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To predict chatter stability and suppress chatter vibration, a chatter stability prediction method for the spindle-tool holder-tool
system with interface contact characteristics is constructed. A five-DOF model is constructed to determine the spindle-bearing
interface dynamic contact stiffness considering the coupling effect of spindle and bearing. A fractal multiscale tool holder-spindle
interface dynamic stiffness model is proposed considering time-varying cutting force. )e fractal dimensions and cutting force
coefficient parameters are identified from the power spectrum experiments and cutting force tests. )e cutting force is solved
according to the milling stability model. Dynamic model of the spindle-tool holder-tool system is found by the finite element
method. Based on extended Floquet theory, chatter stability of the spindle system is studied. Effect of interface parameters, radial
cutting depth, and feed rate on milling stability is researched. Milling force tests and milling stability tests are performed in order
to verify the reliability of the method. Results find that the increase of front bearing preload and spindle-tool holder’s interference
fit are effective to improve the milling stability. )e optimal feed rate and the critical radial cutting depth are found. )e model
proposed in this paper can be used as an instruction for predicting and suppressing the chatter vibration and optimizing cutting
parameters and also is helpful for designing the spindle-tool holder-tool system.

1. Introduction

Stable cutting is the most important condition for high-
speed cutting. However, in actual machine processing,
chatter vibration often occurs, which indicates that severe
vibration exists. Chatter not only limits the improvement of
machining efficiency but also causes great damage to ma-
chine tools and cutting tools. )erefore, controlling the
generation of chatter and reducing the impact of chatter has
become very important. )e contact interfaces of the system
are the essential factor to influence chatter stability.

Dynamic characteristics of spindle-bearing interface had
been done by many researchers. A general spindle-bearing
model was found according to Timoshenko’s beam and
Jones’ bearing model [1]. Bearing stiffness and displacement
response are evaluated according to the model. A ball
bearing dynamic model considering three degrees of free-
dom of the balls and surface defects is proposed [2]. Bearing
stiffness matrix was solved by Jacobian matrix. )en,

stability of the system could be analyzed based on the
bearing stiffness model [3]. However, the coupling effect
between the spindle and the supported bearing is not
considered in the above research studies.

Contact stiffness between the spindle and the tool holder
was experimentally studied by many researchers. A stiffness
model was given based on the spindle system’s modal [4].
However, the recognition result is influenced by test noise
seriously, and it is difficult to reflect accurate relationship of
stiffness and the surface state. A frequency response cal-
culationmodel for spindle system is proposed, but themodel
relied on an impact device [5]. )ese methods need to rely
on experimental results, and the unevenness of contact force
cannot be considered, which is not suitable for the design
process of the system. Recently, the fractal model has been
presented to calculate dynamic characteristics of the system.
)e fractal contact model was further improved for the
spindle-tool holder-tool system [6]. Research found that the
single rough region depends on the ratio and the rough
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plastic-to-elastic mode transition. )e tool holder interface
contact stiffness was identified by an approximate model, in
which only elastic deformation of rough asperities was taken
into consideration. )e stiffness was solved from every
asperity’s stiffness [7]. )e results found that cutting force
had great effect on stiffness of spindle-tool holder. A spindle-
tool holder stiffness model was established by fractal theory.
)e elastic, elastic-plastic, and plastic deformation were
calculated [8]. )e cutting force was considered in the
model; however, the cutting force was a constant value. In
the above model, the real cutting load cannot be taken into
account. To calculate the contact properties of tool holder
interface, analytical model of cutting force should be con-
structed. Determination of cutting force coefficients is
critical for the prediction of cutting forces. Cutting tests
should be done to calculate instantaneous cutting force
coefficients [9, 10].

Chatter stability is one of the biggest threats to surface
quality during the cutting process. Frequency response
function (FRF) of tool tip is often used to demonstrate and
suppress the chatter stability [11]. A prediction model of tool
tip’s frequency response functions was presented and ver-
ified by experiment [12]. A model to suppress chatter sta-
bility through implementing spindle-tool holder vibration
modes was presented by FRF modification [13]. However,
accurate FRF depends on experiment, which is not suitable
for design process of the spindle system. Stability lobe di-
agram can predict the cutting stability boundary and divide
the stable cutting area and the unstable cutting area. )e
suitable cutting parameters could be chosen by the stability
lobes. In order to obtain the stability lobe diagram of ma-
chining center accurately, the dynamic model of the spindle-
tool holder-tool system should be constructed. )e chatter
stability prediction model for spindle-tool holder system was
proposed, in which dynamic parameters of the system were
achieved by modal identification test [14]. )en, dynamic
stability figure was established considering the influence of
speed on dynamic behavior. Experiments were done to
validate chatter boundary. )e spindle-bearing systems
dynamic model considering cutting forces was found. A
quasi-dynamic model of angular contact ball bearing was
used to derive the bearing stiffness. )e milling chatter
stability of spindle system was studied [15]. )e prediction
model was experimentally verified by measured

displacement response. Performance of the spindle was
investigated using the model. Results showed that a rigid
preload mechanism is beneficial for the spindle system in
high-speed condition. A chatter vibration calculation model
for spindle system was established, in which ball bearings
and floating bearings dynamic model were considered [16].
)e spindle system was modeled by using Timoshenko
beam. Stability lobe and chatter stability were researched
under different cutting parameters. However, the interface
model between tool holder and spindle is not given. Above
all, chatter stability prediction model of tool-tool holder-
spindle system based on theoretical calculation has not been
performed. Deep research should be done to predict chatter
stability according to the interface contact characteristics.

