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Multioriented text detection and recognition in natural scene images are still challenges in the document analysis and computer
vision communities. In particular, character segmentation plays an important role in the complete end-to-end recognition system
performance. In this work, a robust multioriented text detection and segmentation method based on a biological visual system
model is proposed. -e proposed method exploits the local energy model instead of a common approach based on variations of
local image pixel intensities. Features such as lines and edges are obtained by searching for the maximum local energy utilizing the
scale-space monogenic signal framework.-e candidate text components are extracted frommaximally stable extremal regions of
the local phase information of the image. -e candidate regions are filtered by their phase congruency and classified as text and
nontext components by the AdaBoost classifier. Finally, misclassified characters are restored, and all final characters are grouped
into words. Experimental results show that the proposed text detection and segmentationmethod is invariant to scale and rotation
changes and robust to perspective distortions, blurring, low resolution, and illumination variations (low contrast, high brightness,
shadows, and nonuniform illumination). Besides, the proposed method achieves often a better performance compared with state-
of-the-art methods on typical natural scene datasets.

1. Introduction

Nowadays, imagery has become an indispensable source
of human communication and interaction. Millions of
images are shared every day, and new content-based
image applications have been developed. In particular,
digital images with textual content provide useful infor-
mation for tasks related to document classification,
multimedia retrieval, language translator, text to voice
converter, robotic navigation, and augmented reality, to
name a few [1, 2]. -e analysis of this textual information
involves basically three stages: text detection, character
segmentation, and word recognition. -e fundamental
goal of text detection is to determine whether there is text
in a given image, while character segmentation considers
the extraction and localization of characters from back-
ground pixels. Word recognition considers character

grouping and error correction in order to recognize the
final words.

Since text localization, character segmentation, and word
recognition stages are not necessarily applied in a specific
order, the character segmentation as the first stage could
provide a better performance for the following processes.
However, text localization and character segmentation are still
challenges in the document analysis and computer vision
communities (http://rrc.cvc.uab.es/?com=introduction). Nat-
ural text scenes contain different types of fonts, symbols,
colors, scales, and character orientations, which make text
detection a complicated task. Moreover, natural scenes are
commonly captured under uncontrolled conditions
(illumination changes, partial occlusion, low resolution,
sensor noise, blur, and alignment) and could contain
complex backgrounds (people, buildings, fences, bricks,
grass, trees, and cars) [1–3].
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In the last decades, several techniques have been ex-
plored to solve the text detection and segmentation problem.
-ese methods can be broadly divided into four categories:
sliding window-based, connected component-based, deep
learning-based, and hybrid methods [1]. Sliding window-
based methods, also called texture-based methods, consider
a sliding window across all over the images under different
scales to identify text regions. Fourier-statistical features
(FSF) [4], discrete cosine transform (DCT) [5], spatial filters
[6], and wavelet coefficients [7] are commonly used as
textural properties. Nevertheless, sliding window methods
are sensitive to scale and rotation variations, besides they are
computationally expensive. Connected component-based
methods consider connected component properties such as
color, stroke width, aspect ratio, and size to distinguish
between character and noncharacter regions. Usually,
connected components are obtained by color clustering
[8, 9], image binarization [10, 11], edge detection [12], stroke
width transform (SWT) computation [13], and maximally
stable extremal region (MSER) extraction [14, 15].

In the last years, the MSER and SWT techniques have
become the most used techniques for text detection process
due to their invariance to scale and rotation transformations.
Besides, not only the MSER but also all extremal regions
(ERs) are used for text segmentation [16–20]. However, ER-
based methods need to process multiple repeated regions to
obtain correct character segmentation, generating classifi-
cation errors and a high computational cost. Furthermore,
SWT-based techniques are dependent on the accurate edge
detector, which is not feasible in many cases.

Recently, deep learning-based techniques have become
popular for pattern recognition. In particular, for the
multioriented text detection task, different neural networks
(NNs) and configurations have been proposed [21–24].
However, NNs need to be pretrained using thousands of
images in order to achieve a good performance, and in many
cases, a final fine-tune is realized with the training images of
the dataset to be evaluated. Moreover, it has been shown that
this kind of approach can be easily fooled bymodifying some
values of the image pixels [25].

Lastly, hybrid methods combine the sliding window
techniques, connected components, and neural network-
based methods [26–30]. Until now, most of the proposed
methods related to natural scene text detection are based on
the pixel intensity values. As a consequence, method per-
formance is affected by the presence of nonuniform illu-
mination, low contrast, blur, or noise degradations. In
contrast, we propose a robust multioriented text detection
and segmentation method based on the biological visual
system model. Psychophysical evidence suggests that the
human visual system decomposes the visual information
into border and line components by using phase informa-
tion. Furthermore, it is known that different groups of cells
in V1 extract particular image features as frequency, ori-
entation, and phase [31].

In this work, a new multioriented text detection and
segmentation method based on the biological energy model
is suggested. -is paper is an extended version of the
conference papers [32, 33]. Unlike the previous works, we

utilize the phase-based MSER approach and the AdaBoost
classifier instead of applying only heuristic rules for the
character filtering, retrieval, and grouping stages.

