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Cost estimating based on a building cost index plays an important role in project planning and cost management by providing
accurate cost information. However, an effective method to predict the building cost index of New Zealand is lacking. )is study
proposes a transfer functionmethod to improve the forecasting accuracy of the building cost index. In this study, the New Zealand
house price index is included in the transfer function models as an explanatory variable to produce cost forecasts. )e proposed
method is used to estimate the building cost index of residential buildings including one-story houses, two-story houses, and town
houses in New Zealand. To demonstrate the effectiveness of the proposedmethod, this study compares the cost forecasts generated
from the transfer function models and the autoregressive integrated moving average (ARIMA) models. )e results indicate that
the proposed transfer function method can achieve better outcomes than ARIMA models by considering the time-lag causality
between building costs and New Zealand house prices. )e proposed method can be used by industry professionals as a practical
tool to predict project costs and help the professionals to better capture the inherent relationships between cost and house prices.

1. Introduction

In today’s highly competitive market, companies are seeking
effective methods to accurately predict project costs, since an
accurate cost estimate is important to the commercial
success of a project [1]. Project cost estimates are needed by
clients, consultants, and contractors for purposes such as
project feasibility studies, financial evaluation of alternatives,
and the formulation of initial budgets and tender prices [2].
Accurate forecasting of a building project’s cost is crucial to
adequately managing resources [3]. Moreover, inaccurate
cost estimates constitute one of the main reasons for project
cost overruns [4]. )e construction cost index has been
widely used in the construction industry for generating cost
estimates [5]. )e cost index provides information regarding
cost changes in the industry, which are caused by changes in
the prices of materials, labour, and equipment. )e con-
struction cost index can reflect fluctuations in construction
costs [6]. In fact, accurate prediction of the cost index plays

an important role in preparing cost estimates [7, 8].
Moreover, understanding cost index trends, and the asso-
ciated factors that influence these trends, allows industry
professionals to properly perform the tasks of cost planning
and management. Due to the importance of the cost index,
exploring effective tools for forecasting changes in the cost
index has prompted a large body of scholarly research.

Building costs in New Zealand increased considerably
during the period 2002–2012 [9]. )e fluctuations of cost
index usually result in inaccurate estimations. As accuracy
plays an important role in preparing budgets and bids in
most building projects, industry professionals and organi-
zations have long shown interest in finding an effective tool
to accurately predict the building cost index. However,
traditional approaches are often regarded as not effective
[10]. )e objective of this study is to provide a reliable
forecasting tool for predicting the construction cost index.
)is study proposes a transfer function method to forecast
the building cost index of New Zealand. )e transfer
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function method incorporates the cost-influencing variables
into the model to quantify their effect on the movement of
the cost index.

Time-series analysis is a classic and powerful approach
used in predicting the future of stochastic processes. )e
transfer function model is another method of time-series
forecasting, incorporating more variables (including more
predicting information) into the model for producing more
accurate forecasts. ARIMA can only include the cost variable
and its past values into the model, which ignores the fact that
the variables can be influenced by other factors [11, 12]. )is
is one of the main reasons why transfer function models can
have comparative advantages over ARIMA models. )is
study takes into account the influence of house prices in a
transfer function model for building cost forecasting. )e
proposed method was applied to forecast the cost index of
residential buildings in New Zealand including one-story
houses, two-story houses, and town houses. )e ARIMA
model was also used in forecasting to demonstrate the ef-
fectiveness of the proposed transfer function model.

)e rest of this study is organized as follows: Section 2
discusses previously related works. Section 3 illustrates the
proposed transfer function method and ARIMA model.
Section 4 presents the application of the proposed method
and ARIMA model to the cost series and the effectiveness
assessment of the proposed transfer function method. )e
results are discussed in Section 5. Section 6 presents the
conclusions of this study.

2. Literature Review

2.1.'e ForecastingMethods. In the last few decades, several
methods for deriving forecasting models of the construction
cost index have been proposed. )e most common used
techniques include time-series analysis methods [13], causal
methods [7, 14], artificial neutral network algorithms [2, 15],
and case-based reasoning [16, 17]. Time-series analysis
methods, including exponential smoothing, autoregressive
and moving average, autoregressive integrated moving av-
erage (ARIMA), and seasonal ARIMA, have been widely
used in the forecasting of time series [18, 19]. Time-series
analysis methods forecast future values based on past values
and corresponding errors. Causal methods are based on the
view that cause decides the effect and that future values can
be predicted that are dependent on explanatory variables.
Causal methods include Granger causality, multiple re-
gression analysis, and cointegration [20]. Additionally, new
prediction methods have been recently proposed, including
artificial intelligent models [15], grey system [21], fuzzy sets,
and evidence theory [22, 23].

