem with IVPFI and design the corresponding
algorithm. In Section 5, an example of practical application
is provided to show how IVPF-TOPSIS can deal with
MADM problems by using the concept of CIVPFRS model
based on IVPF β-neighborhoods. Moreover, the sensitivity
analysis of the parameters and the correctness analysis of the
results are carried out and the conclusion will be obtained in
Section 6.

2 Mathematical Problems in Engineering



2. Preliminaries

Basic concepts and notations of PFS and IVPFS are outlined
in this section.

Definition 1 (see [9]). Let U be a finite universe set. )e PFS
P of U is defined as follows:

P � 〈y, μP(y), ]P(y)〉 | y ∈ U , (1)

where 0≤ μP ≤ 1 and 0≤ ]P ≤ 1 denote the MD and NMD of
y ∈ U to the set P, which satisfy 0≤ μ2P(y) + ]2P(y)≤ 1 for all
y ∈ U. πP(y) �

���������������

1 − μ2P(y) − ]2P(y)



represents the degree of
indeterminacy of y to P and called the indeterminacy degree.

Definition 2 (see [19]). Let U be a finite universe set. For
every y ∈ U, μP(y) and ]P(y) are closed intervals, that is,
μP(y) � [μL(y), μU(y)] and ]P(y) � []L(y), ]U(y)]. )en,
an IVPFS IVP in U is defined as follows:

IVP � 〈y, μL(y), μU(y) , ]L(y), ]U(y) ( 〉 | y ∈ U ,

(2)

where 0≤ (μU(y))2 + (]U(y))2 ≤ 1. )en, the degree of in-
determinacy is defined as πIVP(y) � [πL(y), πU(y)] �

[
���������������
1 − μ2U(y) − ]2U(y)


,

���������������
1 − μ2L(y) − ]2L(y)


]. Denoted

IVP � IVP([μL, μU], []L, ]U]) as an IVPFN, where
[μL, μU]⊆ [0, 1] and []L, ]U]⊆ [0, 1]. In the following, we use
IVPF(U) to denote all IVPFSs on U.

)e score function and accuracy function used to
compare two IVPFNs are defined as follows:

Definition 3 (see [19]). For an IVPFN IVP � IVP([μL,

μU], []L, ]U]), the score function of IVP is defined as follows:

s(IVP) �
1
2

μ2L + μ2U − ]2L − ]2U , (3)

where −1≤ s(IVP)≤ 1. )e accuracy function of
IVP � IVP([μL, μU], []L, ]U]) can be defined as follows:

a(IVP) �
1
2

μ2L + μ2U + ]2L + ]2U , (4)

where 0≤ a(IVP)≤ 1.
For any IVPFN PA, PB of U, we can compare two

IVPFNs by the following rules:

(1) If s(PA)> s(PB), then PA is bigger than PB and is
denoted by PA ≻PB.

(2) If s(PA) � s(PB), then

(i) If a(PA)> a(PB), then PA ≻PB.
(ii) If a(PA) � a(PB), then PA ∼ PB.

3. CIVPFRS Model

In this section, we introduce the concept of CIVPFRS.

Definition 4. (1) Assume U is an universe set,
E � E1,

E2, . . . , En , where E ∈ IVPF(U) and k � 1, . . . , n.
For any IVPFN β � 〈[sL, sU], [tL, tU]〉, then E is called an
interval-valued Pythagorean fuzzy β−covering (IVPF
β−covering) of U if

∪
n

k�1
Ek (y)≥ β, (5)

for all y ∈ U. )e (U, E) is called an interval-valued Py-
thagorean fuzzy covering approximation space (IVPFCAS).

(2) Let (U, E) be an IVPFCAS and E � E1,
E2, . . . , En 

be an IVPF β− covering of U for some β � 〈[sL,

sU], [tL, tU]〉. )en,

N
β
E(y)

� ∩ Ek ∈ E Ek(y)≥ β
 , k � 1, . . . , n  (6)

is called an IVPF β−neighborhood of y in U.

Let N
β
E

� N
β
E(y)

| y ∈ U  represent IVPF β-neighbor-
hood system induced by IVPF β-covering E. )e IVPF
β-neighborhood system is represented by the IVPFmatrix as
follows:

M
β
E

� N
β
E(y)

(z) 
(y,z)∈U×U

. (7)

Example 1. Suppose that (U, E) is an IVPFCAS and E �
E1,

E2, . . . , E5  is a set of IVPFS, whereU � y1, y2, . . . , y6},
β � 〈[0.3, 0.5], [0.3, 0.4]〉. Details are shown in Table 1.

)erefore, E is an IVPF β−covering of U. )en,

N
〈[0.3,0.5],[0.3,0.4]〉

E y1( )
� E1 ∩ E4,

N
〈[0.3,0.5],[0.3,0.4]〉

E y2( )
� E1 ∩ E3,

N
〈[0.3,0.5],[0.3,0.4]〉

E y3( )
� E1 ∩ E5,

N
〈[0.3,0.5],[0.3,0.4]〉

E y4( )
� E1 ∩ E5,

N
〈[0.3,0.5],[0.3,0.4]〉

E y5( )
� E2 ∩ E3,

N
〈[0.3,0.5],[0.3,0.4]〉

E y6( )
� E2 ∩ E4.

(8)

By calculations, we have the N
〈[0.3,0.5],[0.3,0.4]〉

E
, as shown

in Table 2.)en, we get the IVPFmatrix and listed as follows.
)at is,
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M
〈[0.3,0.5],[0.3,0.4]〉

E �

〈[0.6, 0.8], [0.1, 0.3]〉 〈[0.4, 0.6], [0.4, 0.7]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.4, 0.7], [0.3, 0.6]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.4, 0.6], [0.4, 0.6]〉

〈[0.3, 0.5], [0.7, 0.8]〉 〈[0.4, 0.7], [0.2, 0.4]〉 〈[0.2, 0.6], [0.3, 0.4]〉 〈[0.1, 0.4], [0.1, 0.3]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.4, 0.6], [0.4, 0.6]〉

〈[0.3, 0.4], [0.3, 0.6]〉 〈[0.2, 0.7], [0.2, 0.3]〉 〈[0.3, 0.6], [0.3, 0.4]〉 〈[0.4, 0.8], [0.1, 0.4]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.1, 0.4], [0.4, 0.6]〉

