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In this paper, we present a simple, powerful, yet efficient and easily applicable technique based on the GDQ method for solving
nonlinear problems. (e proposed technique is implemented to some nonlinear engineering problems in structure analysis. (e
results reveal that the proposed technique is effective.(en, the proposed technique is used to explain the effects of the variation of
cross section area on the nondimensional critical buckling loads for columns with and without elastic foundation for three sets of
boundary conditions. Finally, the proposed technique is used to investigate the effect of the nonlinearity term of Winkler elastic
foundation on the nondimensional critical buckling loads of nonuniform columns resting on elastic foundations.(e effectiveness
of the proposed technique is validated through comparing the present results with exact solutions and other numerical results
available in references. (e proposed method benefits the optimum design of columns against buckling in engineering ap-
plications. (e most important conclusions from this paper can be summarized as follows. When the inertia ratio varies
parabolically, the nondimensional critical buckling loads increase in comparison with varying linearly. Moreover, the nondi-
mensional critical buckling loads increase in the presence of the elastic foundation.

1. Introduction

It is pivotal in structural analysis and its design to study the
buckling behaviors and to determine the critical buckling
loads for uniform and nonuniform structural members.

Many types of structures and structural members for
buckling analysis can be defined as a uniform and/or
nonuniform with different end conditions widely used as
columns in many engineering structure applications such as
but not limited to columns, shells and plates, cranes, and
other application fields. One of the very important branches
of studied in the fields of structural, mechanical engineering,
and aeronautical engineering is the buckling analysis of
nonuniform columns. So, this field has become more and
more systematic during the last decades. (is field has

become the focal point of many researchers and studies.
Several researchers have studied the buckling analysis of
nonuniform columns that are closely related to the fields of
structural, mechanical, and aeronautical engineering. Until
now, a great deal of literature has been published on in-
vestigating the buckling of nonuniform columns. (is is
mainly due to the fact that it may provide an economical
solution to carry the desired higher compressive loads in
engineering structures.

In 1778, Leonard Euler determined the critical buckling
of columns under effect of axial compressive forces in statics
[1]. In this field, after Euler study, Swenson [2] studied the
nonuniform beams and columns using a simple DC network
analyzer, and Chajes [3] presented in his book the principles
of structural stability. Greenhill [4] made adept
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contributions to the field through his study of the exact
analytical solution for the buckling problem of a nonuni-
form column with arbitrary distributions of flexural stiffness
and axial distributed forces difficult to establish. A summary
of the solutions for some simple cases by several researchers
are shown in Coşkun [5].

On the other hand, the closed-form solution of the 4th

order differential equation governing for the buckling or
vibration behavior of columns or beams with arbitrary dis-
tributions of flexural stiffness and different end conditions is
very difficult to determine in most of the cases and exists only
for limited cases. In addition to this research field, several
researchers presented some exact solutions to study the
buckling of nonuniform columns, in terms of logarithmic and
trigonometric functions, Bessel functions, Lommel functions,
and in terms of series representation shown by Eryılmaz et al.
[6]. During the last decades, the columns’ buckling has be-
come the center point of study for many researchers. In
addition, studying the columns’ buckling has already become
more and more systematic. Later on, analytical approximate
techniques were used for the stability analysis of elastic
columns and introduced an exact analytical solution for
buckling analysis of non-uniform columns presented by
Coşkun and Öztürk [7]. Early studies on the stability of finite
columns resting on nonlinear elastic foundations with certain
prescribed boundary conditions have been presented by Taha
and Abohadima [8], Coşkun and Atay [9, 10], Singh and Li
[11], and Huang and Li [12] for determining critical loads of
nonuniform columns.

(e investigations of elastic buckling load and natural
frequency of structure members resting on elastic foun-
dations are also one of the complicated and significant
problems in many component designs related to soil-
structure interaction such as the foundation of buildings,
the pipelines embedded in soil, highway pavements, and
the like. In modern engineering problems of structural
design, structures on elastic foundations have wide ap-
plications. In elastic foundation, the elastic media can be
defined by an equally spaced elastic supports of equal
rigidity. At any cross section of the bar, the reaction of the
medium is proportional to the deflection at that section.
In this regard, different types of elastic foundation models
likeWinkler, Pasternak, and Vlasov were presented. In the
case of the Winkler foundation model, reaction forces are
proportional to the deflection of a beam at each point of
contact and the foundation characteristics are modeled by
adopting the system of fixed linear springs. (e constant
of proportionality of these springs is defined by the
foundation modulus, also, known as the subgrade mod-
ulus.(eWinkler type of foundation is extensively used in
practice for solving the problems mentioned above. In this
model, the elastic foundation by Winkler’s theory was
inadequate in different problems since this model over-
looks the soil cohesion. In order to improve this weakness,
any two-parameter elastic foundation models were de-
veloped such as the Winkler–Pasternak foundation. In
this model, an additional layer is considered in the widely
used Winkler model to accomplish the effect of shear
interactions between the springs. Closed-form solutions

to some simple problems of beams on elastic foundation
proposed by numerous authors are shown in Yankelevsky
et al. [13].