-e main contribution of this work is as follows. First,
the proposed character segmentation method is based on a
biologically inspired model rather than being based on local
intensities.-us, the proposed text segmentation is robust to
variations of the image pixel values (nonuniform illumi-
nation, low contrast, and shadows), and it is invariant to
slight scale and rotation changes. Second, the phase con-
gruency approach for character filtering and noise control is
utilized, which significantly reduces the number of gener-
ated components, keeps a low number of regions, and
preserves the most relevant regions. -ird, AdaBoost clas-
sifiers are used rather than heuristic rules at character fil-
tering, retrieval, and grouping stages. Finally, the
computational complexity of the proposed system at the
training stage is much lower compared with that of deep
learning techniques, while the performance of the system
with a small training set is competitive and, in some cases,
better than that of the state-of-the-art algorithms.

-e paper is organized as follows. In Section 2, a brief
description of the related works is presented. In Section 3,
the proposed text detection and segmentation method is
described. In Section 4, experimental results are presented
and discussed. Section 5 summarizes our conclusions.

2. Related Work

Until now, there are two representative connected com-
ponent-based techniques used for text segmentation, that is,
the SWT [13] and the MSER [14].

-e local operator SWT computes the character stroke
width for each edge map pixel. -erefore, strokes that have
constant width values can be considered as characters, and
those components which have similar stroke width values
can be grouped into words. Since the original SWT is in-
variant to rotation and scale variations, several SWT-based
methods have been developed. In [34, 35], a SWT-based
method is proposed for multioriented text detection. -e
Canny edge detector is used to calculate the SWTmap from
the image. -e image pixels are associated considering the
SWT ratio and grouped into connected components. -e
obtained components are classified into character and
noncharacter elements using a two-layer filtering scheme. A
set of heuristic rules are considered, and a trained random
forest (RF) classifier is applied. Finally, the character can-
didates are aggregated into text chains satisfying a certain set
of rules. In [36], an extended version of the SWT, called
stroke feature transform (SFT), is proposed. In addition to
stroke width constrains, the SFT considers color uniformity
and local relationships of edge pixels during ray tracking.
-en, two text covariance descriptors are defined for
component-level and text-line RF classifier training. In [37],
an efficient stroke width value computation is proposed.-e
obtained stroke width value is used together with a per-
ceptual diverge cue and an edge histogram of oriented
gradient (HOG) descriptor to measure the properties of
characters under a Bayesian framework.
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On the contrary, the MSER method basically extracts
image regions that remain stable under a certain number of
thresholds, which are considered as potential character
candidates. -e MSER technique was first introduced by
Matas and Zimmermann [15] for character detection and
was recently extended for text detection and recognition
[18]. In [16], an MSER-based text segmentation method is
proposed. -e character candidates are extracted using the
MSER algorithm. -e candidates are grouped using ori-
entation, morphology, and protection clustering via
adaptive hierarchical clustering. -en, the text candidates
are classified into text and nontext components. In [17], a
subpath division from the ER tree is done. Multiple sub-
paths are created according to the size and position sim-
ilarities or ER regions. -en, an AdaBoost classifier is
trained using mean local binary patterns (MLBP) for text
and nontext classifications. Finally, heuristic rules are used
for misclassified character filtering. In [20], the character
candidates are extracted from low-variation ERs and
classified using a support vector machine (SVM) and
geometrical features. -e obtained characters are grouped
into text lines using heuristic rules, and a final restoration
stage is considered if adjacent regions satisfy a set of
predefined conditions. In [19], a similar ER-based method
is proposed, but instead, geometrical features, the HOG,
and local binary pattern (LBP) features are selected for
character classification and recognition. -en, characters
are grouped into text lines, and a CNN model is used to
verify text lines, removing noncharacter components. In
[28], a multichannel and multiresolution (MC-MR)
strategy is proposed. -e text candidates are extracted
using MSER technique under RGB and YUV color spaces
under different resolutions. -en, candidates are filtered by
a coarse-fine strategy and classified as text and no-text
components by a NN classifier.

3. Proposed Text Detection and
Segmentation Method

In this section, the methodology for the proposed text de-
tection and segmentation method is described. Connected
components are obtained from the local image phase in-
formation. In order to extract the local phase-based image
features, the scale-space monogenic signal framework
[38, 39] is utilized. Basically, connected component regions
are extracted from the local phase image using the MSER
approach. -en, the obtained connected components are
filtered considering geometrical properties, and the
remaining components are considered as character candi-
dates. Using an AdaBoost classifier, the character candidates
are predicted as a character or noncharacter component.
Finally, a second AdaBoost classifier is applied to restore
misclassified characters. Figure 1 shows a block diagram of
the proposed method.