)e time-series analysis method has been used to predict
changes in the construction cost index. )is method ana-
lyzes index patterns from the past and then extrapolates
these patterns into predictions of future trends [24]. Studies
focusing on forecasting of the construction cost index were
previously conducted. In study [5], univariate time-series
models, such as Holt–Winter exponential smoothing
method, simple moving average, ARMA, and ARIMA, were
used to predict the construction cost index. Moreover,

according to study [25], the ARIMAmodel is the best model
for one-step-ahead predictions of the construction cost
index (CCI), while Holt–Winter ES is suitable for making
multiple-step-ahead predictions of the cost index.

In addition to the time-series analysis method, causal
methods have been used to forecast the construction cost
index. )e principle of regression methods is that variation
in the cost index is tightly related to other variables [12].
Hence, future values of the cost index can be obtained based
on information provided by the predictive variables. Study
[26] adopted an integrated regression model for predicting
the construction tender price index. Study [8] employed a
cointegrated vector autoregression model for predicting the
construction cost index. Similarly, study [27] presented a
regression model that incorporates economic and financial
variables for forecasting movements of tender price in Hong
Kong. Study [12] used a dynamic regression model that
includes several economic indicators to predict cost fluc-
tuation. )e results demonstrated the effectiveness of the
regression method as compared to other methods. In fact,
the regression method builds relationships between the cost
index and the variables that influence it. Hence, this method
can evaluate causes of cost variations. Consequently, to
develop effective risk strategies, industry professionals can
evaluate the effects of the factors that influence project cost.
In study [28], the vector error correction model (VECM)
that incorporated the producer price index (PPI) was used to
forecast the construction cost index. )e results indicated
that the VECM can provide accurate cost index forecasts.
Additionally, study [12] employed a dynamic regression
model to predict the cost index. Study [29] developed re-
gression models for company-level cost flow forecasting.
Study [30] presented a regression model for predicting costs
of public building projects.

In study [31], three different methods were used to
predict the cost index, which included exponential
smoothing, multiple regressions, and artificial neutral net-
works (ANNs). )e results indicated that the ANN method
generated the least accurate forecasts. Study [32] concluded
that the ANN model has the potential of predicting long-
term forecasts. Recent studies have been performed in which
two forecasting techniques were combined into one model.
For example, study [33] used a forecast combination model
that adaptively identifies the best forecast and optimizes
various combinations of commonly used project cost
forecasting models to improve the accuracy of project cost
forecasts. Taking interests and benefits into account, accu-
rate predictions and simple implementations are always
required [13].

2.2. 'e Cost-Influencing Factor: House Price. Changes in
some variables are usually influenced by changes in other
variables; the latter variables are called leading indicators
[34]. Leading indicators have been successfully used in
forecasting. For example, in [35], the study used financial
and economic indicators in forecasting US recessions. )e
application of leading indicators is based on the view that
repetitive sequences occur in the business cycle. )e cycles
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include booms and busts in various activities, but these
booms and busts do not happen at exactly the same time for
all economic activities; some activities are leading and some
lagging. Although a leading indicators model is usually
referred to as “a method without a theory,” existing literature
and empirical evidence give clues as to the selection of
appropriate indicators.

In [36, 37], the studies pointed out that housing supply
usually exhibits a lag. )erefore, house prices should
influence future housing supply, since developers’ deci-
sions about whether to increase the housing supply fre-
quently depend on present house prices. Based on the
findings of [38], house prices affect changes in building
construction costs through the effect of the derived de-
mand for housing. Moreover, in [39], the study also
provided evidence that building construction costs are
sensitive to housing prices.

2.3. Gaps in the Literature. A construction cost index is
usually used in cost estimates. To improve the accuracy of
the cost estimates, several forecasting methods have been
proposed to predict the construction cost index. Many
studies have been conducted focusing on the forecasting of
the cost index. )e current study proposes the transfer
function model to improve the forecasting accuracy of the
building cost index of New Zealand. )e method has never
been used to forecast the cost index. Moreover, house price
has been included into the transfer function model to im-
prove the accuracy of cost forecasting. )is study is the first
that incorporates the time-lag causality between house price
and building cost variables into the model in order to im-
prove the forecasting accuracy.

When a time series is examined, questions usually arise
about the relationship and impact of other series on it over
time. If the relationship or impact is important, a dynamic
model incorporating the relationship or impact is neces-
sary. A transfer function model was introduced to relate the
endogenous response series to the exogenous series. )e
transfer function model combines the advantages of uni-
variate time-series analysis and causal methods, which
considers the data-series pattern and incorporates ex-
ploratory variables into the model. Unlike the black box
method such as artificial neutral networks (ANNs) and the
method that is difficult to decide the model parameters like
the vector error correction model (VECM), the transfer
function method has mathematical function and cross-
correlation function can be used to decide the model pa-
rameters. Examples of transfer function applications
abound in business, economics, and engineering. In
business, it is used widely in modelling sales and adver-
tising [40]. In economics, the transfer function was used for
predicting business cycles. It has also modelled the effect of
personal disposal income on real nondurable consumption
in the UK [41]. According to [42], statistical and engi-
neering process controls are associated with modelling the
transfer functions between inputs and outputs. )e transfer
function method can be used as an effective tool for
forecasting in many complicated situations.