〈[0.3, 0.4], [0.3, 0.6]〉 〈[0.2, 0.7], [0.2, 0.3]〉 〈[0.3, 0.6], [0.3, 0.4]〉 〈[0.4, 0.8], [0.1, 0.4]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.1, 0.4], [0.4, 0.6]〉

〈[0.3, 0.5], [0.7, 0.8]〉 〈[0.2, 0.4], [0.1, 0.5]〉 〈[0.2, 0.8], [0.4, 0.6]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.3, 0.7], [0.1, 0.3]〉 〈[0.3, 0.6], [0.3, 0.5]〉

〈[0.5, 0.7], [0.5, 0.6]〉 〈[0.2, 0.4], [0.4, 0.7]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.2, 0.3], [0.6, 0.9]〉 〈[0.3, 0.7], [0.2, 0.5]〉 〈[0.3, 0.7], [0.1, 0.3]〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)

Definition 5. Assume that (U, E) is an IVPFCAS and E �
E1,

E2, . . . , En  is an IVPF β-covering of U for some β �

〈[sL, sU], [tL, tU]〉 and U � y1, y2, . . . , ym . Suppose that
N
β
E � N

β
E(y)

| y ∈ U  is an IVPF β-neighborhood system,

where

N
β
E yi( )

� 〈yj, μ
LN

β

E yi( )

yj , μ
UN

β

E yi( )

yj ⎡⎣ ⎤⎦,
⎧⎨

⎩

]
LN

β

E yi( )

yj , ]
UN

β

E yi( )

yj ⎡⎣ ⎤⎦〉 | j � 1, . . . , m
⎫⎬

⎭,

(10)

for all i � 1, . . . , m.
)en, for any A ∈ IVPF(U),

A � 〈yj, μLA yj , μUA yj  ,

]LA yj , ]UA yj  〉
 j � 1, . . . , m,

(11)

and the upper and lower approximations of Awith respect to
N
β
E
, denoted by N

β
E

(A) and N
β
E

(A), are two IVPFSs; they
are defined as follows:

N
β
E(A) � 〈yi, μ

LN
β

E
(A) yi( , μ

UN
β

E
(A) yi( ⎡⎣ ⎤⎦, ]

LN
β

C
(A) yi( , ]

UN
β

C
(A) yi( ⎡⎣ ⎤⎦〉


i � 1, . . . , m

⎧⎨

⎩

⎫⎬

⎭, (12)

N
β
E (A) � 〈yi, μ

L N
β

E (A)
yi( , μ

U N
β

E (A)
yi( ⎡⎣ ⎤⎦, ]

L N
β

C (A)
yi( , ]

U N
β

C (A)
yi( ⎡⎣ ⎤⎦〉


i � 1, . . . , m

⎧⎨

⎩

⎫⎬

⎭, (13)

where

Table 1: IVPF β-covering E in Example 1.

U/E E1
E2

E3
E4

E5

y1 〈[0.6, 0.8], [0.1, 0.2]〉 〈[0.5, 0.7], [0.5, 0.6]〉 〈[0.3, 0.5], [0.7, 0.8]〉 〈[0.6, 0.9], [0.1, 0.3]〉 〈[0.3, 0.4], [0.3, 0.6]〉

y2 〈[0.4, 0.7], [0.2, 0.3]〉 〈[0.2, 0.4], [0.1, 0.5]〉 〈[0.4, 0.8], [0.1, 0.4]〉 〈[0.5, 0.6], [0.4, 0.7]〉 〈[0.2, 0.7], [0.1, 0.2]〉

y3 〈[0.3, 0.6], [0.3, 0.4]〉 〈[0.7, 0.8], [0.4, 0.6]〉 〈[0.2, 0.8], [0.2, 0.3]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.6, 0.7], [0.1, 0.2]〉

y4 〈[0.5, 0.8], [0.1, 0.3]〉 〈[0.2, 0.3], [0.6, 0.9]〉 〈[0.1, 0.4], [0.1, 0.3]〉 〈[0.4, 0.7], [0.3, 0.6]〉 〈[0.4, 0.8], [0.1, 0.4]〉

y5 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.3, 0.7], [0.1, 0.3]〉 〈[0.8, 0.9], [0.1, 0.2]〉 〈[0.6, 0.7], [0.2, 0.5]〉 〈[0.1, 0.8], [0.2, 0.3]〉

y6 〈[0.4, 0.6], [0.4, 0.6]〉 〈[0.3, 0.7], [0.1, 0.2]〉 〈[0.5, 0.6], [0.3, 0.5]〉 〈[0.7, 0.8], [0.1, 0.3]〉 〈[0.1, 0.4], [0.1, 0.2]〉

Table 2: N
〈[0.3,0.5],[0.3,0.4]〉

E
in Example 1.

N
β
E

y1 y2 y3 y4 y5 y6

y1 〈[0.6, 0.8], [0.1, 0.3]〉 〈[0.4, 0.6], [0.4, 0.7]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.4, 0.7], [0.3, 0.6]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.4, 0.6], [0.4, 0.6]〉

y2 〈[0.3, 0.5], [0.7, 0.8]〉 〈[0.4, 0.7], [0.2, 0.4]〉 〈[0.2, 0.6], [0.3, 0.4]〉 〈[0.1, 0.4], [0.1, 0.3]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.4, 0.6], [0.4, 0.6]〉

y3 〈[0.3, 0.4], [0.3, 0.6]〉 〈[0.2, 0.7], [0.2, 0.3]〉 〈[0.3, 0.6], [0.3, 0.4]〉 〈[0.4, 0.8], [0.1, 0.4]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.1, 0.4], [0.4, 0.6]〉

y4 〈[0.3, 0.4], [0.3, 0.6]〉 〈[0.2, 0.7], [0.2, 0.3]〉 〈[0.3, 0.6], [0.3, 0.4]〉 〈[0.4, 0.8], [0.1, 0.4]〉 〈[0.1, 0.2], [0.5, 0.7]〉 〈[0.1, 0.4], [0.4, 0.6]〉

y5 〈[0.3, 0.5], [0.7, 0.8]〉 〈[0.2, 0.4], [0.1, 0.5]〉 〈[0.2, 0.8], [0.4, 0.6]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.3, 0.7], [0.1, 0.3]〉 〈[0.3, 0.6], [0.3, 0.5]〉

y6 〈[0.5, 0.7], [0.5, 0.6]〉 〈[0.2, 0.4], [0.4, 0.7]〉 〈[0.1, 0.3], [0.6, 0.9]〉 〈[0.2, 0.3], [0.6, 0.9]〉 〈[0.3, 0.7], [0.2, 0.5]〉 〈[0.3, 0.7], [0.1, 0.3]〉
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⎩
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j�1 μ
LN

β

E yi( )
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UN

β

E yi( )
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⎩

⎫⎬
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(14)

)e operators N
β
E

(A) and N
β
E

(A) are called the upper
and lower interval-valued Pythagorean fuzzy rough ap-
proximation operators (IVPFRAOs) with respect to N

β
E
,

respectively.