3.1. Image Preprocessing. Morrone and Owens [40, 41]
proposed a local energy model. -is model argues that the
biological visual system can locate features of interest by
searching for maximum local energy and identifying the
feature type (shadow, edge, or line) by evaluating the ar-
gument at that point. -at is, edges, lines, and shadows, can
be obtained at points where the Fourier components of the
signal are maximum in the phase distribution, called phase
congruency. Continuing with this approach, in [42], a di-
mensionless measure of phase congruency (PC(x)) is
proposed as follows:

PC(x) � max
�φϵ[0,2π]

􏽐nW(x)⌊An(x) cos φn(x) − φ(x)( 􏼁􏼂 􏼃 − T⌋
􏽐nAn(x) + ε

,

(1)

where W(x) is a weight for the frequency spread; ε is a small
constant to avoid division by zero; and T is a noise threshold
parameter. PC(x) goes from 0 to 1. -e PC(x) value in-
dicates the significance of the current feature: unity means
the most significant feature, and zero indicates the lowest
significance. We refer to papers [42, 43] for more details.

In practice, local frequency information is obtained via
banks of oriented 2D filters, which are computationally
expensive. Instead, we used the scale-space monogenic
signal framework to compute the local phase information of
the image.

Let be f(x, y) an image and F(u, v) � F f(x, y)􏼈 􏼉 be its
Fourier transform. -e scale-space monogenic signal (FM)
representation is defined as [38]

FM(u, v) � Fbp(u, v) + iR · Fbp(u, v), (2)

where R � (Rx, Ry) is the transfer function of the first-order
Riesz transform in the frequency domain:

Rx(u, v) � i
u

������
u2 + v2

√ � F
x

2π x2 + y2( 􏼁
3/2
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⎩
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Ry(u, v) � i
v

������
u2 + v2

√ � F
y

2π x2 + y2( 􏼁
3/2

⎧⎨

⎩

⎫⎬

⎭ ,

(3)

and Fbp(u, v) � Bs0 ,λ,k(u, v) · F(u, v) represents the image
F(u, v) filtered by the band-pass filter:

Bs0 ,λ,k(u, v) � e
−2πsoλ

k
����
u2+v2

√

− e
−2πsoλ

k−1 ����
u2+v2

√

􏼒 􏼓, (4)

where λ ∈ (0, 1) indicates the relative bandwidth, s0 indi-
cates the coarsest scale, and k ∈ N indicates the band-pass
number. Figure 2 shows a block diagram of the scale-space
monogenic signal framework.

-en, the local amplitude A(x, y), local orientation
θ(x, y), and local phase φ(x, y) (note that the function
a tan 2(|y|/x) � sign(y) · tan−1(|y|/x), where the factor sign
(y) indicates the direction of rotation) can be computed as
follows:
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A(x, y) �

����������������������������������������������������������������

F−1 Fbp(u, v)􏽮 􏽯􏼐 􏼑
2

+ F−1 Rx(u, v) · Fbp(u, v)􏽮 􏽯􏼐 􏼑
2

+ F−1 Ry(u, v) · Fbp(u, v)􏽮 􏽯􏼐 􏼑
2

􏽲

, (5)

θ(x, y) � tan− 1 F−1 Ry(u, v) · Fbp(u, v)􏽮 􏽯

F−1 Rx(u, v) · Fbp(u, v)􏽮 􏽯
⎛⎝ ⎞⎠, (6)

φ(x, y) � a tan 2

������������������������������������������������

F−1 Rx(u, v) · Fbp(u, v)􏽮 􏽯􏼐 􏼑
2

+ F−1 Ry(u, v) · Fbp(u, v)􏽮 􏽯􏼐 􏼑
2

􏽱

F−1 Fbp(u, v)􏽮 􏽯

⎛⎜⎜⎝ ⎞⎟⎟⎠ . (7)
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Figure 1: A block diagram of the proposed method.
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3.2. Phase-Based Character Candidate Generation. As we
mentioned earlier, the local image phase φ(x, y) describes
the image structural information, while local amplitude gives
us an intensity measure of the structure. Furthermore, the
local phase allows us to distinguish between edge, edge-line,
and line features. A phase value of 0 indicates an upward
going step, π/2 a bright line feature, π a downward going
step, and 3π/2 a dark line feature [43]. However, we are not
interested to make a distinction between dark or bright lines
but in finding upward and downward going step features for
region detection. For this reason, we consider the range from
0 to π, mapping the angles grater then π back into the range.

On the contrary, the MSER method [14] was first in-
troduced for grayscale images, but it can be applied for any
type of images as long as it maintains the two following
conditions: totally ordered set and existence of adjacency
relation. -us, the proposed phase-MSER method is de-
scribed as follows.

Let I be a grayscale image and ϕ its local phase (equation
(7)). -e binary image I

(t)
bin is defined as

I
(t)
bin(x, y) �

1, if ϕ(x, y)> t,

0, if otherwise,
􏼨 (8)

where t denotes a threshold value. An extreme region Rt

with threshold t is defined as

∀p ∈ Rt,

q ∈ zRt⟹ I
(t)
bin(p)> I

(t)
bin(q) o I

(t)
bin(p)< I

(t)
bin(q).