An important study for some different types of elastic
foundation models as, Winkler, Pasternak, Vlaslov,
Filonenko-Borodich presented by Kerr [14] in his paper.
Later on, some researchers studied the buckling analysis
of beams or columns resting on elastic foundations using
different methods such as Eisenberger and Clastornik
[15], Malekzadeh and Karami [16], Coşkun and Atay
[9, 10], and Coşkun [5, 17]. Some problems studied in
structural analysis and free vibration of uniform and
nonuniform beams resting on fluid layer using GDQ
method are presented by Abumandour et al. [18, 19].
Also, Abumandour et al. [20, 21] used a new hybrid
technique combining GDQM and Newton’s method to
study the free vibration analysis and determine the de-
flection of nonuniform beams resting on two nonlinear
elastic foundations subjected to axial and transverse
distributed force.

In engineering applications, the nonlinear elastic
foundations provide a simplified model for various
complex or complicated nonlinear systems. (e nonlin-
earity sources and the classification were later studied by
Kerschen et al. [22] and Afsharfard and Farshidianfar
[23]. In his books, Nayfeh [24, 25] presented the weak
nonlinear problems. Some researchers used the pertur-
bation techniques to study many cases of the nonlinearity
problems of structure analysis. Nowadays, some re-
searchers are interested in using analytical or numerical
techniques to solve nonlinear problems. (is is mainly
due to the fact that every physical problem is really
nonlinear problem which means that it should be de-
scribed using nonlinear equations. However, the analyt-
ical solution of nonuniform columns or beams needs the
solution of differential equations with variable coeffi-
cients, so it is very hard work. (ere are many numerical
and semianalytical methods; however, some analytical
methods were developed to obtain approximate solutions
for the static and dynamic behavior of non-uniform
beams by several researchers and are shown in Coşkun
and Öztürk [7] and Adair et al. [26].

(e proposed technique presented is based on the
GDQM to solve the nonlinear problems. (e GDQ method
has been applied successfully in our team work for solu-
tions of a variety of problems such as in fluid mechanics
[27, 28] and structural analysis [18, 21]. In addition, several
researchers are interested in other various problems such as
Chen and Cheung [29], Fung [30, 31], Shu et al. [32], and
Liu and Wang [33]. A year later, Malekzadeh and Karami
[16] exploited a mixed differential quadrature and the finite
element method to study the vibration and buckling be-
haviors of beam-like structures on elastic foundations.
Abumandour et al. [20, 21] presented an approach com-
bining the GDQ method with Newton’s method to study
the free vibration analysis and determine the deflection of
nonuniform beams resting on two nonlinear elastic
foundations subjected to axial and transverse distributed
force.
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In this paper, we present three objectives. (e first ob-
jective is to introduce a proposed technique of GDQ method
for solving nonlinear problems. (e second objective is to
apply a proposed technique of GDQ method in determining
the nondimensional critical buckling loads of uniform and
nonuniform columns resting on the two-layer elastic foun-
dations (linear and nonlinear Winkler elastic foundation and
the linear Pasternak elastic foundation). In addition, the paper
explains the effects of the varying cross section area on the
nondimensional critical buckling loads for columns with and
without elastic foundation for three sets of boundary con-
ditions, with different stiffness distributions. Finally, the third
objective is to investigate the effect of the nonlinearity term of
Winkler elastic foundation on the nondimensional critical
buckling loads of nonuniform columns resting on elastic
foundations (linear and nonlinear Winkler (normal) foun-
dation and linear Pasternak (shear) foundation), under the
three sets of boundary conditions. (e validation of the
proposed method has been approved by comparing our
numerical results with the exact solutions and other available
numerical results of uniform and nonuniform columns.

2. Problem Formulations and
Mathematical Analysis

Consider a nonuniform column of finite length Land width b
with flexural rigidity EI, as shown in Figure 1. (e column
resting on a Winkler–Pasternak elastic foundation (linear k1
and nonlinear k2 Winkler normal stiffnesses and the linear
Pasternak shear stiffnesses k3) continuously restrained along
its length subjected to axial load p(x, t) and transverse load
F(x, t). (e cross section is assumed to vary continuously
along the axial direction.

Based on the Euler–Bernoulli beam theory, the gov-
erning differential equations of buckling of nonuniform
columns resting on nonlinear Winkler–Pasternak elastic
foundation are

z2

zx2 EI
z2v

zx2  + ρA
z2v

zt2
+ p

z2v

zx2 + k1v + k2v
3

− k3
z2v

zx2 � F(x, t), 0≤x≤L,

(1)

where v(x, t) is the flexural deflection, ρ is the density of the
beam material, A(x) is the area of the beam section, E(x) is
Young’s modulus, I(x) is the moment of inertia, p(x, t) is
the axial force, k1 is the linear Winkler foundation pa-
rameter, k2 is the nonlinear Winkler foundation parameter,
and k3 is the linear Pasternak foundation parameter.