3. Methodology

3.1. Data. )e building cost index of residential buildings in
New Zealand, including one-story houses, two-story houses,
and town houses, was obtained from the QV cost builder.
)e building cost index (BCI) is defined as the average cost
per square metre of the building. )e BCI includes raw
material costs, labour costs, and equipment costs. )e
building cost index of New Zealand, including residential
buildings, commercial buildings, industrial buildings, and
educational buildings, is published quarterly in New Zealand
by the QV cost builder. )e New Zealand house price index
was employed in this study and obtained from the Reserve
Bank of New Zealand. Changes in house prices can be
measured in many ways. )e house price index produced by
the Reserve Bank of New Zealand has become a favoured
benchmark in recent years. )e 72 observations used were
quarterly observations starting with the first quarter of 2001,
through until the last quarter of 2018. )e training sample is
from 2001:Q1 to 2014:Q4 (totally 56 observations), while the
validation sample is from 2015:Q1 to 2018:Q4. )e four data
series including the building cost index of the one-story
house (HBC1), two-story house (HBC2), and town house
(HBC3) and the house price index of New Zealand (AHP)
are plotted in Figure 1. It is evident from the graph that the
four data series are autocorrelated and highly unlikely
stationary.

3.2. Seasonal ARIMAModel. )e seasonal ARIMA model in
its seasonal form is usually given as in equation (1), denoted
as ARIMA(p,d,q)(P,D,Q)s. p, d, and q refer to the autore-
gressive order, differencing order, and moving average term
of the nonseasonal part of the model, respectively, while P,
D, and Q have the same role for the seasonal part of the
model, and s indicates the number of seasons.

φp(B)∅P(B)(1 − B)
d 1 − B

s
( 

D
zt � θq(B)ϑQ(B)at, (1)

where

φp(B) � 1 − φ1B − φ2B
2

− · · · − φpB
p
,

θq(B) � 1 − θ1B − θ2B
2

− · · · − θqB
q
,

∅P(B) � 1 − ∅1B
s

− ∅2B
2s

− · · · − ∅PB
Ps

,

ϑQ(B) � 1 − ϑ1B
s

− ϑ2B
2s

− · · · − ϑQB
Qs

,

Bzt � zt− 1,

B
s
zt � zt− s,

(2)

and φ1,φ2, . . . ,φp are the parameters of the nonseasonal
autoregressive terms of the model; θ1, θ2, . . . , θq are the
parameters of the nonseasonal moving average terms of the
model; ∅1, ∅2, . . . , ∅P are the parameters of the seasonal
autoregressive terms of the model; ϑ1, ϑ2, . . . , ϑQ are the
parameters of the seasonal moving average terms of the
model; B is the backshift operator; d and D indicate regular
and seasonal differencing, respectively; at is a white noise
process; and zt is the data series.
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Autocorrelation function (ACF) and partial autocorre-
lation function (PACF) are usually used to identify an
ARIMA model, providing systematic guidance about the
underlying correlated behaviour of the series. In fact, the
procedure follows five steps: (i) stationarity examination, (ii)
model identification, (iii) parameter estimation, (iv) model
verification, and (v) forecasting.

3.3. Transfer Function Method. )e transfer function
method combines time-series analysis and causal method
[43]. It can obtain output variables based on input variables
at different time periods [44]. )e model development
process is based on study [45].

)e general transfer function is shown as

zt � μ +
Cω(B)

δ(B)
B

b
z

(x)
t + at, (3)

where

ω(B) � 1 − w1B − w2B
2

− · · · − wsB
s
,

δ(B) � 1 − δ1B − δ2B
2

− · · · − δrB
r
,

(4)

and zt represents the stationary Yt values, z
(x)
t represents the

stationary Xt values, μ is a constant term, C is a scale pa-
rameter, b is the order of delay that is the time delay between
changes in Xt and the impact on Yt, s is the order of re-
gression, and r represents the order of decay.

3.3.1. Stationary Transformation. If the time series is sto-
chastic, the variables are usually centered or differenced to
attain a condition of stationarity. In general, it is necessary to
apply differencing to either the input series z

(x)
t or the output

series zt or both, in order to achieve stationarity [45].
Moreover, the input series z

(x)
t or the output series zt does

not need to be differenced in the same way. )e ACFs of the
data series are shown in Figure 2, which indicate they are
nonstationary variables. )erefore, they need to be differ-
enced to be a stationary variable for further modelling.