Example 2 (continued from Example 1). Let an IVPFS

A � 〈y1, [0.5, 0.7], [0.3, 0.4]〉, 〈y2, [0.1, 0.4], [0.6, 0.7]〉,

〈y3, [0.2, 0.8], [0.4, 0.6]〉, 〈y4, [0.6, 0.8], [0.1, 0.3]〉,

〈y5, [0.3, 0.6], [0.3, 0.5]〉, 〈y6, [0.7, 0.9], [0.1, 0.2]〉.

(15)

)en,

N
β
E

(A) � 〈y1, [0.5, 0.7], [0.3, 0.4]〉, 〈y2, [0.1, 0.4], [0.4, 0.7]〉,

〈y3, [0.2, 0.8], [0.4, 0.6]〉, 〈y4, [0.6, 0.8], [0.1, 0.3]〉,

〈y5, [0.3, 0.6], [0.3, 0.5]〉, 〈y6, [0.7, 0.9], [0.1, 0.2]〉,

N
β
E
(A) � 〈y1, [0.5, 0.7], [0.3, 0.4]〉, 〈y2, [0.1, 0.4], [0.6, 0.7]〉,

〈y3, [0.2, 0.8], [0.4, 0.6]〉, 〈y4, [0.4, 0.8], [0.1, 0.3]〉,

〈y5, [0.3, 0.6], [0.3, 0.5]〉, 〈y6, [0.5, 0.7], [0.2, 0.5]〉.

(16)

Definition 6. Let P1 � 〈[μLA, μUA], []LA, ]UA]〉 and
P1 � 〈[μLA, μUA], []LA, ]UA]〉 be two IVPFNs, and the
generalized distance between P1 and P2 is defined as follows:

d P1, P2(  �
1
4

(1 − p) μ2LA − μ2LB



λ

+ μ2UA − μ2UB



λ



+ ]2LA − ]2LB



λ
+]2UA − ]2UB



λ


+ p π2
LA − π2

LB



λ

+ π2UA − π2UB



λ

 
1/λ

,

(17)

where πLA �
������������
1 − μ2UA − ]2UA


, πLB �

�����������
1 − μ2UB − ]2UB


,

πUA �
�����������
1 − μ2LA − ]2LA


, πUB �

�����������
1 − μ2LB − ]2LB


, λ> 0, and

p ∈ [0, 1].
When the parameters λ and p take different values, we

will get some different distance measures.

Case 1. When λ � 1, the distance will be reduced to
Hamming-indeterminacy degree-preference distance:

d P1, P2(  �
1
4

(1 − p) μ2LA − μ2LB


 + μ2UA − μ2UB




+ ]2LA − ]2LB


 + ]2UA − ]2UB




+ p π2
LA − π2LB


 + π2UA − π2UB


 .

(18)

In Case 1, if p � 0, the effect of the indeterminacy degree
is not considered. )e distance will be reduced to metric
distance:

d P1, P2(  �
1
4

μ2LA − μ2LB


 + μ2UA − μ2UB




+ ]2LA − ]2LB


 + ]2UA − ]2UB




. (19)

Case 2. When λ � 2, the distance will be reduced to Eu-
clidean-indeterminacy degree-preference distance:

d P1, P2(  �
1
4

(1 − p) μ2LA − μ2LB



2

+ μ2UA − μ2UB



2



+ ]2LA − ]2LB



2
+]2UA − ]2UB



2


+ p π2LA − π2
LB



2

+ π2UA − π2UB



2

 
1/2

.

(20)

In Case 2, if p � 0, the distance will be reduced to
Euclidean distance:

d P1, P2(  �
1
4

μ2LA − μ2LB



2

+ μ2UA − μ2UB



2



+ ]2LA − ]2LB



2

+ ]2UA − ]2UB



2


1/2
.

(21)

Let P1 and P2 be two IVPFNs, and it is easy to verify that
the distance d satisfied the following properties:

(1) d(P1, P2)≥ 0
(2) d(P1, P2) � d(P2, P1)

(3) d(P1, P2) � 0⟺A � B
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Definition 7. Let A and B be two IVPFSs. )e distance
D(A, B) of A and B. is defined as follows:

D(A, B) �
1

|U|

y∈U

1
4

(1 − p) μ2LA(y) − μ2LB(y)



λ



+ μ2UA(y) − μ2UB(y)



λ

+ ]2LA(y) − ]2LB(y)



λ

+ ]2UA(y) − ]2UB(y)



λ


+ p π2LA(y) − π2
LB(y)



λ

+ π2UA(y) − π2
UB(y)



λ

 
1/λ

,

(22)

where λ> 0 and p ∈ [0, 1].

Definition 8. Suppose that (U, E) is an IVPFCAS and E �
E1,

E2, . . . , En  is an IVPF β-covering of U for some

β � 〈[sL, sU], [tL, tU]〉. Suppose that N
β
E

� N
β
E(y)

| y ∈ U 

is an IVPF β-neighborhood system. For any A ∈ IVPF(U),
N
β
E

(A) and N
β
E

(A) are the lower and upper approximations

of A. )e rough degree and precision degree of A are defined
as follows:

R
N

β

E(A)
� D N

β
E

(A), N
β
E

(A) ,

P
N

β

E(A)
� 1 − R

N
β

E(A)
.