(9)

-e extremal region Rt∗ is maximally stable if and only if

q(t) �
Rt+Δ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Rt−Δ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

(10)

has a local minimum at i∗, with |·| denoting cardinality, and
Δ is a parameter that considers the stability of the region
under a certain number of thresholds. -e obtained regions
are called character candidates (CC). Figure 3 shows an
example of the MSER technique and the proposed phase-
MSER method.
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Figure 2: A block diagram of the monogenic signal framework.
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It is important to note that the local phase information is
scale- and rotation-invariant. Moreover, due to the invari-
ance-equivariance property, local phase information is in-
dependent of the local intensity; therefore, it is robust to
contrast and illumination variations.

3.3. Character Candidate Feature Computation. Once the
character candidate generation stage is done, a morpho-
logical closing operation is applied to each candidate in
order to eliminate small holes. -e size of the structural
element was experimentally defined as

���
[2]

√ ���
[2]

√
CCarea ×���

[2]
√ ���

[2]
√

CCarea. Next, for each candidate, geometrical
connected component properties are computed.

Table 1 summarizes the computed properties.
-en, the obtained properties are used to compute the

suggested candidate features:

(1) -e mean phase congruency value (PCmean) is
computed to consider the phase congruency value of
the candidate. As mentioned above, the PC(x) value
indicates the significance of the current feature.-us,
one means the most significant edge component, and
zero indicates the lowest significance. PCmean is
computed as follows:

PCmean �
1

CCcontour
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

CCcontour| |

i�1
PC pti( 􏼁, (11)

where pti ∈ CCcontour􏼈 􏼉 and |·| denotes cardinality.
(2) -e phase congruency ratio (PCratio) is computed to

consider the contribution of the edge pixels of the
candidate. One means a complete contribution from
all the edge pixels, and zero indicates the lowest
contribution. PCratio is obtained as

PCratio �
1

CCcontour
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏽘

CCcontour| |

i�1
D PC pti( 􏼁, PCthresh( 􏼁, (12)

where

D PC pti( 􏼁, PCthresh( 􏼁 �
1, if PC pti( 􏼁>PCthresh,

0, otherwise.
􏼨 (13)

and PCthresh is a threshold from 0 to 1.
(3) -e filled convHull ratio is computed to consider the

convexity of the candidate:

CCfill

area CCconvHull( 􏼁
. (14)

(4) -e approximated area ratio considers the stroke
uniformity of the candidate. One means a complete
uniformity of the candidate stroke, and zero indi-
cates the lowest uniformity. -e approximated area
ratio is computed as

abs CCarea − CCapprox􏼐 􏼑

max CCarea,CCapprox􏼐 􏼑
, (15)

where CCapprox � CCstroke · length(CCskel).
(5) -e contour length ratio considers the difference

between the external and internal candidate con-
tours. -is is to consider the complexity of the
candidate edge. -e contour length ratio is com-
puted as

abs length CCcontour( 􏼁 − length CCcontourExt( 􏼁( 􏼁

length CCcontourExt( 􏼁
. (16)

where CCcontourExt represents the external contour of
the candidate.

In addition, the features used in [37, 44] are also
considered:

(1) -e filled area ratio:

CCfill − CCarea

CCarea
. (17)

(2) -e solidity:

CCarea

area CChull( 􏼁
. (18)

(3) -e compactness:

(a) (b) (c)

Figure 3: MSER vs. phase-MSER: (a) original image, (b) MSER, and (c) phase-MSER.
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CCarea

length CCcontour( 􏼁
2. (19)

(4) -e occupancy:

CCarea

area CCminRect( 􏼁
. (20)

(5) -e eccentricity:

���������������������

1 −
length CCminAxis( 􏼁

length CCmaxAxis( 􏼁
􏼠 􏼡

2

􏽶
􏽴

. (21)

(6) -e aspect ratio:

Table 1: Connected component properties.

Name Property

CC Connected component

CCcontour Contour pixels of the component

CCskel
Morphological skeleton of the component

CCconvHull
Convex hull of the component

CCbb
Bounding box of the component

CCrotRect
Minimum rotated rectangle that encloses the component

CCstroke
Mean stroke width of the component

CCminAxis
Minimum axis of the component

CCmaxAxis
Maximum axis of the component

CCratio
Aspect ratio of the component

CCfill
Filled component
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min CCwidth,CCheight􏼐 􏼑

max CCwidth,CCheight􏼐 􏼑
. (22)

(7) -e stroke width value:

var CCstroke( 􏼁

E CCstroke( 􏼁
2 , (23)

where E(·) and var(·) are mean and variance,
respectively.

(8) -e minimum stroke width ratio:

CCstroke

min CCwidth,CCheight􏼐 􏼑
. (24)

(9) -e maximum stroke width ratio:

CCstroke

max CCwidth,CCheight􏼐 􏼑
. (25)

(10) -e skeleton perimeter ratio:

length CCskel( 􏼁

length CCcontour( 􏼁
. (26)

All the described features are used for AdaBoost classifier
training to classify character candidates into text and
nontext components. -e text-component AdaBoost clas-
sifier was trained using the ICDAR2013 training dataset (299
images).