3.3.2. Prewhitening Time Series z
(x)
t and zt. It is recognised

that autocorrelation in the input series may contaminate the
cross-correlation between the input and output series [46].
Autocorrelation is a major reason for spurious relationships.
For example, two unrelated time series that are internally
autocorrelated, sometimes by chance, can produce signifi-
cant cross-correlations. )us, a prewhitening filter is sug-
gested to neutralize this autocorrelation [47]. )is filter can
transform the input series into white noise. It is formulated
from the ARIMA models. )e first step in the prewhitening
process is to select an ARIMAmodel describing the z

(x)
t series.

)e ARIMA model to describe z
(x)
t is expressed as

φp(B)∅P B
L

 z
(x)
t � θq(B)ϑQ B

L
 αt. (5)

So

αt �
φp(B)∅P BL( z

(x)
t

θq(B)ϑQ BL( )
. (6)

)is inverse filter developed from Xt is then applied to
the Yt series substituting zt for z

(x)
t in the above equation.

)en, βt is obtained as

βt �
φp(B)∅P BL( zt

θq(B)ϑQ BL( )
. (7)

3.3.3. Determining Model Orders. )e order of b, r, and s
determines the structure of the transfer function. )e
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Figure 1: Time-series plots.
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cross-correlation function between αt and βt can be used
to tentatively determine the model orders b, s, and r. )e
cross-correlation subjected to the identical transformation
remains the same. After both Xt and Yt series are pre-
whitened, direct estimation of the orders is made possible
from the examination of the cross-correlation function (CCF)
[45].)e shape of the cross-correlation between the two series
explores the orders (b, r, and s) of the transfer function. )e
cross-correlation function at lag k can be described as

rk αt, βt(  �


n− k
t�b αt − α(  βt+k − β 


n
t�b αt − α( 

2
 

1/2


n
t�b βt+k − β 

2
 

1/2, (8)

where α is the mean of αt values and β is the mean of βt

values.
To interpret the cross-correlation function (CCF), it is

supposed that there are no spikes at negative lags. If there
were, this indicates that zt has an effect on z

(x)
t . In that case,
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Figure 2: (a) ACF of HBC1; (b) ACF of HBC2; (c) ACF of HBC3; (d) ACF of AHP.
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the transfer function cannot be used. )ere can be no
feedback from Yt to Xt. In other words, Xt in the transfer
function model must be exogenous. One of the assumptions
of the transfer function is that the relationship proceeds
from Xt to Yt. A spike at negative lags can possibly occur,
indicating a feedback, simultaneity, or a reverse effect. An
apparent spike at negative lags may result from the failure to
prewhiten that fails to trim out contaminating autocorre-
lation within the input series or may be due to the reverse
effect or feedback in the relationship. No such spikes exist;
the next step is to identify the lag at which the first spike
occurs in the cross-correlation plot.)is lag is b, the number
of periods before Xt begins to influence Yt.

Furthermore, the practice has suggested that, after the
first spike, a clear dying-down pattern (exponential or si-
nusoidal) may exist in the CCF. )e value of s is the number
of lags that lie between the first spike and the beginning of
the dying-down pattern. Sometimes, s is not obvious due to
the beginning of the dying-down pattern being questionable.
In some cases, the value of s is somewhat arbitrarily de-
termined. In addition, the value of r is determined by ex-
amining the dying-down pattern after lag b+ s. Specifically,
if the sample cross-correlation is dying down in an oscil-
latory or compound exponential fashion, it is reasonable to
assign r� 2. If it is dying down in a damped exponential
fashion, it is reasonable to set r� 1. )e value of r is zero if
there is no decay. Fine tuning the identification process may
require some trial and error with a view toward examining
the parameters for significance and minimising the errors.

3.3.4. Estimation and Diagnosis Checking. After determin-
ing the values of b, r, and s, the model parameters can be
estimated by least squares. To minimize sums of squared
residuals, the iterations continue until they do not improve
significantly.)e next step is to evaluate the model adequacy
by examining the model residuals. )e residuals can be
examined by their ACF and PACF as well as the Ljung–Box
Q test. )e autocorrelation function and partial autocor-
relation function of the residuals are employed. If no spikes
exist in either residual autocorrelation function (RACF) or
residual partial autocorrelation function (RPACF), it is
reasonable to conclude that the residuals are independent
which meets the model assumption [45]. Otherwise, if there
are spikes in either RACF or RPACF, this indicates that
residuals are dependent. New parameters should be incor-
porated into the model to account for those spikes.

A comparative evaluation of alternative models is nec-
essary by examining the residuals or their error measures
such as sums of squared residuals, mean absolute errors, and
mean absolute percentage errors. )e comparison also in-
cludes the evaluation of the forecasts produced by those
models. )e MAPE is usually employed for investigating the
forecasts against the validation sample.

4. Data Analysis

)e development process of ARIMA models and transfer
function models for the building cost index and the

forecasting performance of the models are discussed in this
section. To compare the forecasting performance of pro-
posed ARIMA models and transfer function models, the
MAPE is introduced. It can be expressed as

MAPE �


n
i�1 yi − y( /yi




n
× 100%, (9)

where yi is the actual observed value, y is the forecasting
value, and n is the number of forecasting values.