General case of column buckling is shown in Figure 2.
(e geometry, the loading conditions, and the effect of end
conditions on the column are shown in Figure 3.

(e corresponding boundary conditions along the x � 0
and L edges are as follows:

For clamped-clamped supported (C-C):

At x � 0,

W(0) �
dW(0)

dx
� 0, (2)

At x � L,

W(L) �
dW(L)

dx
� 0. (3)

For simply-simply supported (S-S):

At x � 0,

W(0) �
d2W(0)

dx2 � 0. (4)

At x � L,

W(L) �
d2W(L)

dx2 � 0. (5)

For clamped-simply supported (C-S):

At x � 0,

W(0) �
dW(0)

dx
� 0, (6)

At x � L,

W(L) �
d2W(L)

dx2 � 0. (7)

To obtain the buckling loads, assume the solution of
equation (1) to be

v(x, t) � V(x)e
iωt

, (8)

where the amplitude of free vibration is V(x) and the
natural frequency of the column is ω. Substituting
equation (8) into equation (1) yields

d2

dx2 EI
d2V
dx2 e

iωt
+ ρAVω2

e
iωt

+ p
d2V
dx2 e

iωt

+ k1 Ve
iωt

  + k2 V
3
e
3iωt

  − k3
d2V
dx2 e

iωt
� 0, 0≤x≤L,

(9)

d2

dx2 EI
d2V
dx2  + ρAVω2

+ p
d2V
dx2 + k1V + k2 V

3
e
2iωt

 

− k3
d2V
dx2 � 0, 0≤ x≤L.

(10)

For static deflection:

(e inertia term is neglected and (10) becomes
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d2

dx2 EI
d2V
dx2  + p

d2V
dx2 + k1V + k2V

3
− k3

d2V
dx2 � 0, 0≤x≤ L.

(11)

Equation (11) can be transformed to a nondimensional
form as follows:

S(X)
d4W
dX4 + 2

dS(X)

dX

d3W
dX3 +

d2S(X)

dx2
d2W
dX2 + K1W

+ K2W
3

− K3
d2W
dX2 + λ

d2W
dX2 � 0, 0≤X≤ 1,

(12)

(e nondimensional coefficients are W � V/L, X � x/L, λ �

PL2/EI0, K1 � k1L
4/EI0, K2 � k2L

6/EI0, K3 � k3L
2/EI0,

and S(X) � EI(x)/EI0, where W is the nondimensional
deflection of the column, P is the nondimensional axial
loading, K1 is the nondimensional linear Winkler (normal)
foundation parameter of foundation, K2 is the nondi-
mensional nonlinear Winkler (normal) foundation pa-
rameter of foundation, K3 is the nondimensional linear

Pasternak (shear) foundation parameter of foundation, the
column’s flexural rigidity is EI(X), the inertia ratio is S(X),
and λ is the nondimensional buckling load of the column.

Equation (12) is a 4th order ordinary differential equation
with varying cross section area (inertia ratio). Next, we
introduce an overview of the method of solution (general-
ized differential quadrature method).

3. GDQ Method Review

(e DQ method, introduced by Bellman et al. [34, 35], is a
numerical technique for solving initial as well as boundary
value problems. Bert and his coworkers first used the DQ
method to solve problems in structural mechanics in [36].
Bellman et al. [34] suggested two methods to determine the
weighting coefficients of the first order derivative. For more
details of the DQM and its applications, see [37, 38]. More
generally, Shu et al. in [39, 40] presented the generalized
differential quadrature (GDQ) and applied it to solve some
fluid dynamics problems.
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Figure 3:(ree end conditions for classical Euler column. (a) For clamped-simply supported column (fixed/pinned ends). (b) For clamped-
clamped supported column (fixed ends). (c) For simply-simply supported column (pinned ends).
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Figure 1: (a) Geometry of uniform columns resting on two elastic foundations under axial and transverse load. (b) Geometry of nonuniform
columns on two elastic foundations under axial and transverse load.
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Figure 2: General case of column buckling.
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(e dimensionless differential governing equation of
column (12) can be transformed into a system of algebraic
equations by using the GDQmethod [40].(e essence of this
method is that it is used to approximate the derivatives of the
function W(X) by a weighted linear summation of all the
functional values W(Xi) along the computational (dis-
cretized) domain. (e kth-order derivative of the solution
function at grid point i in one dimension is expressed by the
differential quadrature rule as

f
(k)
x Xi(  �

d(k)f

dx(k)

xi

� 

N

j�1
C

(k)
ij f xj , for i � 1, 2, 3, . . . , N,

(13)

where N is the total number of the sampling grid points
distribution chosen in the whole domain and C

(k)
ij are the

weighting coefficients for the kth order derivative at the ith
sampling point. It should be noted that the weighting co-
efficients C

(k)
ij are different at different locations of xi.