3.4. Character Candidate Classification. In this stage, the
character candidate classification is performed. As a first
step, coarse candidate filtering is applied taking into account
the following noncharacter properties:

(1) -e candidate area: to eliminate noncharacter can-
didates that are either larger or smaller than a pre-
defined value, that is,

max 50, 5 × 10−4
· Iarea􏼐 􏼑<CCarea <

1
2

· Iarea, (27)

where Iarea is the image area.
(2) -e aspect ratio: to eliminate noncharacter candi-

dates that are too narrow or wide. CCratio < 0.10 was
considered.

(3) -e phase congruency value: to eliminate low phase
congruency value candidates. If PCmean (equation
(11)) is lower than a predefined threshold (PCthresh),
then the candidate is discarded. Figure 4 shows an

example of the phase-based candidates under dif-
ferent PCthresh values.

After the filtering stage, the remaining candidates are
classified as text and nontext components using the already
trained AdaBoost classifier. A candidate is considered as a
text character (Char) if the sum of votes of the classifier is
positive. -e remaining candidates with the negative vote
sum are considered as candidate neighbors (CN) and are
used in the next stage of character retrieval.

3.5. Character Retrieval. During the classifier training stage,
some characters were purposely mislabelled as noncharac-
ters (“I,” “i,” “L,” and “1”) to reduce classification errors
since these characters are usually similar to noncharacter
structures in the image. -e retrieval stage seeks to recover
these characters and others that have been misclassified. -e
character retrieval method is described as follows.

For each Char, a neighborhood of radius
R � 4 · max(Charheight,Charwidth) is defined. All the CNs
inside the radius R are considered as character neighbors. If
Char has no possible CNs, then the character is discarded
from the retrieval stage but continues as a final character. It
means that isolated characters are not discarded.

Next, each CN is evaluated to determine if it is a mis-
classified character. For this, a second AdaBoost classifier is
applied. -e classifier is trained using the following features
between Char and its CN:

(1) -e area difference:

abs Chararea − CNarea( 􏼁

max Chararea,CNarea( 􏼁
. (28)

(2) -e rotated rectangle area difference:

abs area CharrotRect( 􏼁 − area CNrotRect( 􏼁( 􏼁

max area CharrotRect( 􏼁, area CNrotRect( 􏼁( 􏼁
. (29)

(3) -e mean grayscale value difference:

abs Chargray − CNgray􏼐 􏼑

255
. (30)

(4) -e height ratio:

min Charheight,CNheight􏼐 􏼑

max Charheight,CNheight􏼐 􏼑
. (31)

(5) -e width ratio:

min Charwidth,CNwidth( 􏼁

max Charwidth,CNwidth( 􏼁
. (32)

(6) -e mean stroke width difference:
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abs Charstroke − CNstroke( 􏼁

max Charstroke,CNstroke( 􏼁
. (33)

-e character retrieval AdaBoost classifier was also
trained using the ICDAR2013 training dataset.

Once the character retrieval AdaBoost classifier is trained, it
is used to retrieve the CN as Char if the classifier vote sum is
positive. -en, the retrieval neighbors are considered as
characters, and they are also used for retrieval of their candidate
neighbors recursively. -e method stops when no new
neighbor component is classified as a new character.

Note that no alignment feature is computed, as in many
related works. Considering horizontal alignment helps to avoid
character misclassification but restricts the method to hori-
zontal text only. -us, the proposed method can be applied for
nonhorizontal text images.

3.6. Character Grouping. Since most of the state-of-the-art
text detection methods evaluate word localization instead of
character segmentation, a character grouping stage for text

detection is considered. Similar closest characters are grouped
together and considered as candidate words.-en, the Hough
transform is applied to obtain the final candidate word lines.
-e character grouping method is described as follows.

First, for each character, the distance between the
character and all its neighbors within a radius R � 4·

max(Charheight,Charwidth) is computed. -e distance is
obtained as the minimum Euclidean distance between the
convex hull of the character and its neighbors. All the
characters are grouped into pairs, and a minimum region
containing both components is created. -e region is ex-
panded to the minimum distance between characters.

All intersecting regions are considered as candidate
words. -en, the Hough transform is applied to obtain the
candidate word lines. Each of these lines is processed in-
dividually to verify if all the selected characters belong to a
single word. -is is done by applying the AdaBoost classifier
used in the retrieval stage. All the characters from the
candidate word are compared with each other. -ose
characters that are classified as nonword characters to all
other characters form a new word, and so on. -e method

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 4: Phase-based MSER regions filtered by different phase congruency thresholds: (a) phase-based MSER, (b) PCthreshold� 0.1,
(c) PCthreshold� 0.2, (d) PCthreshold� 0.3, (e) PCthreshold� 0.4, (f) PCthreshold� 0.5, (g) PCthreshold� 0.6, (h) PCthreshold� 0.7, and (i) PCthreshold� 0.8.
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stops when no new word is created. At the end, those final
words that have only one element and its AdaBoost vote sum
value is lower than zero, are eliminated. Figure 5 shows a
character grouping example.