4.1. SeasonalARIMAModel. )e observations that are s time
intervals apart are similar if the seasonal period is s [48]. In
this study, s� 4 quarters. )us, for example, the observed
value in the second quarter of one year will be alike to, or
correlated with, that in the second quarter of the following
year. However, it should be noted that the value in the
second quarter is also correlated with that in the immedi-
ately preceding quarter, the first quarter.)erefore, there are
two relationships going on simultaneously: (i) between
observations for successive quarters within the same year
and (ii) between observations for the same quarter in suc-
cessive years. It is necessary to develop two time-series
models—one for modelling the correlation between suc-
cessive quarters within the years and one for describing the
relationship between same quarters in successive years—and
then combine the two. )e model development process for
seasonal models is similar to that used for regular time-series
models. First, the difference operations can also be used to
make time-series data stationary. For seasonal data, both
regular difference and seasonal difference (∇szt � zt − zt− s)
can be used.

4.1.1. ARIMA Model for Building Cost Index of One-Story
House in New Zealand (HBC1). For the building cost data
for the one-story house in New Zealand, denoted as HBC1,
with quarterly seasonality, a regular first difference and a
seasonal difference were applied: ∇∇4zt � ∇(zt − zt− 4) �

zt − zt− 1 − zt− 4 + zt− 5. Finally, when the data were differ-
enced twice the autocorrelation function (ACF), it indicates
that the data are stationary as the spikes fade out at both
seasonal and nonseasonal lags, as shown in Figure 3(a).
Having transformed the data to stationary, it is ready to
identify the model. )e patterns of the ACF and PACF
shown in Figures 3(a) and 3(b) provide guidance to identify
the stationary seasonal model. From Figure 3(a) showing the
ACF for the stationary time series HBC1, it can be seen that
there is a significant negative spike at lag 4, after which the
seasonal autocorrelation pattern cuts off. It indicates that a
moving average model is applied to the four-quarter sea-
sonal pattern. Moreover, it can also be seen that there is a
significant autocorrelation at lag 1 and lag 3, after which the
ACF cuts off. )is indicates the first-order and third-order
moving average terms in the regular time-series model.

ARIMA(0,1,3)(0,1,1)4 was obtained to model the time-
series data HBC1. Moreover, the Ljung–Box chi-square
statistics indicate that, for all lags, there is no significant
autocorrelation remaining in the residuals, as shown in
Figure 4(a). )e residual tests confirm that the model

6 Mathematical Problems in Engineering



1.0

0.5

0.0

–0.5

–1.0

A
CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(a)

1.0

0.5

0.0

–0.5

–1.0

Pa
rt

ia
l A

CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(b)

1.0

0.5

0.0

–0.5

–1.0

A
CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(c)

1.0

0.5

0.0

–0.5

–1.0

Pa
rt

ia
l A

CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(d)

1.0

0.5

0.0

–0.5

–1.0

A
CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(e)

1.0

0.5

0.0

–0.5

–1.0

Pa
rt

ia
l A

CF

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Lag number

Coefficient
Upper confidence limit
Lower confidence limit

(f )

Figure 3: Continued.
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provides a fairly effective description of the dynamics in
HBC1 data.

4.1.2. ARIMA Model for Building Cost Index of Two-Story
House in New Zealand (HBC2). )e building cost of a two-
storey house in New Zealand is denoted as HBC2. Based on
the ACF and PACF shown in Figures 3(c) and 3(d), the
estimated seasonal ARIMA model for forecasting building
cost of a two-storey house in New Zealand is found to be
ARIMA(0,1,0)(0,0,2)4. )e residuals shown in Figure 4(b)
indicate that the model is adequate. )e forecast error for
two-year-ahead forecasts measured by the MAPE and RMSE
is illustrated in Table 1. )e values of the MAPE and RMSE
are 2.177 and 61.76, respectively.

4.1.3. ARIMA Model for Building Cost Index of Town House
in New Zealand (HBC3). )e building cost of a town house
in New Zealand is denoted as HBC3. Seasonal ARIMA
models are fitted to stationary building cost series of a town
house, and the cost series require a regular difference and a
seasonal difference to achieve stationarity. According to
Figures 3(e) and 3(f ), the seasonal ARIMA model is
ARIMA(0,1,0)(1,0,0)4. )e final ARIMA model estimated
and selected for forecasting future building cost of a town
house in New Zealand is ARIMA(0,1,0)(1,0,0)4.)emodel is
adequate and consistent with the underlying theory as the
residuals shown in Figure 4(c).