(23)

Example 3. (continued from Example 2). Let λ � 4 and
p � 0.5. According to Definitions 6 and 7, the rough degree
and precision degree of A with respect to N

β
E
can be cal-

culated as follows:

R
N

β

E(A)
� 0.1188,

P
N

β

E(A)
� 0.8812.

(24)

4. A Novel Method to Solve MADM
Problems with IVPFI

In Section 3, we established the CIVPFRS. Based on this, we will
construct a model and method for a class of MADM problems
with IVPFI in this section. In addition, we will propose a de-
cision-making algorithm to solve the MADM problems.

4.1. Decision-Making Method. We will propose the model
and method, which is used to solve the MADM problems
with IVPFI based on CIVPFRS.

4.1.1. 6e Form Descriptions of Problem of MADM Problem
with IVPFI. Assume that U � y1, y2, . . . , ym  is a set of
alternatives and E � E1, E2, . . . , En  is the set of attributes.

Let W � (w1, w2, . . . , wn)T be the weight vector of the at-
tributes, where 0≤wj ≤ 1, j � 1, 2, . . . , n, which satisfies


n
j�1 wj � 1. Let the decision maker D present the evaluation

values of the attributes yi, i � 1, . . . , m with respect to the
attribute set Ej(j � 1, . . . , n) by Ej(yi) � 〈[μL, μU],

[]L, ]U]〉ij. It means, the MD to which yi satisfies Ej is in-
terval-valued [μL, μU], and the NMD to which yi dissatisfies
Ej is interval-valued []L, ]U]. By using IVPF-TOPSIS
method, we establish IVPF-PIS IVP+ � Ej,max s(Ej

(yi))} | j � 1, . . . , n} and IVPF-NIS IVP− � Ej, min s(Ej

(yi))} | j � 1, . . . , n}, where s is the score function, which is
defined in Definition 3. After that we calculate the distances
D+ and D− between each alternative yi and IVP+ and IVP− ,
respectively, according to Definition 6. )erefore, we con-
struct a new IVPFS D � 〈[μDL, μDU], []DL, ]DU]〉 � 〈[D+,

D+], [D− , D− ]〉.
In this section, a new method is proposed to solve the

MADMproblembyusing theCIVPFRS established in Section 3.

4.1.2. Decision-Making Method and Process. Considering
the characteristics of MADM problems, we will present a
decision-making model and its algorithm steps based on
CIVPFRS.)is model consists of three parts. In the first part,
we will determine IVPF decision objectives for all alterna-
tives. In the second part, we will use the precision parameter
β(0< β≤ 1) to calculate the upper and lower approximations
of the IVPF decision-making object for all alternatives. In
the third part, on the basis of the first two steps, we use the
decision-making principle to rank all alternatives and then
give the optimal object of the MADM problem.

Next, we will introduce in detail the model and method
for solving the MADM problem based on CIVPFRS.

First, we will propose the IVPF-TOPSIS method. )is
method takes into account the following principles. )e op-
timal alternative should be the one with the shortest distance
from IVPF-PIS and the longest distance from IVPF-NIS.

IVPF-PIS and IVPF-NIS are calculated using the score
function, which is defined in Definition 3:

IVP+
� Ej, max s Ej yi(    | j � 1, . . . , n (i � 1, . . . , m)

� 〈E1, μ+
1L, μ+

1U , ]+
1L, ]+

1U 〉, . . . , 〈En, μ+
nL, μ+

nU ,

]+
nL, ]+

nU 〉,

(25)

IVP−
� Ej, min s Ej yi(    | j � 1, . . . , n (i � 1, . . . , m)

� 〈E1, μ−
1L, μ−

1U , ]−
1L, ]−

1U 〉, . . . , 〈En, μ−
nL, μ−

nU ,

]−
nL, ]−

nU 〉.

(26)

Next, according to Definition 6, we calculate D+ and D−

between each alternative yi and IVP+ and IVP− , respec-
tively, for all i � 1, 2, . . . , m, as follows:
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4
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(27)

D
−

� 
n

j�1
wj · d Ej yi(  , Ej IVP−

( )  

� 
n

j�1
wj ·

1
4

(1 − p) μ2Lij
− μ−2

jL





λ
+ μ2Uij

− μ−2
jU





λ
+ ]2Lij

− ]−2
jL





λ


+ ]2Uij
− ]−2

jU





λ
 + p π2
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jL





λ
+ π2Uij

− π−2
jU





λ
 

1/λ

.

(28)

Here, we construct a new IVPFS D � 〈[μDL, μDU],

[]DL, ]DU]〉 � 〈[D+, D+], [D− , D− ]〉. In order to fuse all
preference information in the framework of CIVPFRS, we
introduced the fuzzy logical operators [35] and then propose
another method to fuse fuzzy preference information of
MADM problems.

Triangular norms (t−norms) were first proposed in the
framework of probabilistic metric spaces [35]. In some
contexts, t−norms have been proved to be an appropriate
tool for information fusion of the upper and lower ap-
proximations of interval-valued Pythagorean fuzzy decision-
making object.

Definition 9 (see [35]). t-norm is an associative, increasing
and commutative mapping function T: [0, 1]2⟶ [0, 1],
which satisfies the boundary condition, for any
(x ∈ [0, 1],T(x, 1) � x). Moreover, the triangular conorm
(t-conorm) is an associative, increasing and commutative
mapping function S: [0, 1]2⟶ [0, 1], which satisfies the
boundary condition, for any (x ∈ [0, 1],S(x, 0) � x).

In the current work, we consider the following the
t−norms and t−conorms for MADM problems:

TP(x, y) �
xy

�����������������
1 + 1 − x2( ) 1 − y2( 

 ,

SP(x, y) �

���������
x2 + y2( 

1 + x2y2( 



.

(29)

Secondly, based on the precision parameter β, we cal-
culate the upper and lower approximations of the best and
worst interval-valued Pythagorean fuzzy decision-making
objects by Definition 5, respectively:
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β

E yi( )

yj ∧ ]L D yj 
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⎩
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⎭,
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U N
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j�1
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E yi( )

yj ∧ ]U D yj 
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⎩

⎫⎬

⎭.

(30)

)en, according to the upper and lower approximations
of the IVPF decision-making object with the consistency
consensus threshold β, we define a ranking function to solve
the MADM problem.