4. Experimental Results

4.1. Evaluation Protocol. -e performance evaluation of the
proposed method was realized using the following metrics.
Two evaluation types are selected for text segmentation and
text localization. For text segmentation, the character level
recall-similarity rate [17] and the pixel-atom-basedmeasures
are utilized [45].

For character candidate generation evaluation, the re-
call-similarity rate is utilized. -e recall-similarity is defined
as the ratio between the total correctly detected candidate
regions and the ground truth characters. A region is con-
sidered as a character candidate if the similarity value is up to
50%. -e similarity value is defined as follows [17]:

similarity(D,GT) �
area(D)∩ area(GT)

area(D)∪ area(GT)
, (34)

where D and GT represent the detected and ground-truth
bounding box, respectively.

For pixel-level segmentation evaluation, the pixel- and
atom-based measures are utilized. Pixel- and atom-based
measures not only consider pixel-level accuracy but also take
into account the morphological properties of characters. In
[45], the minimal and maximal coverage criteria are in-
troduced, which measure the degree of overlap between the
ground truth area and the obtained segmented component.
-e minimal coverage criterion is fulfilled if the predefined
threshold Tmin � 90% of the ground-truth skeleton pixels is
covered by the segmented component. Similarly, for the
maximal criterion, the pixel distance to the ground-truth
edge pixels should not exceed a maximum threshold
Tmax � min(5, 0.5 · G), where G is the maximum stroke
width of the character.

On the contrary, although the proposed method is
designed specifically for the text segmentation task, text
localization evaluation is carried out to compare its per-
formance with that of the state-of-the-art methods. -e
recall (R), precision (P), and F-measure (F) are defined as
follows [46]:

precision G, D, tr, tp􏼐 􏼑 �
􏽐jMatchD Dj, G, tr, tp􏼐 􏼑

|D|
,

recall G, D, tr, tp􏼐 􏼑 �
􏽐iMatchD Gi, D, tr, tp􏼐 􏼑

|G|
,

F � 2 ·
precision × recall
precision + recall

.

(35)

G and D represent the ground-truth rectangle set and
detection rectangle set, respectively. tr ∈ [0, 1] and

tp ∈ [0, 1] are the recall and precision constrains, respec-
tively. For more details, we refer to Wolf and Jolion [46].

For the MSER algorithm, the simulations were carried
out using the reported MSER parameter [20], that is, Δ � 4,
maximum variation v � 0.5, andminimum diversity d � 0.1.

4.2. Computer Simulations. First, to analyze the tolerance of
the proposed segmentation method to low contrast, high
brightness, shadows, and nonuniform illumination degra-
dations, computer simulations using synthetic images were
performed. For the experiments, ten representative images
from the ICDAR2013 dataset were selected. -e selected
images contain different symbols, font types, colors, sizes,
and backgrounds. Each image was scaled, rotated, and
synthetically degraded, obtaining 1000 synthetic images per
degradation (see Figure 6). Table 2 shows the obtained re-
sults compared with the MSER method in terms of recall-
similarity measure.

-e proposed method shows a high candidate generation
performance. -e recall-similarity measure was up to 90% in
most of the cases, excepting the brightness degradations.-at is
because brightness variations caused the loss of regions with
low contrast (see Figure 6, second row, fifth column). Besides,
the proposed segmentation method shows performance up to
30% for nonuniform illumination and shadow degradations
and performance up to 10% for brightness and contrast var-
iations compared with the MSER technique.

4.3. Typical Dataset Evaluation

4.3.1. Datasets. For performance evaluation of the proposed
method, ICDAR2013 (http://rrc.cvc.uab.es/), USTB-SV1K
[16], OSTD [47], and MSRA-TD500 [34] datasets are used.

Convex hull 
distance computation 

Detected characters

Final candidate words

Minimum distance 
agrupation

Character neighbors

Figure 5: A block diagram of the proposed character grouping
method.
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-e ICDAR2013 dataset consists of 462 complex scenes
divided into training (299) and test (233) images. Note that
the ICDAR2013 dataset contains images with horizontally
aligned texts. Each image contains different complex
backgrounds, font types, sizes, blurring, illumination, con-
trast, etc. -e size of the images varies from 480 × 640 to
3888 × 2592. USTB-SV1K dataset consists of 1000 Google
Street View images (512 × 512) divided into training (500)
and test (500) images. -e images contain multiorientated
and perspective-distorted text. OSTD dataset includes 89
multioriented text images. -e images contain different font
types, sizes, and orientations. -e size of the images varies
from 640 × 480 to 1024 × 768. Finally, MSRA-TD500 con-
tains 500 natural images divided into training (300) and test
(200) images, which are taken from indoor and outdoor
scenes. -e resolution of the images varies from 1296 × 864
to 1920 × 1280. -e images contain English and Chinese
texts, different fonts, sizes, colors, and orientations.