From equation (13), we can realize that the key to GDQ
method is how to determine the weighting coefficients for
the discretization of a derivative of any order and choose the
grid points. It means that the weighting coefficients depend
on the order of derivative and on the number of the sampling
points (spatial grid spacing) along the domain.

(e formula for determining the weighting coefficients
can be calculated by using Lagrange interpolation formula as
follows [37, 40]:

gk(x) �
M(x)

x − xk( M(1) xk( 
, where k � 1, 2, 3, . . . , N,

(14)

M(x) � x − x1(  x − x2(  · · · x − xN( , (15)

M
(1)

xi(  � 
N

k�1, k≠i
xi − xk( . (16)

By applying equation (14) at N grid points, they obtained
the following algebraic formulations to compute the
weighting coefficients Aij. For the first derivative, the
weighting coefficients are calculated as follows:

Aij �
1

xi − xj



N

k�1, k≠i,j

xi − xk( 

xj − xk 
, j≠ i,

Aii � 
N

k�1, k≠i

1
xi − xk

.

(17)

After calculating the weighting coefficients of first-order
derivatives, the weighting coefficients of higher-order de-
rivatives can be easily determined by simple matrix multi-
plication which is given as

C
(k)

  � C
(1)

  C
(k− 1)

  � C
(k− 1)

  C
(1)

 ,

k � 2, 3, 4, . . . , N − 1.
(18)

(e accuracy of the results obtained by DQM is affected
by choosing the number of grid points, N, and the type of

sampling points, Xi. It is found that the optimal selection of
the sampling points in structure problems, according to
Gauss–Chebyshev–Lobatto points, is as follows [41]:

X(i) �
1
2

1 − cos
i − 1

N − 1
 π , i � 1, 2, 3, . . . , N. (19)

4. Discretized Equations and
Numerical Implementation

4.1. GDQ Discretized for the Governing Equations of the
Column. (e GDQ techniques illustrated in the above
section 3 can be used to rewrite the differential governing
equations into a system of algebraic equations by trans-
forming every space derivative of the dependent variable
into the weighted sum of node values as follows:

S(X) 
N

j�1
DijWj

⎛⎝ ⎞⎠ + 2S
(1)

Xi(  

N

j�1
CijWj

⎛⎝ ⎞⎠

+ S
(2)

Xi(  

N

j�1
BijWj

⎛⎝ ⎞⎠ + K1Wi + K2W
3
i

− K3 

N

j�1
BijWj

⎛⎝ ⎞⎠ + λ 
N

j�1
BijWj

⎛⎝ ⎞⎠ � 0,

i � 1, 2, 3, . . . , N,

(20)

where Wi, i � 1, 2, . . . , N, is the functional value at the grid
Xi, Bij, Cij, and Dij are the weighting coefficient matrix of
the second-, third-, and fourth-order derivatives, and
S(1)(Xi) and S(2)(Xi) are the second- and first-order de-
rivatives of S(X) at Xi.

4.2. Implementation of Boundary Conditions. Various
boundary conditions can be directly implemented by
substituting the governing equations using the substitutions
of the boundary conditions into the governing equations
(SBCGE) method. (en, the problem is simplified to the
eigenvalue equation system. (e essence of the SBCGE is
that the Dirichlet condition is implemented at the boundary
points, while the derivative condition is discretized by the
GDQ method, a technique referred to as SBCGE [42–44].

(e derivatives in the boundary conditions given by
equations (2) through (7) can be discretized by the GDQ
method. As a result, the numerical boundary conditions can
be written as

W1 � 0, (21)



N

k�1
C

(n0)
1 k Wk � 0, (22)

WN � 0, (23)



N

k�1
C

(n1)
N k Wk � 0, (24)
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where n0 and n1 may be taken as either 1 or 2. By choosing
the value of n0 and n1, equations (21) through (24) can give
the following four sets of boundary conditions:

n0 � 1, n1 � 1–clamped − clamped sup ported
n0 � 1, n1 � 2 − clamped − simply supported
n0 � 2, n1 � 1 − simply − clamped supported
n0 � 2, n1 � 2 − simply − simply supported

Equations (21) and (23) can be easily substituted into the
governing equation. We can couple equations (22) and (24)
together to give two solutions, W2 and WN− 1, as

W2 �
1

AXN


N

k�1
AXK1 · Wk, (25)

WN− 1 �
1

AXN


N

k�1
AXKN · Wk, (26)

where AXN � C
(n0)
1,N− 1 C

(n1)
N,2 − C

(n0)
1,2 C

(n1)
N,N− 1, AXK1 � C

(n0)
1,k

C
(n1)
N,N− 1 − C

(n0)
1,N− 1 C

(n1)
N,k , and AXKN � C

(n0)
1,2 C

(n1)
N,k − C

(n0)
1,k

C
(n1)
N,2 . Equations (25) and (26) for W2 and WN− 1 are

expressed in terms of W3, W4, . . . , WN− 2, and then can be
easily substituted into the discrete governing equation (20)
which is applied to the interior points 2≤ i≤N − 2. In order
to close the system, the discretized governing equation (20)
has to be applied at (N − 4) mesh points. (e dimension of
the equation system using this approach is
(N − 4) × (N − 4).