Definition 10. For the IVPF decision-making object,
D � 〈[D+, D+], [D− , D− ]〉 ∈ IVPF(U), and the preference
threshold is α(0< α≤ 1). )e ranking functions of the lower
and upper boundaries of MD and NMD of each alternative
yi, (i � 1, . . . , m) with respect to IVPF(U) are defined as
follows, respectively:
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δL yi(  � α · TP μ
L N

β

E (D)
yi( , ]

L N
β

E (D)
yi( ⎛⎝ ⎞⎠

+ (1 − α) · TP μ
LN

β

E

(D) yi( , ]
LN

β

E

(D) yi( ⎛⎝ ⎞⎠,

(31)

δU yi(  � α · TP μ
U N

β

E (D)
yi( , ]

U N
β

E (D)
yi( ⎛⎝ ⎞⎠

+ (1 − α) · TP μ
UN

β

E

(D) yi( , ]
UN

β

E

(D) yi( ⎛⎝ ⎞⎠.

(32)

With the definitions of ranking functions of the MADM
problem, the following conclusion is obvious, that is,

0≤ δL yi( ,

δU yi( ≤ 1,

∀yi ∈ U,

i � 1, . . . , m.

(33)

Finally, we construct the ranking function of δ(y) for all
y ∈ U:

δ yi(  �
1
2

δL yi(  + δU yi( (  (i � 1, 2, . . . , m). (34)

)erefore, we can use the ranking function δ(y) to get
the final optimal object of all y ∈ U for MADM problems.

4.2. Algorithm for theMADM. In this section, we present the
algorithm flow of solving the MADM problem based on
CIVPFRS as shown in Algorithm 1.

5. An Illustrative Example

Electronic health records (EHRs) technology is beneficial to
medical service providers because it can improve service
levels and ensure better medical quality. However, the wide
variety of open-source EHRs systems makes it difficult for
the hospital administrator to decide which system to use. In
Ref [36], six popular and active open-source EHRs systems
were selected: U � FreeMED(y1) , GNUmed (y2), GNU
Health (y3), Hospital (y4), HOSxP (y5), and OpenEMR
(y6)}.

)e set of evaluation criteria is E � Usability( E1) ,
Functionality and features ( E2), Customisation ( E3), Ease of
installation ( E4), Risk ( E5), and Staff Training( E6)} (please
refer to Ref [36] for detailed description and definition of
attribute set).

Due to the uncertainty, imprecision, and hesitancy of the
selection problem, decision maker uses IVPFNs to evaluate
various open-source EHRs systems. )e evaluation results
are shown in Table 3. )e weight information of each
evaluation criteria is as follows: w1 � 0.24, w2 � 0.20, w3 �

0.15, w4 � 0.10, w5 � 0.18, andw6 � 0.13.
Here, we will use the method based on CIVPFRS to solve

the problem of selecting open-source EHRs systems in
hospitals. )e selection problem of hospital open-source
EHRs systems is cited from [36] and makes some im-
provement under the environment of MADM.)en, we will
illustrate the principle and steps of the model and IVPF-
TOPSIS in solving the MADM problem through the
example.

We calculate IVPF-PIS IVP+ and IVPF-NIS IVP− as
follows, by using formulas (25) and (26):

IVP+
� 〈E1, [0.5, 0.8], [0.4, 0.5]〉, 〈E2, [0.8, 0.9], [0.2, 0.4]〉, 〈E3, [0.8, 0.9], [0.2, 0.3]〉,

〈E4, [0.8, 0.9], [0.4, 0.4]〉, 〈E5, [0.6, 0.9], [0.2, 0.4]〉, 〈E6, [0.7, 0.9], [0.1, 0.3]〉,

IVP−
� 〈E1, [0.2, 0.3], [0.8, 0.9]〉, 〈E2, [0.2, 0.5], [0.7, 0.8]〉, 〈E3, [0.1, 0.2], [0.5, 0.8]〉,

〈E4, [0.3, 0.4], [0.7, 0.8]〉, 〈E5, [0.1, 0.3], [0.5, 0.6]〉, 〈E6, [0.2, 0.3], [0.8, 0.9]〉.

(35)

)en, we calculate the distances μD � D+ and ]D � D− ,
according to formulas (27) and (28). Let λ � 120 and p � 0.5.
)e calculation results are shown in Table 4.

Let the threshold IVPFN be β � 〈[0.1, 0.2], [0.5, 0.8]〉};
therefore,

N
β
E y1( )

� E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6,

N
β
E y2( )

� E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6,

N
β
E y3( )

� E2 ∩ E3 ∩ E4 ∩ E5 ∩ E6,

N
β
E y4( )

� E1 ∩ E3 ∩ E5 ∩ E6,

N
β
E y5( )

� E2 ∩ E3 ∩ E4 ∩ E5,

N
β
E y6( )

� E1 ∩ E2 ∩ E3 ∩ E5 ∩ E6. (36)

By calculation, we can obtain Table 5.
We calculate the lower and upper approximations,

according to formulas (12) and (13).)e results are shown in
Table 6.
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Consider the risk preference threshold α � 0.75. )en,
according to equations (31)–(34), we calculate the ranking
functions. )e results are shown in Table 7.

Finally, based on the values of the ranking function
δ(yi)(i � 1, 2, . . . , 6), we present the optimal ranking of all
hospital open-source EHRs systems as follows:

y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1. (37)

Input IVPFCAS (U, E);
Output Ranking results of all alternatives;
Step 1. Construct IVPF-PIS IVP+ and IVPF-NIS IVP− by formulas (25) and (26);
Step 2. Calculate the distances μD � D+ and ]D � D− by using formulas (27) and (28), respectively.
Step 3. Calculating the upper and lower approximations μ

L N
β

C (D)
(yi), ]

L N
β

C (D)
(yi), μ

LN
β

C

(D)(yi), ]
LN

β

C

(D)(yi)μ
U N

β

C (D)
(yi),

]
U N

β

C (D)
(yi), μ

UN
β

C

(D)(yi), ]
UN

β

C

(D)(yi) according to formulas (12) and (13).