4.2. Transfer Function Model. )e transfer function models
will be developed below. In all cases, only the first 56

observations were used, which indicates the data set up to
2014:Q4 were used to specify the models. Based on the
approach in [45], the transfer function model can be
identified. After some initial analysis, the New Zealand
house price series (AHP) was used as the input variable. )e
ACF and PACF of AHP are shown in Figures 3(g) and 3(h).
Using the proposed identification method, the ARIMA
model for New Zealand house price (AHP) can be expressed
as

(1 − 0.827B) Xt − Xt− 1(  � at. (10)

)e model residuals were checked for independence.
)ere is no significant autocorrelation at the 5% level. )e
results of the transfer function models for the residential
building costs in New Zealand are shown in Table 2.

4.2.1. Transfer Function Model for Building Cost Index of
One-Story House in New Zealand. Building cost index of a
one-storey house in New Zealand, denoted as HBC1, could
be influenced by the New Zealand house prices. Building
costs and house prices are positively correlated so that an
increase in house prices leads to an increase in the building
costs, and vice versa. )us, finding a mathematical rela-
tionship between these two variables in the transfer function
form can be particularly valuable. )e preliminary identi-
fication of series with the ACF and PACF to test for sta-
tionarity and seasonality was performed. With the
observation of slow damping of the ACF correlogram, the
regular first differencing and seasonal differencing of order
four were required to bring about stationarity. After regular
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Figure 4: (a) ACF of the noise residuals of the ARIMAmodel for HBC1; (b) ACF of the noise residuals of the ARIMAmodel for HBC2; (c)
ACF of the noise residuals of the ARIMA model for HBC3.
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and seasonal differencing of the HBC1 series, the series is
stationary.

As shown in Figure 5(a), the first spike which is placed
out of its acceptance region is at lag zero, after which the
CCF damping down is in an oscillation pattern. )us, b is
zero, s is zero, and r� 2 (oscillation pattern) )e model
parameters were estimated, and then C � 0.414, δ1 �

− 0.959, and δ2 � − 0.894. )en, the model can be expressed
as

z
HBC1
t �

C

1 − δ1B − δ2B2( 
z

(AHP)
t + at

�
0.414

1 + 0.959B + 0.894B2( )
z

(AHP)
t + at.

(11)

)e model residuals should be examined to meet the
assumption of error independence. According to
Figures 6(a) and 6(b), it can be inferred that the residuals are
not a white noise process; therefore, to redevelop the model
is necessary. After examining the pattern of RACF and
RPACF, a moving average term and a seasonal moving
average term should be included in the model. )e moving
average parameters are θ1 � 0.298 and ϑ1 � 0.251, respec-
tively. )erefore, the model can be expressed as

z
HBC1
t �

C

1 − δ1B − δ2B2( 
z

(AHP)
t + 1 − θ1B(  1 − ϑ1B

4
 εt

�
0.414

1 + 0.959B + 0.894B2( )
z

(AHP)
t

+(1 − 0.298B) 1 − 0.251B
4

 εt.

(12)

In order to access the model expressed in the above
equation, the autocorrelation function of themodel residuals
was considered.)e residuals shown in Figure 7 suggest that
the residuals satisfy the condition of a white noise process.
Moreover, the results of the Ljung–Box test also indicate the
absence of the autocorrelation in the residuals. )erefore,
the model in equation (12) is adequate.

4.2.2. Transfer Function Model for Building Cost Index of
Two-Story House in New Zealand. Building cost of a two-
storey house in New Zealand is denoted as HBC2. )e ACF
and PACF were used to test stationarity and seasonality of
the data series. With the observation of slow damping of the
ACF correlogram, the regular first differencing was required

Table 1: Univariate ARIMA models for cost series.

Cost series Model Parameters Estimate t-Statistics
Ljung–Box

Statistics df p value

HBC1

ARIMA(0,1,3)(0,1,1)4 θ1 0.335 2.379 24.77 14 0.375
θ3 − 0.297 − 2.022
ϑ1 0.447 3.177

R2 � 0.96, RMSE� 35.60, MAPE� 1.644, MAE� 24.95, BIC� 7.453

HBC2 ARIMA(0,1,0)(0,0,2)4 ϑ2 − 0.394 − 2.848 6.035 16 0.988
R2 � 0.943, RMSE� 61.76, MAPE� 2.177, MAE� 37.41, BIC� 8.392

HBC3 ARIMA(0,1,0)(1,0,0)4 ∅1 0.594 5.483 8.168 17 0.963
R2 � 0.969, RMSE� 45.75, MAPE� 1.576, MAE� 28.92, BIC� 7.719

Table 2: Transfer function parameters in the different cost series.