4.3.2. Text Segmentation Evaluation. Since text segmenta-
tion depends on the quality of connected component gen-
eration, the proposed phase-based character candidate

generation method is evaluated. Table 3 shows the obtained
results in terms of recall-similarity measure and the obtained
mean candidate regions. -e obtained result shows that the
proposed method obtains less character candidates with a
high similarity rate than the other methods. Our method
outperforms the results obtained in [8, 17], even when the
methods utilize grayscale, RGB, Cb, and Cr channels. Al-
though the recent methods [19, 28] report good similarity
results for the given dataset, the mean number of candidates
per image is too high, almost 30 and 15 times more than the
proposed method. It is important to note that there exists a
compromise between candidate region generation and
computational complexity.

For the text segmentation evaluation, the precision and
recall metrics were computed, as well as the F-measure.
Table 4 shows the proposed method results on the
ICDAR2013 dataset. -e proposed method outperforms the
methods [20, 48], which utilize grayscale images for char-
acter candidate extraction.

Both results, character candidate generation and text
segmentation, show that the proposed method obtains fewer
candidate regions with a more accurate pixel-level seg-
mentation result.

Now, we provide the performance of the proposed
method at different stages of its work. Table 5 presents
character-level results in terms of recall, precision, and
F-measure. We can observe that, after classification of
candidates, the precision improves by 58%, while recall
decreases by almost 24%. -is is because at the classifier
training stage, some characters were purposely mislabelled

Figure 6: Example of synthetic degraded images. From top to bottom: low contrast, high brightness, shadows, and nonuniform
illumination.

Table 2: Character candidate generation results on the synthetic
dataset (recall-similarity (%)).

Method Contrast Brightness Illumination Shadows
MSER (gray) 76.1 74.0 65.0 66.2
Proposed method 98.3 82.1 95.2 94.2
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as noncharacters. As expected, the retrieval stage recovers
some characters that were misclassified; however, nontext
components are also restored. Finally, the grouping stage
discards noncharacters, which were recovered at the re-
trieved stage, as well as correct characters.

4.3.3. Text Localization Evaluation. Since most of the
existing methods present text localization evaluation instead
of character segmentation, we also carry out the same
evaluation. Table 6 shows the text localization performance
of the MSER-based techniques on the ICDAR2013 dataset. It
can be seen that the proposed method shows better
F-measure results than most other methods, except the
techniques [17, 28] in which multiple image channels are
used. However, the method [17] is designed for horizontal
text only, decreasing its performance for multioriented text,
while method [28] yields a lower F-measure than the pro-
posed method with only grayscale images. Besides, the
proposed method outperforms the latter one on the mul-
tioriented USTB-SV1K dataset (see Table 7).

Next, the performance of the proposed method and
state-of-the-art algorithms [16, 20, 24, 28–30, 34, 37] on four
datasets is evaluated using the protocol given in [34]. -e
results are shown in Table 7. One can observe that the
proposed technique using only 299 training images out-
performs the state-of-the-art methods on USTB and OSTD
multioriented datasets. -e performance of the methods
[28, 29] drops by almost 30% compared with the

performance of these methods on the ICDAR2013 dataset
containing horizontally aligned texts. Since the MSRA
dataset has Chinese characters that we are not familiar with,
we perform two evaluations of the proposed method: over
the entire MSRA dataset and English text images of the
dataset. Note that classifiers used in our method were only
trained using Latin-based characters. For a fair comparison
with other methods on this dataset, the proposed technique
needs additional training with Chinese characters. It is of
interest to note that the proposed method can detect parts of
Chinese texts (see Figure 7). Although the deep learning-
based method [30] outperforms the proposed method (for
the complete test set), the authors report a decrease of 20%
on F-measure using only the MSRA training set (300 im-
ages), thereby obtaining a lower F-measure than the pro-
posed method.

Figures 8 and 9 show examples of correct text detection
images and common errors of the proposed method in the
USTB dataset, respectively.-ree types of errors were found:
the Google logo error (first row), where the proposed
method recognized the Google watermark from the images;
the unmarked text error (second row), where the proposed
method recognized the text, but it was not considered as the
text by the dataset ground truth; and the false positive and
false negative errors (third row).

Finally, the average processing time of the proposed
method was estimated using the ICDAR2013 dataset on a
2.8GHz Intel Xeon E5-1603 PC with 16GB of RAM. Table 8
summarizes the running time of all tested algorithms, as well

Table 3: Character candidate generation results on the ICDAR2013 dataset.

Method Recall-similarity (%) Candidate
regions

ER (G, H, S, and Cb) [19] 98.6 6651
MC-MR MSER [28] 98.0 2799
MSER (gray) 92.9 754
Sung et al. (gray +Cr +Cb) [17] 87.7 401
Saric (gray) [20] 89.9 77
Wu et al. (RGB) [8] 90.0 1226
Proposed method (gray) 91.0 220

Table 4: Character segmentation results on the ICDAR2013 dataset (%).

Method
Pixel-based (%) Atom-based (%)

R P F R P F
USTB_FuStar [48] 69.5 74.4 71.9 68.0 72.4 70.1
Saric [20] 65.9 77.3 70.8 67.7 80.2 72.8
Proposed 69.9 85.2 76.7 68.0 80.1 73.5

Table 5: Stage evaluation: character-level results on the ICDAR2013 test dataset (%).