Step 4. Determine risk preference threshold α(0< α≤ 1) and calculate those ranking functions δL(yi) and δU(yi) by using formulas
(31) and (32).
Step 5. Calculate the ranking function δ(yi) according to formula (34).
Step 6. List the ranking results of all alternatives.

ALGORITHM 1: Algorithm for MADM with CIVPFRS.

Table 3: IVPF β-covering E.

U/E E1
E2

E3
E4

E5
E6

y1 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.5, 0.7], [0.3, 0.4]〉 〈[0.4, 0.5], [0.5, 0.8]〉 〈[0.2, 0.5], [0.5, 0.8]〉 〈[0.6, 0.9], [0.2, 0.4]〉 〈[0.7, 0.9], [0.1, 0.3]〉

y2 〈[0.6, 0.7], [0.3, 0.8]〉 〈[0.4, 0.6], [0.1, 0.5]〉 〈[0.4, 0.6], [0.3, 0.5]〉 〈[0.8, 0.9], [0.4, 0.4]〉 〈[0.1, 0.3], [0.5, 0.6]〉 〈[0.4, 0.5], [0.5, 0.5]〉

y3 〈[0.4, 0.5], [0.6, 0.7]〉 〈[0.8, 0.9], [0.2, 0.4]〉 〈[0.7, 0.9], [0.3, 0.4]〉 〈[0.5, 0.6], [0.1, 0.2]〉 〈[0.6, 0.7], [0.2, 0.3]〉 〈[0.6, 0.8], [0.2, 0.4]〉

y4 〈[0.4, 0.6], [0.1, 0.3]〉 〈[0.2, 0.5], [0.7, 0.8]〉 〈[0.1, 0.2], [0.5, 0.8]〉 〈[0.3, 0.4], [0.7, 0.8]〉 〈[0.4, 0.7], [0.1, 0.4]〉 〈[0.4, 0.7], [0.1, 0.5]〉

y5 〈[0.2, 0.3], [0.6, 0.8]〉 〈[0.6, 0.7], [0.4, 0.5]〉 〈[0.6, 0.7], [0.4, 0.5]〉 〈[0.6, 0.8], [0.3, 0.5]〉 〈[0.6, 0.8], [0.4, 0.5]〉 〈[0.2, 0.3], [0.8, 0.9]〉

y6 〈[0.5, 0.8], [0.4, 0.5]〉 〈[0.7, 0.5], [0.1, 0.5]〉 〈[0.8, 0.9], [0.2, 0.3]〉 〈[0.2, 0.5], [0.7, 0.8]〉 〈[0.7, 0.8], [0.2, 0.4]〉 〈[0.5, 0.6], [0.4, 0.5]〉

Table 5: Tabular representation of N
β
E
.

N
β
E

y1 y2 y3 y4 y5 y6

y1 〈[0.2, 0.5], [0.5, 0.8]〉 〈[0.1, 0.3], [0.5, 0.6]〉 〈[0.5, 0.6], [0.3, 0.4]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.2, 0.5], [0.7, 0.8]〉

y2 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.1, 0.3], [0.5, 0.8]〉 〈[0.4, 0.5], [0.6, 0.7]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.2, 0.5], [0.7, 0.8]〉

y3 〈[0.2, 0.5], [0.5, 0.8]〉 〈[0.1, 0.3], [0.5, 0.6]〉 〈[0.5, 0.6], [0.3, 0.4]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.2, 0.5], [0.7, 0.8]〉

y4 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.1, 0.3], [0.5, 0.8]〉 〈[0.4, 0.5], [0.6, 0.7]〉 〈[0.1, 0.2], [0.5, 0.8]〉 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.5, 0.6], [0.4, 0.5]〉

y5 〈[0.2, 0.5], [0.5, 0.8]〉 〈[0.1, 0.3], [0.5, 0.6]〉 〈[0.5, 0.6], [0.3, 0.4]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.6, 0.7], [0.4, 0.5]〉 〈[0.2, 0.5], [0.7, 0.8]〉

y6 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.1, 0.3], [0.5, 0.8]〉 〈[0.4, 0.5], [0.6, 0.7]〉 〈[0.1, 0.2], [0.7, 0.8]〉 〈[0.2, 0.3], [0.8, 0.9]〉 〈[0.5, 0.5], [0.4, 0.5]〉

Table 4: Calculation results of distance D+ and D−.

U y1 y2 y3 y4 y5 y6

D+ 0.3505 0.4631 0.2623 0.5004 0.3972 0.2570
D− 0.3745 0.4170 0.5197 0.3211 0.3544 0.5179

Table 6: )e lower and upper approximations.

U y1 y2 y3 y4 y5 y6

μ
L N

β

E (D)
(yi) 0.3 0.5 0.3 0.4 0.3 0.4

μ
U N

β

E (D)
(yi) 0.4 0.7 0.4 0.5 0.4 0.5

]
L N

β

E (D)
(yi) 0.5 0.4 0.5 0.5 0.5 0.5

]
U N

β

E (D)
(yi) 0.5197 0.5 0.5197 0.5179 0.5197 0.5

μ
LN

β

E

(D)(yi) 0.2623 0.2623 0.2623 0.2623 0.3972 0.2623

μ
UN

β

E

(D)(yi) 0.3505 0.3 0.3505 0.3 0.3972 0.3

]
LN

β

E

(D)(yi) 0.5 0.5 0.5 0.5 0.4 0.5

]
UN

β

E

(D)(yi) 0.5197 0.7 0.5197 0.5179 0.5 0.5179

Table 7: )e result of ranking functions.

U y1 y2 y3 y4 y5 y6

δL(yi) 0.1119 0.1426 0.1119 0.1426 0.1171 0.1426
δU(yi) 0.1583 0.2666 0.1583 0.1861 0.1616 0.1801
δ(yi) 0.1351 0.2046 0.1351 0.1644 0.1394 0.1614
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Hence, the best open-source EHRs system for the
hospital is GNUmed.

5.1.Discussion onParameters. In this section, we will discuss
the effect on the sorting result when each parameter changes
independently.

(1) )ere are two parameters in the distance formula for
calculating two IVPFNs; they are parameters λ> 0
and 0≤p≤ 1. First, we discuss the effect of parameter
λ changes in distance on the results under
p � 0.5 and α � 0.75 and the consistency consensus
threshold IVPFN β � 〈[0.1, 0.2], [0.5, 0.8]〉. When
parameter λ changes, the ranking order changes, as
shown in Table 8.
Although the values of ranking function will change
as λ(λ> 0) change, the ranking order of alternatives
will basically remain unchanged.