Cost series
Model order

TF model parameters Estimate t-Statistics p value
b s r

HBC1

0 0 2 C 0.414 2.189 0.034
δ1 − 0.959 − 9.110 0
δ2 − 0.894 − 8.434 0
θ1 0.298 2.007 0.051
ϑ1 0.311 2.630 0.211

R2 � 0.960, RMSE� 35.83, MAPE� 1.690, MAE� 25.63, BIC� 7.543

HBC2

3 1 1 C − 1.341 − 2.969 0.005
ω1 1.257 3.596 0.001
δ1 0.429 2.103 0.041

R2 � 0.932, RMSE� 59.55, MAPE� 2.476, MAE� 43.56, BIC� 8.405

HBC3

3 0 2 C 1.088 3.327 0.002
δ1 − 0.790 − 4.529 0
δ2 − 0.645 − 3.698 0.001

R2 � 0.952, RMSE� 47.62, MAPE� 1.850, MAE� 34.73, BIC� 7.961
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to bring about stationarity. After the first regular differ-
encing of HBC2 series, the series is stationary.

First, this ARIMA model was used to filter the building
cost for a two-storey house. )en, the cross-correlation
between these two prewhitened series was computed, as
shown in Figure 5(b). )e first significant spike appears at
lag 3.)e orders of the transfer function b� 3, s� 1, and r� 1
can be identified. )e ordinary least-square method was

used to estimate the model parameters.)e transfer function
is shown as

z
HBC2
t �

− 1.341(1 + 1.257B)

1 − 0.429B
B
3
z

(AHP)
t + at. (13)

)e model residuals should be examined to meet the
assumption of error independence. According to
Figures 6(c) and 6(d), it can be inferred that the residuals are
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Figure 5: (a) CCF of AHP and HBC1; (b) CCF of AHP and HBC2; (c) CCF of AHP and HBC3.
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Figure 6: (a) ACF of the noise residuals of the transfer function model for HBC1; (b) PACF of the noise residuals of the transfer function
model for HBC1; (c) ACF of the noise residuals of the transfer function model for HBC2; (d) PACF of the noise residuals of the transfer
function model for HBC2; (e) ACF of the noise residuals of the transfer function model for HBC3; (f ) PACF of the noise residuals of the
transfer function model for HBC3.
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a white noise process. )e residuals shown in Figures 6(c)
and 6(d) suggest that the residuals are white noise. More-
over, the results of the Ljung–Box test also indicate the
absence of the autocorrelation in the residuals. )erefore,
the model in equation (13) is adequate.

4.2.3. Transfer Function Model for Building Cost Index of
Town House in New Zealand. Building cost of a town house
in New Zealand is denoted as HBC3.With the observation of
slow damping of the ACF correlogram, the regular first
differencing and seasonal differencing of order four were
required to bring about stationarity. After regular and
seasonal differencing of the HBC3 series, the series is sta-
tionary as shown from the ACF. In the identification of the
transfer function model, it is necessary to apply the same
prewhitening transformation to both the input and output
series.)us, the ARIMAmodel for house price (AHP) is also
applied to the building cost series of a town house. However,
before the prewhitening progress, the cost series has been
transformed to stationary by a regular difference and a
seasonal difference.

Figure 5(c) shows the first significant spike is at lag 0 on
the cross-correlation function, indicating no delay time. )e
orders of the transfer function b� 3, s� 0, and r� 2 can be
identified. )e ordinary least-square method was used to
estimate the model parameters. )e transfer function is
shown as

z
HBC3
t �

C

1 − δ1B − δ2B2( 
B
3
z

(AHP)
t + at

�
0.089

1 − 1.614B + 0.849B2( )
B
3
z

(AHP)
t + at.

(14)

)e residuals were checked for autocorrelation and the
chi-square values for all the lags were found to be not
significant at the 5% level, as shown in Figures 6(e) and 6(f ).
)is suggests that the model residuals do not have problems
with autocorrelation and, indeed, white noise.

4.3. Forecast Evaluation. )e above proposed models were
evaluated for their out-of-sample forecasting performance.
)e models were developed using data from 2001:Q1 to
2014:Q4, and then forecasts were made for the following 16
quarters (2015:Q1–2018:Q4). )e model comparison was
carried out in a meaningful and systematic way. )e MAPE
values for the transfer function models and seasonal ARIMA
models for the period 2015:Q1–2018:Q4 are presented in
Table 3. )e results clearly indicate that the transfer function
method outperforms the seasonal ARIMA models for all
building cost series considered. )e improvement of fore-
casting accuracy from the adoption of the transfer function
model is best illustrated by observing the error measure-
ments. For the building cost index of a one-story house
(HBC1) in New Zealand, there is a reduction of about 39.1%
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Figure 7: (a) ACF of the noise residuals of the remodel for HBC1; (b) PACF of the noise residuals of the remodel for HBC1.
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Figure 8: Continued.

Table 3: Comparison of model performance (MAPE).

Cost series ARIMA TF
HBC1 2.091 1.273
HBC2 2.935 1.365
HBC3 5.766 1.161
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in the MAPE from the seasonal ARIMA model to the
transfer function model. For the building cost index of a
two-story house in New Zealand (HBC2), the reduction
from using the transfer function model is even more pro-
nounced: there is a 53.5% reduction in the MAPE from the
ARIMA model to the transfer function model. For the
building cost index of a town house in New Zealand (HBC3),
the transfer function model provides a 79.9% MAPE re-
duction over the seasonal ARIMA model. Note that the
transfer function models are, for all three cost series, su-
perior to the seasonal ARIMA models. )e building cost
index of HBC1, HBC2, and HBC3 and their forecasts
generated from ARIMA and transfer function models are
shown in Figure 8.