S(X) 
N− 2

j�3
DijWj

⎛⎝ ⎞⎠ + 2 S
(1)

Xi(  

N− 2

j�3
CijWj

⎛⎝ ⎞⎠

+ S
(2)

Xi(  

N− 2

j�3
BijWj

⎛⎝ ⎞⎠ + K1Wi + K2W
3
i

− K3 

N− 2

j�3
BijWj

⎛⎝ ⎞⎠ + λ 
N− 2

j�3
BijWj

⎛⎝ ⎞⎠ � 0,

i � 3, 4, . . . , N − 2.

(27)

Equations (27) has (N − 4) equations with (N − 4)

unknowns, which can be written as

[A] W{ } + K2 W
3

  � λ[B] W{ }, (28)

where, W{ } � W3, W4, . . . , WN− 2 
T.

5. Numerical Results and Discussion

In this section, the studies have been presented for inves-
tigating the buckling behaviors of nonuniform columns
resting on two-layer elastic (Winkler (linear and nonlinear)
and Pasternak) foundations under axial compression with
different boundary conditions using a new hybrid approach
of GDQ method. Moreover, the studies have been presented
for investigating the buckling behaviors of the nonuniform
columns under the effect of the linear (k1) and nonlinear

(k2) Winkler (normal) foundation parameters and the linear
Pasternak (shear) foundation parameter.

(e GDQ method is used to compute the critical
buckling load with two cases of inertia ratio
S(X) � (1 + α1X)α2 (the first case: (α1 � 1.0), (α2 � 1.0) and
the second case: (α1 � 1.0), (α2 � 2.0)), with three different
types of end conditions.

5.1. Validation of the Solution Technique. In order to ex-
amine the effectiveness and convergence of the proposed
technique, we have determined the critical buckling loads
(λ) for a uniform and nonuniform column subjected to axial
compression force, under the three sets of boundary con-
ditions: clamped-clamped (c-c) supported, simply-simply
(s-s) supported and clamped-simply (C-S) supported,
respectively.

(e first validation, for uniform columns, i.e., the inertia
ratio S(X) � 1, the numerical results are tabulated in Table 1
together with the exact solution presented by Chajes [3],
numerical results using the GDQ presented by Du et al. [45],
numerical results using GDQ with SBCGE presented by
Ramzy et al. [19], and numerical results using FEM pre-
sented by Newberry [46] for various end supports are ap-
plied to validate the proposed technique.

By comparing the exact solution and other numerical
results with our numerical results of the proposed technique,
it is clear that the proposed technique has a rapid conver-
gence and is in very good accordance with the existing
numerical results shown in Table 1. In our results, when the
number of grid point (N) reaches N� 11, the errors between
our numerical results and exact solution are identical to the
exact solution up to 15 decimal digits; it means that the
proposed technique of GDQ approach is very efficient.

(e absolute relative error type in Table 1 represents the
accuracy of the proposed technique. (is absolute relative
error can be defined by the formula |((Present −

Exact)/Exact) × 100|.
Figures 4–6 show the first three mode shapes of the

uniform column for three types of end supports which
results from the proposed technique of the GDQM with
SBCGE, respectively.

(e second validation for nonuniform columns is to
study the effect of the varying cross section area (the inertia
ratio (stiffness distributions)), by taking two special cases of
the stiffness distributions as polynomials of the form
S(X) � (1 + α1X)α2 : the first case being linearly varying of
the inertia ratio [α1 � 1.0, α2 � 1.0], i.e., [S(X) � (1 + X)],
and the second case being parabolically varying of the
inertia ratio [α1 � 1.0, α2 � 2.0]S(X) � (1 + X)2. Our nu-
merical results are tabulated in Tables 2 and 3, by using
number of grid points (N � 11) together with other nu-
merical results presented by Swenson [2], Bleich [47], Bert
[48], Du et al. [45], and Ramzy et al. [19], various end
supports are applied to validate the proposed technique.
Tables 2 and 3 demonstrate that the present critical
buckling loads are in very good agreement with the existing
numerical results.
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Other validation for the above case (for nonuniform
columns) in order to investigate the effect of the varying of
cross section area, by taking the same two special cases of the
stiffness distributions as a polynomial of the form
S(X) � (1 + α1X)α2 ; the first case being linearly varying of
the inertia ratio [S(X) � (1 + X)], and the second case being
parabolically varying of the inertia ratio [S(X) � (1 + X)2],
without elastic foundations, respectively. Our numerical
results are tabulated in Tables 4 and 5, by using number of
grid points (N� 15) together with other numerical results, by

an improved version of the Rayleigh technique Bert [48], the
stiffness matrix method Eisenberger [49], a low dimensional
mathematical model Singh and Li [11], Rayleigh’s quotient
method Rosa and Franciosi [50], a new and simple approach
Huang and Luo [51]. From Tables 4 and 5, it is clear that our
results are very compatible with their results. Our results are
nearly identical to the results obtained by Huang and Luo
[51] and Eisenberger [49].