(2) )en, we discuss the influence of parameter
p(0≤p≤ 1) changes in distance on the results under
λ � 120 and α � 0.75 and the consistency consensus
threshold IVPFN β � 〈[0.1, 0.2], [0.5, 0.8]〉. When

parameter p changes, the ranking order changes, as
shown in Table 9.
Although the values of ranking function will have
very small changes as p(0≤p≤ 1) change, the
ranking order of alternatives will remain unchanged.
As can be seen from the above two points, the values
of parameter λ and parameter p will not affect the
final ranking order of alternatives, but will affect the
value of the ranking function. When the value of λ is
larger, the difference between the values of the
ranking function may become larger; that is, as the
value of parameter λ becomes larger, the value of the
same ranking function may become different.

(3) Influence of parameter α(0< α≤ 1) on the ranking
function changes on the results under
λ � 120 andp � 0.5 and the consistency consensus

Table 8: )e effect of parameter λ changes.

Parameter Ordering index of yi(i � 1, 2, . . . , 6) Ranking order

λ � 1 δ(y1) � 0.0985, δ(y2) � 0.1783, δ(y3) � 0.0985, δ(y4) � 0.1297, δ(y5) � 0.1007, δ(y6) � 0.1297 y2 ≻y4 � y6 ≻y5 ≻y3 � y1
λ � 2 δ(y1) � 0.0917, δ(y2) � 0.1673, δ(y3) � 0.0917, δ(y4) � 0.1222, δ(y5) � 0.0939, δ(y6) � 0.1222 y2 ≻y4 � y6 ≻y5 ≻y3 � y1
λ � 12 δ(y1) � 0.1161, δ(y2) � 0.1933, δ(y3) � 0.1161, δ(y4) � 0.1460, δ(y5) � 0.1206, δ(y6) � 0.1460 y2 ≻y4 � y6 ≻y5 ≻y3 � y1
λ � 120 δ(y1) � 0.1351, δ(y2) � 0.2046, δ(y3) � 0.1351, δ(y4) � 0.1644, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
λ � 1200 δ(y1) � 0.0980, δ(y2) � 0.1778, δ(y3) � 0.0980, δ(y4) � 0.1318, δ(y5) � 0.0989, δ(y6) � 0.1318 y2 ≻y4 � y6 ≻y5 ≻y3 � y1

Table 9: )e effect of parameter p changes.

Parameter Ordering index of yi(i � 1, 2, . . . , 6) Ranking order

p � 0.1 δ(y1) � 0.1356, δ(y2) � 0.2046, δ(y3) � 0.1356, δ(y4) � 0.1648, δ(y5) � 0.1398, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
p � 0.3 δ(y1) � 0.1354, δ(y2) � 0.2046, δ(y3) � 0.1354, δ(y4) � 0.1647, δ(y5) � 0.1397, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
p � 0.5 δ(y1) � 0.1351, δ(y2) � 0.2046, δ(y3) � 0.1351, δ(y4) � 0.1644, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
p � 0.7 δ(y1) � 0.1346, δ(y2) � 0.2046, δ(y3) � 0.1346, δ(y4) � 0.1639, δ(y5) � 0.1389, δ(y6) � 0.1613 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
p � 0.9 δ(y1) � 0.1336, δ(y2) � 0.2046, δ(y3) � 0.1336, δ(y4) � 0.1630, δ(y5) � 0.1380, δ(y6) � 0.1611 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1

Table 10: )e effect of parameter α changes.

Parameter Ordering index of yi(i � 1, 2, . . . , 6) Ranking order

α � 0.1 δ(y1) � 0.1233, δ(y2) � 0.1461, δ(y3) � 0.1233, δ(y4) � 0.1177, δ(y5) � 0.1386, δ(y6) � 0.1173 y2 ≻y5 ≻y3 � y1 ≻y4 ≻y6
α � 0.3 δ(y1) � 0.1269, δ(y2) � 0.1641, δ(y3) � 0.1269, δ(y4) � 0.1321, δ(y5) � 0.1389, δ(y6) � 0.1309 y2 ≻y5 ≻y4 ≻y6 ≻y3 � y1
α � 0.5 δ(y1) � 0.1305, δ(y2) � 0.1821, δ(y3) � 0.1305, δ(y4) � 0.1464, δ(y5) � 0.1391, δ(y6) � 0.1444 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
α � 0.7 δ(y1) � 0.1342, δ(y2) � 0.2001, δ(y3) � 0.1342, δ(y4) � 0.1608, δ(y5) � 0.1393, δ(y6) � 0.1580 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
α � 0.9 δ(y1) � 0.1378, δ(y2) � 0.2182, δ(y3) � 0.1378, δ(y4) � 0.1752, δ(y5) � 0.1395, δ(y6) � 0.1715 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1

Table 11: )e effect of parameter β changes.