5. Results and Discussion

)e fluctuations in the building cost index are problematic
for cost estimation.)eARIMAmodels completely take into
account the dynamic process of cost series, the seasonality,
and the serial correlation in the residuals to obtain precise
cost forecasts. Although the model can dynamically describe
the time-series data, it cannot investigate the causality be-
tween independent variables and dependent variables. Based
on the current state of knowledge and the existing literature,
building costs are influenced not only by the construction
industry but also by other factors, such as house prices,
economic conditions, population, incomes, and business
loans.)e inclusion of explanatory variables into the models
can forecast building cost more accurately.)eNew Zealand
house price index was selected as an explanatory variable for
predicating building cost in this study.

)e analysis results suggest that the simplest model is not
always the most appropriate one for predicting, particularly

when additional information is available. Univariate models
like ARIMA can be used as a benchmark in comparing
forecasting performance. When explanatory variables are
available, they can be included in the model to improve
forecasting accuracy. Multivariate models can then be
realised to improve forecasting performance. )e transfer
function model can describe more about the characteristics
of the output than a univariate model by describing the
dynamic relationship between the input and output vari-
ables. Inclusion of New Zealand house prices in the transfer
function models significantly improves forecasting accuracy.
)is is consistent with the findings of [49], which indicated
that model inclusion of an exogenous variable can improve
the forecasting performance. Housing is one kind of
building construction product that connects the building
construction sector to the housing sector. So, the building
costs are subject to changes in house prices. New Zealand
house prices stimulate the changes in building costs, al-
though building costs are usually viewed as fundamentals.
)e findings are also supported by the studies of [38, 50].

6. Conclusion

)is study proposed the transfer functionmethod to forecast
the building cost index of New Zealand to improve the
accuracy of the cost estimates that help in developing ac-
curate budgets and preventing under- or overestimation. An
ARIMAmodel was also used as a benchmark method. Based
on the Box–Jenkins model development process, transfer
function models and seasonal ARIMA models for building
cost indices of one-storey houses, two-storey houses, and
town houses in New Zealand were developed. )e effec-
tiveness of the transfer function models was compared with
that of the univariate ARIMA models. )e results indicated
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Figure 8: (a) Building cost index of HBC1 and its forecasts generated from ARIMA and transfer function models; (b) building cost index of
HBC2 and its forecasts generated from ARIMA and transfer function models; (c) building cost index of HBC3 and its forecasts generated
from ARIMA and transfer function models.
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that the predictive accuracy of the transfer function model is
superior to that of the ARIMA model, since the transfer
function model achieved lower MAPE and RMSE.

)e transfer functionmodel was developed from a fusion
of time-series analysis, regression analysis, and cross-cor-
relation analysis. Cross-correlation analysis was used to
explore the potential optimal parameters. Time-series
analysis was used to identify the cost index patterns. Re-
gression analysis was utilized to identify the underlying
mapping between influencing factors and the cost index.)e
transfer function models that contain an exogenous variable
(more information) are better at forecasting than the simpler
ARIMA models. )e causality between building cost and
house prices was modelled in the transfer function method.
)e inclusion of house prices in the model significantly
reduces the forecasting error of the transfer functionmodels,
relative to seasonal ARIMA models. )is study has shown
that the inclusion of an explanatory variable input within the
framework leads to an improvement in forecasting
performance.

)is study makes important contributions to three areas.
)e main contribution of this study is to enhance cost es-
timation accuracy and guide industry practitioners in the
preliminary design stage. )e proposed transfer function
model can be a useful tool for industry professionals to
generate cost estimates that can help in pricing, bidding, and
assessing construction projects. Second, the inclusion of
New Zealand house prices in the transfer function model
significantly improves the cost forecasting performance. )e
findings indicate that the inclusion of cost-influencing
factors into the model can significantly improve the fore-
casting accuracy of the building cost index of New Zealand.
)e findings contribute to the present body of knowledge on
cost estimation and may serve as a valuable guide for future
model development. )ird, the results of this study prove
that New Zealand house price is a significant influencing
factor of residential building cost. )e results also demon-
strate that variations in house prices can result in fluctua-
tions in residential building costs. )e results may help
industry professionals understand the underlying relation-
ship between the construction industry and housing market
of New Zealand.

)e developed models are based on the building cost
index of New Zealand. However, the model development
process can be used in other regions. )e accuracy of long-
term forecasting of the cost index using the transfer function
model may be impaired due to uncertainty in the dynamic
environment. Hence, the use of intelligent methods for long-
term prediction of the cost index is a future research
direction.
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