Stage
Character-level rate (%)

R P F
Candidate generation 91.0 28.4 43.2
Candidate classification 67.3 87.2 73.6
Character retrieval 75.8 83.2 79.3
Character grouping 74.3 85.9 79.6
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as hardware features reported by the authors. Note that the
processing time of the algorithms at each stage depends on
various factors, such as hardware features, specific imple-
mentation of algorithms, size, and contextual complexity of
processed images, which make a fair comparison difficult.

One can observe that methods [28, 30] achieved the best
runtimes of recognition since GPU was utilized for
implementation. Methods [18, 48] work only for the hori-
zontal text, which reduces the computational complexity
(runtime) of these methods. Note that all deep learning

Table 6: Text localization evaluation on the ICDAR2013 test dataset (%).

Method R P F
Tian et al (gray) [28] 67.8 81.2 73.9
Tian et al. (RGB+V) [28] 83.9 83.6 83.4
Saric (gray) [20] 67.7 80.2 72.8
Wu et al. (RGB) [8] 70.0 84.0 76.0
Neumann and Matas (RGB+ I +H+ S) [18] 71.3 82.1 76.3
Yin et al. (gray) [16] 65.1 83.9 73.3
Sung et al. (gray +Cr +Cb) [17] 74.2 88.6 80.8
Yin et al. (gray) [48] 68.2 86.2 76.2
Proposed method (gray) 73.9 82.7 78.0

Table 7: Text detection comparison on ICDAR, MSRA, USTB, and OSTD datasets (%).

Method
ICDAR MSRA USTB OSTD

R P F R P F R P F R P F
Ma et al. [30] 88.0 95.0 91.0 69.0 82.0 75.0 — — — — — —
Wei et al. [29] 81.1 87.3 84.3 — — — 55.9 54.1 55.0 76.2 75.4 75.8
He et al. [24] 81.0 92.0 86.0 70.0 77.0 74.0 — — — — — —
Tian et al. [28] 83.9 83.6 83.8 — — — 48.7 53.8 51.1 — — —
Saric [20] 66.1 76.5 70.6 — — — 31.8 44.6 37.1 45.4 49.8 47.5
Yin et al. [16] 66.0 83.7 73.8 63.0 81.0 71.0 45.4 49.8 47.5 — — —
Li et al. [37] 62.0 80.0 70.0 — — — — — — 60.0 72.0 61.0
Yao et al. [34] 66.0 69.0 67.0 63.0 63.0 60.0 — — — 73.0 77.0 74.0
Proposed 73.9 82.7 78.0 63.9 74.3 65.6 58.8 68.8 63.1 89.0 90.1 88.0
Proposed (English only) 73.9 82.7 78.0 73.9 81.7 75.7 58.8 68.8 63.1 89.0 90.1 88.0

Figure 7: Examples of text detection on the MSRA-TD500 dataset. Green rectangle: ground truth; red rectangle: proposed text detection
method.
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Figure 8: Correct detected text on the USTB-SV1K dataset. Green rectangle: ground truth; red rectangle: proposed text detection method.

Figure 9: Text detection errors of the proposed method on the USTB-SV1K dataset. Green rectangle: ground truth; red rectangle: proposed
text detection method.

Table 8: Running time on ICDAR2013.

Method Features Time (s)
Ma et al. [30] NVIDIA TITAN X GPU 0.2

Wei et al. [29] 2.4GHz Intel(R) Core (TM) 2.1i7 4-core CPU, 16GB RAM

He et al. [24] 2.9GHz 12-core CPU 0.9256G RAM, GTX Titan X
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algorithms require significantly longer training time com-
pared with the proposedmethod, which is reasonably fast for
detection and segmentation even using a conventional
computer without a graphics processor. Further optimiza-
tion of the method implementation, as well as the use of
GPU technology, can definitely reduce the overall processing
time of our method.

5. Conclusion

In this paper, a novel multioriented text detection and
segmentation method inspired by the human vision
system was proposed. -e method is based on the local
energy model and the scale-space monogenic signal
framework to extract essential local phase information.
-e proposed method consists of phase-based text seg-
mentation, character retrieval, and character grouping
stages. -e phase-based candidate regions are extracted by
applying the MSER algorithm to the local phase image;
meanwhile, character retrieval and grouping are done by
applying AdaBoost classifiers to avoid the use of heuristic
rules.

-e proposed method proved to be robust to geometric
distortions, font variations, complex backgrounds, low
contrast, high brightness, shadows, and illumination
changes.-emethod achieves a high character segmentation
performance possessing low computational complexity
(number of extracted components). -e method outper-
forms the state-of-the-art algorithms on typical databases in
terms of character segmentation, text localization, and the
number of candidate regions. Besides, our method is not
restricted to only horizontal texts like most of the existing
methods but also to multioriented texts.

Finally, the proposed method can be used for text de-
tection in different languages or handwritten texts.
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