Parameter Ordering index of yi(i � 1, 2, . . . , 6) Ranking order

β � 〈[0.1, 0.2], [0.5, 0.8]〉 δ(y1) � 0.1351, δ(y2) � 0.2046, δ(y3) � 0.1351, δ(y4) � 0.1644, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
β � 〈[0.2, 0.3], [0.5, 0.8]〉 δ(y1) � 0.1351, δ(y2) � 0.2242, δ(y3) � 0.1351, δ(y4) � 0.1739, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
β � 〈[0.3, 0.4], [0.5, 0.8]〉 δ(y1) � 0.1414, δ(y2) � 0.2242, δ(y3) � 0.1351, δ(y4) � 0.1739, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y1 ≻y3
β � 〈[0.5, 0.5], [0.1, 0.8]〉 δ(y1) � 0.1234, δ(y2) � 0.1083, δ(y3) � 0.1118, δ(y4) � 0.1083, δ(y5) � 0.1083, δ(y6) � 0.1339 y6 ≻y1 ≻y3 ≻y4 � y5 � y2
β � 〈[0.5, 0.5], [0.5, 0.5]〉 δ(y1) � 0.1328, δ(y2) � 0.1118, δ(y3) � 0.1351, δ(y4) � 0.1083, δ(y5) � 0.1394, δ(y6) � 0.1614 y6 ≻y5 ≻y3 ≻y1 ≻y2 ≻y4
β � 〈[0.1, 0.2], [0.5, 0.5]〉 δ(y1) � 0.1328, δ(y2) � 0.1473, δ(y3) � 0.1351, δ(y4) � 0.1739, δ(y5) � 0.1394, δ(y6) � 0.1614 y4 ≻y6 ≻y2 ≻y5 ≻y3 ≻y1
β � 〈[0.1, 0.2], [0.3, 0.4]〉 δ(y1) � 0.1328, δ(y2) � 0.1083, δ(y3) � 0.1351, δ(y4) � 0.1685, δ(y5) � 0.1083, δ(y6) � 0.1346 y4 ≻y3 ≻y6 ≻y1 ≻y2 � y5
β � 〈[0.1, 0.2], [0.3, 0.5]〉 δ(y1) � 0.1328, δ(y2) � 0.1383, δ(y3) � 0.1351, δ(y4) � 0.1739, δ(y5) � 0.1118, δ(y6) � 0.1346 y4 ≻y2 ≻y3 ≻y6 ≻y1 ≻y5

Table 12: Ranking orders from different methods.

Method Ranking order
IVPFA-MULTIMOORA y2 ≻y3 ≻y6 ≻y5 ≻y4 ≻y1
)e method of this paper y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
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threshold IVPFN β � 〈[0.1, 0.2], [0.5, 0.8]〉. When
parameter α changes, the ranking order changes, as
shown in Table 10.
Although the values of ranking function will have
very small changes as α(0< α≤ 1) change, the
ranking order of alternatives will basically remain
unchanged.

(4) Influence of the consistency consensus threshold
IVPFN β � 〈[sL, sU], [tL, tU]〉 on the IVPF
β-neighborhood system changes on the results under
λ � 120, p � 0.5, and α � 0.75. When parameter β
changes, the ranking order changes, as shown in
Table 11.

From Table 11, we can get that the values of ranking
function will great influence as the consistency consensus
threshold IVPFN β � 〈[sL, sU], [tL, tU]〉 change.

)e value of β must meet the definition of IVPF
β-covering. When the value of β is different, the IVPF
β-neighborhood of each alternative will be different. It will
directly affect the calculation results of the upper and lower
approximations of IVPF decision-making objects, thus af-
fecting the final decision result.

5.2. Comparisons andAnalyses. In this section, the proposed
method will be analyzed and compared with other existing
method.

Firstly, with respect to the MADM, Liang et al. [36]
proposed a method called IVPFA-MULTIMOORA. We
apply IVPFA-MULTIMOORA to solve the EHRs systems
selection problem and compare the result with our proposed
method. When the β � 〈[0.1, 0.2], [0.5, 0.8]〉, λ � 120,

p � 0.5, α � 0.75, and w � 0.24, 0.20, 0.15, 0.10, 0.18, 0.13{ }.
)e ranking results of the alternatives using twomethods are
shown in Table 12.

As can be seen from Table 12, the method proposed in
this paper can choose the same best alternative as IVPFA-
MULTIMOORA. )is shows that the method proposed in
this paper can solve MADM problems reasonably and
effectively.

Secondly, according to the abovementioned analysis, the
method proposed in this paper is obviously superior to IFSs
and PFSs. )e advantages of the proposed method with the
existing literatures are given below:

(a) If μL � μU and ]L � ]U, the CIVPFRS model is re-
duced to the CPFRS model proposed in Reference
[32]

(b) If 0≤ (μU(x)) + (]U(x))≤ 1, the CIVPFRS model is
reduced to the CIVIFRS model

(c) If μL � μU, ]L � ]U, and 0≤ (μU(x)) + (]U(x))≤ 1,
then the CIVPFRS model is reduced to the CIFRS
model presented in Reference [6]

From the abovementioned conclusion, CIFRS, CPFRS,
and CIVIFRS models are special cases of CIVPFRS.

Now, by considering the above illustrative example in
Section 5, the comparative study of the proposed method
and the existing literature is given in Table 13.

)erefore, the method presented in this paper is more
suitable because it provides more space to the decision
maker in decision-making problems.

6. Conclusions

)e CIVPFS model is an important tool for dealing with
uncertainty in the real world. In this paper, the concept of
CIVPFS via Pythagorean fuzzy β-neighborhood has been
proposed by combining CRSs, IVPFS, and FRSs. )e rough
degree and precision degree of CIVPFRS are mainly dis-
cussed. From the analysis of Section 3, we observe that
CIVPFS is an important generalization of CIFRS. )en, we
put forward an IVPF-TOPSIS methodologies to solve
MADM problems. )e CIVPFRS enriches the theory of
CPFRS and granular computing and provides a new per-
spective for MADM problems with uncertainty. )e fol-
lowing are the main contributions of this article:

(1) )rough IVPF β-covering and IVPF β-neighbor-
hood, we construct the CIVPFS model.

(2) We apply the CIVPFRS model to the MADM
problem with IVPF information evaluation. )e
CIVPFRS model provides a new perspective for
MADMwith uncertain IVPF information evaluation
and enriches the theory of granular computing.

(3) )e decision process and new algorithm are given.
(4) )rough comparative analysis, we can get that the

MADM problem using IVPF information evaluation
based on the CIVPFRS model is more effective than
the fuzzy information evaluation based on the CIFRS
model.

In the next research studies, we mainly focus on the
following topics:

(1) Discussion on other application methods in infor-
mation systems

Table 13: )e comparative analysis of the proposed method with the existing literature.

Methods Score values Ranking order
CIFRS [6] Failed to handle ×

CPFRS [32] Failed to handle ×

CIVIFRS Failed to handle ×

CIVPFRS δ(y1) � 0.1351, δ(y2) � 0.2046, δ(y3) � 0.1351,

δ(y4) � 0.1644, δ(y5) � 0.1394, δ(y6) � 0.1614 y2 ≻y4 ≻y6 ≻y5 ≻y3 � y1
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(2) )e study of knowledge reductions of the CIVPFRS
model

(3) )e application of CIVPFRS in big data processing
and analysis
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