5.2. Results Using a Proposed Technique of GDQM. In order
to investigate the effect of the nonlinearity term of
Winkler elastic foundation on the nondimensional critical
buckling loads of nonuniform columns resting on two-
layer elastic foundations (linear and nonlinear Winkler
(normal) foundation and linear Pasternak (shear) foun-
dation), under the three sets of boundary conditions, we
study the effect of the varying cross section area (the
inertia ratio (stiffness distributions)) by taking two special
cases of the stiffness distributions as polynomials of the
form S(X) � (1+ α1X)α2 : the first case [α1 � 1.0, α2 � 1.0],
i.e., [S(X) � (1 + X)], being linearly varying of the inertia
ratio, and the second case [α1 � 1.0, α2 � 2.0], i.e.,
[S(X) � (1 + X)2], being parabolically varying of the in-
ertia ratio, respectively.

Our numerical results are tabulated in Tables 6 and 7, by
using number of grid points (N� 15) and the nondimen-
sional critical buckling loads (λ) of nonuniform beams

Table 1: Nondimensional critical buckling loads of uniform columns for various end supports.

Boundary
conditions

Buckling load (λ)

Exact solution
(Chajes [3])

GDQ (N� 11)
(Du et al. [45])

FEM (Newberry
et al. [46])

SBCGM (N� 11)
(Abumandour et al. [21])

Present proposed
technique (N� 11)

Absolute
relative error %

Simply-simply 9.8696 9.8696 9.9438 9.8696 9.8696 0.00000
Clamped-
clamped 39.4784 39.4784 39.9730 39.4784 39.4784 0.00000

Clamped-
simply 20.1907 20.19072 20.4972 20.1907 20.1907 0.00000
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resting on two-layer elastic foundations, for three sets of
boundary conditions. Fifteen nonuniformly spaced grid
points were chosen by the previous relation. It can be

observed from Tables 6 and 7 that the nondimensional
critical buckling loads increase when the column rests on
two-layer elastic foundations.

Table 5: Nondimensional critical buckling loads of nonuniform columns without elastic foundations with parabolically varying stiffness
distributions S(X) � (1 + X)2.

Boundary
conditions

Buckling load (λ)

Bleich [47] Singh and Li [11] Rosa and Franciosi [50] Eisenberger [49] Huang and Luo [51] Present proposed
technique (N� 15)

Simple-simple 20.7923 20.791633301 21.21653 20.792288456 20.7922884552 20.7922891004959
Clamped-
clamped — 82.228445608 — 81.923363881 81.9233636440 81.9233426420278

Clamped-simple — 42.313450996 — 42.109176122 42.1091761225 42.1091391192221

Table 6: Effects of elastic foundation parameters [K1, K2, K3] on the nondimensional critical buckling loads (λ) for nonuniform columns
with linearly varying stiffness distributions S(X) � (1 + X).

Boundary conditions

Buckling load (λ)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Elastic foundation
parameters

Elastic foundation
parameters

Elastic foundation
parameters

Elastic foundation
parameters

K1 K2 K3 K1 K2 K3 K1 K2 K3 K1 K2 K3
0.0 0.0 0.0 30 0.0 0.0 30 30 0.0 30 30 30

Simple-simple 14.5112 17.5346 47.5346 50.1784
Clamped-clamped 57.3940 59.6607 89.6607 92.6179
Clamped-simple 29.4490 32.0561 62.0561 65.2047

Table 2: Nondimensional critical buckling loads of nonuniform columns with linearly varying stiffness distributions S(X) � (1 + X).

Boundary
conditions

Buckling load (λ)

Swenson
[2]

GDQ (N� 11) (Du et al.
[48])

SBCGM (N� 11) (Abumandour et al.
[20])

Present proposed technique
(N� 11)

Simple-simple 14.3 14.511296 14.511255 14.511255
Clamped-
clamped — 57.3453 57.391536 57.391536

Clamped-simple — 29.4406 29.447984 29.447984

Table 3: Nondimensional critical buckling loads of nonuniform columns with parabolically varying stiffness distributions S(X) � (1 + X)2.

Boundary conditions
Buckling load (λ)

Bleich [47] Bert [36] GDQ (N� 11) (Du et al. [48]) SBCGM (N� 11)
(Abumandour et al. [21])

Present proposed
technique (N� 11)

Simple-simple 20.7923 27.455 20.8047 20.7943 20.7943
Clamped-clamped — — 82.1043 81.9279 81.9279
Clamped-simple — — 41.9679 42.0828 42.0828

Table 4: Nondimensional critical buckling loads of nonuniform columns without elastic foundations with linearly varying stiffness
distributions S(X) � (1 + X).

Boundary
conditions

Buckling load (λ)

Bert [36] Singh and Li [11] Rosa and Franciosi [50] Eisenberger [49] Huang and Luo [51] Present proposed
technique (N� 15)

Simple-simple 15.31 14.505200922 14.58426 14.511249540 14.5112495395 14.5112495409638
Clamped-clamped — 57.445246088 — 57.393956136 57.3939561351 57.3939565758955
Clamped-simple — 29.495964646 — 29.448962806 29.4489628062 29.4489634582706
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Form Tables 6 and 7, when the inertia ratio (stiffness dis-
tributions) S(X) is varying parabolically, the non-dimensional
critical buckling loads of non-uniform columns increase in
comparison when the inertia ratio varies linearly.

(e corresponding mode shapes are presented in
Figures 7–12. Figures 7–9 show the first case of inertia ratio,
and Figures 10–12 show the second case of inertia ratio.

Table 7: Effects of elastic foundation parameters [K1, K2, K3] on the nondimensional critical buckling loads (λ) for nonuniform columns
with parabolically varying stiffness distributions S(X) � (1 + X)2.

Boundary conditions

Buckling load (λ)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Present proposed
technique (N� 15)

Elastic foundation
parameters

Elastic foundation
parameters

Elastic foundation
parameters

Elastic foundation
parameters

K1 K2 K3 K1 K2 K3 K1 K2 K3 K1 K2 K3
0.0 0.0 0.0 30 0.0 0.0 30 30 0.0 30 30 30

Simple-simple 20.7923 23.7674 53.7674 64.0248
Clamped-clamped 81.9233 84.1346 114.1346 114.1770
Clamped-simple 42.1091 44.8215 74.8215 80.4827
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Figure 7: (e first three mode shapes of nonuniform simple-
simple supported column at foundation parameters
(K1 � 30, K2 � 30, K3 � 30) with linearly varying stiffness distri-
butions S(X) � (1 + X).

–1.2

–0.8

–0.4

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1W
/W

m
ax

X

Mode 1: Pcr = 92.6179
Mode 2: Pcr = 148.9400
Mode 3: Pcr = 262.2600

Figure 8: (e first three mode shapes of nonuniform clamped-
clamped supported column at foundation parameters
(K1 � 30, K2 � 30, K3 � 30) with linearly varying stiffness distri-
butions S(X) � (1 + X).

–1

–0.7

–0.4

–0.1

0.2

0.5

0.8

1.1

0 0.2 0.4 0.6 0.8 1W
/W

m
ax

X

Mode 1: Pcr = 65.2047
Mode 2: Pcr = 118.4900
Mode 3: Pcr = 203.1500

Figure 9: (e first three mode shapes of nonuniform clamped-
simple supported column at foundation parameters
(K1 � 30, K2 � 30, K3 � 30) with linearly varying stiffness dis-
tributions S(X) � (1 + X).

–1.2

–0.8

–0.4

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1W
/W

m
ax

X

Mode 1: Pcr = 64.0248
Mode 2: Pcr = 112.6900
Mode 3: Pcr = 215.7000

Figure 10: (e first three mode shapes of nonuniform simple-
simple supported column at foundation parameters
(K1 � 30, K2 � 30, K3 � 30) with parabolically varying stiffness
distributions S(X) � (1 + X)2.

Mathematical Problems in Engineering 9



–1.2

–0.8

–0.4

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1W
/W

m
ax

X

Mode 1: Pcr = 114.1800
Mode 2: Pcr = 197.9600
Mode 3: Pcr = 358.2300

Figure 11: (e first three mode shapes of nonuniform clamped-clamped supported column at foundation parameters (K1 �

30, K2 � 30, K3 � 30) with parabolically varying stiffness distributions S(X) � (1 + X)2.

–0.8

–0.4

0

0.4

0.8

1.2

0 0.2 0.4 0.6 0.8 1

W
/W

m
ax

X

Mode 1: Pcr = 80.4827
Mode 2: Pcr = 155.9800
Mode 3: Pcr = 278.5500

Figure 12: (e first three mode shapes of nonuniform clamped-simple supported column at foundation parameters (K1 �

30, K2 � 30, K3 � 30) with parabolically varying stiffness distributions S(X) � (1 + X)2.

0

20

40

60

80

100

120

140

160

180

N
on

di
m

en
sio

na
l c

rit
ic

al
 b

uc
kl

in
g 

(λ
cr

)

0 20 40 60 80 100
K2

Mode 1
Mode 2
Mode 3

Figure 13: (e first three nondimensional buckling loads of
nonuniform simple-simple supported columns with various K2 at
(K1 � 30, K3 � 30) with linearly varying stiffness distributions
S(X) � (1 + X).

0

50

100

150

200

250

300

N
on

di
m

en
sio

na
l c

rit
ic

al
 b

uc
kl

in
g 

(λ
cr

)

0 20 40 60 80 100
K2

Mode 1
Mode 2
Mode 3

Figure 14: (e first three nondimensional buckling loads of
nonuniform clamped-clamped supported columns with various K2
at (K1 � 30, K3 � 30) with linearly varying stiffness distributions
S(X) � (1 + X).

10 Mathematical Problems in Engineering



To examine the effect of the nonlinear Winkler elastic
foundation parameter “K2,” we fix the other values of elastic
foundations “K1” and “K3.” (en, we draw “K2” versus the
nondimensional critical buckling loads of nonuniform
columns. It is clear that increasing the nonlinear elastic
foundation “K2” increases the nondimensional critical
buckling loads of nonuniform columns. Figures 8–10 show
the first case of inertia ratio, and Figures 11–13 show the
second case of inertia ratio.

(e corresponding Figures 13–18 present the effect of
the nonlinear Winkler elastic foundation parameter “K2”
(see Figures 13–15 for the first case of inertia ratio and
Figures 16–18 for the second case of inertia ratio).

In addition, the effect of the nonlinearity term of
Winkler elastic foundation (K2) on the nondimensional
critical buckling loads of nonuniform columns for three sets
of boundary conditions is studied, and the numerical results
are plotted in Figures 19 and 20 with the special two cases of
the stiffness distributions S(X) � (1 + α1X)α2 , for
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Figure 16: (e first three nondimensional buckling loads of
nonuniform simple-simple supported columns with various K2 at
(K1 � 30, K3 � 30) with parabolically varying stiffness distribu-
tions S(X) � (1 + X)2.
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Figure 17: (e first three nondimensional buckling loads of
nonuniform clamped-clamped supported columns with various K2
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Figure 15: (e first three nondimensional buckling loads of
nonuniform clamped-simple supported columns with various K2
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[α1 � 1.0, α2 � 1.0] and [α1 � 1.0, α2 � 2.0], respectively.
From Figures 19 and 20, it can be seen that the nonlinear
Winkler elastic foundation parameter “K2” has a strong
influence on the nondimensional critical buckling loads.

6. Conclusion

A proposed approach of GDQmethod has been presented to
study the buckling behaviors of nonuniform columns resting
on the two-layer elastic foundations (linear and nonlinear
Winkler elastic foundation and the linear Pasternak elastic
foundation). By using the proposed technique of GDQ
method, we can determine the nondimensional critical
buckling loads for any columns resting on any type of elastic
foundations, linear or nonlinear. Several examples of
computing the nondimensional critical buckling loads for
uniform and nonuniform columns with and without elastic
foundation for various boundary configurations have been

presented. (e validation of the proposed method has been
approved by comparing our numerical results with the exact
solutions and other available numerical results for uniform
and nonuniform columns.

In this paper, we present three endeavors; the first one
introduces simpler and efficient approach to simplify the
procedure for determining the nondimensional critical
buckling loads of nonuniform columns resting on the two-
layer elastic foundations (linear and nonlinear Winkler
elastic foundation and the linear Pasternak elastic founda-
tion). A proposed approach is presented based on the GDQ
method to solve the nonlinear problems. (e proposed
method is beneficial to optimum design of columns against
buckling in engineering applications. (e second endeavor
explains the effects of the varying cross section area on the
nondimensional critical buckling loads for columns with
and without elastic foundation for three sets of boundary
conditions, by the stiffness distributions as a polynomial of
the form S(X) � (1 + α1X)α2 . Finally, the third endeavor
investigates the effect of the nonlinearity term of Winkler
elastic foundation on the nondimensional critical buckling
loads of nonuniform columns resting on elastic foundations
(linear and nonlinear Winkler (normal) foundation and
linear Pasternak (shear) foundation), under the three sets of
boundary conditions.

(is method is simple but efficient for solving similar
dynamic problems and free vibration of uniform and
nonuniform Euler–Bernoulli beams. By using the proposed
technique of GDQ method to determine the nondimen-
sional critical buckling loads for uniform and nonuniform
columns with and without elastic foundations for various
boundary conditions, the most important conclusions can
be summarized as follows:

(i) When the inertia ratio (stiffness distributions) is
varying parabolically, the non-dimensional critical
buckling loads of non-uniform columns increase in
comparison when the inertia ratio varies linearly.

(ii) (e nondimensional critical buckling loads of
nonuniform columns can be increased by sup-
porting the columns by the elastic foundation.

(iii) (e nondimensional critical buckling loads of
nonuniform columns can be increased by increasing
the nonlinear elastic foundation.

(iv) From the previous discussion, it can be seen that the
nonlinear Winkler elastic foundation parameter has
a strong influence on the nondimensional critical
buckling loads.
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