)is paper proposes a new chatter stability prediction
method for tool-tool holder-spindle system. Contact model
of spindle-bearing interface and spindle-tool holder were
constructed. Effect of contact interface parameters, radial
cutting depth, and feed rate onmilling stability is researched;
the results were experimentally verified by comparison with
the cutting experiment. )e method in this paper is helpful
for predicting, suppressing chatter vibration of spindle
system in the design process.

2. Chatter Stability Prediction Method

2.1. Dynamic Contact Stiffness of Spindle-Ball Bearing
Interface. To study contact characteristics of ball bearing-
spindle interface, a five-DOF model is constructed to de-
termine the contact stiffness. Figure 1 illustrates geometry of
an angular ball bearing, and the initial contact angle is α, as
shown in Figures 1(a) and 1(b), which gives the curvature
center position of raceways and the jth ball. Oj, Oi, Oe are the
initial position of the jth ball, curvature center of inner, and
outer raceway, respectively. Oj

′, Oi
′, Oe
′ are the loading

position of the jth ball and curvature center of inner and
outer raceway. δa is preload displacement of the outer ring.

It is assumed that the inner ring displacement is
Xs, Ys, Zs, ϕXs, ϕYs , which are equal to the displacements at
the same location on the spindle. )e jth ball angular lo-
cation is θj, and displacement of the jth ball is xj, yj, zj .
)en, contact deformation 1j

δ ,
2j

δ and contact angles 1j
α ,

2j
α can

be deduced from Figure 1.

δ1j �

���������������������������������������������

A sin α0 + δa + zj 
2

+ A cos α0 + xj sin θj + yj cos θj 
2



− A − h1j,

δ2j �

��������������������������������������������������������������������������

B sin α0 + Zs − zj + ϕYs sin θj + ϕXs cos θj 
2

+ B cos α0 + Xs − xj sin θj + Ys − yj cos θj 
2



− B − h2j,

α1j � arctan
A sin α0 + δa + zj

A cos α0 + xj sin θj + yj cos θj

 ,

α2j � arctan
B sin α0 + Zs − zj + ϕYs sin θj + ϕZs cos θj

B cos α0 + X − xj sin θj + Y − yj cos θj

⎛⎝ ⎞⎠,

(1)

2 Mathematical Problems in Engineering



where A � (f1 − 0.5)Dw and B � (f2 − 0.5)Dw. Dw is the
diameter of the ball. f1 andf2are the curvature coefficient of
outer raceway and inner raceway. h1j and h2j are the oil film
thickness between outer raceway, inner raceway, and the jth

ball [17].
)en, contact loads Q1j and Q2j between the outer ring,

inner ring, and the jth ball can be solved [17]. Assuming
bearing load is FX, FY, FZ, MX, MY , inner ring equations
are written as

FX − 

zb

j�1
Q2j cos α2j sin θj � 0,

FY − 

zb

j�1
Q2j cos α2j cos θj � 0,

FZ − 

zb

j�1
Q2j sin α2j � 0,

MX − 

zb

j�1
Q2j sin α2j cos θj � 0,

MY − 

zb

j�1
Q2j cos α2j sin θj � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where zb is the ball number. θj � (2π/zb)(j − 1) +

(1/2)ω(1 − (Dw/Dpw)cos α) × t; Dpw is the pitch diameter. ω
is the rotating speed.

)e above equations are solved by Newton–Raphson
method. )e Jacobian matrix obtained by solving the
equations can be defined as the stiffness matrix of the
bearing:

Kb �
zFi

zXj

, (3)

where Fi � FX, FY, FZ, MX, MY , Xj � Xs,XjYs, Zs,ϕXs,

ϕYs}, and Kb is bearing stiffness matrix.
Because the displacements Xj are varied when the

spindle-bearing system is running, dynamic contact stiffness
between spindle and ball bearing interface can be solved by
equation (3).

2.2. Dynamic Contact Stiffness Model of Tool Holder-Spindle
Interface. Contact between tool holder and spindle can be
seen as a plane stress problem. Figure 2 is cross-sectional
sketch. Tool holder is divided into nl sections. Elastic
modulus, Poisson’s ratio, and density of them are considered
to be the same.

Based on classic elasticity theory [18], radial displace-
ments of spindle and the kth slide of tool holder are given:

uSk
�
3 + υ
4E

ρω2
rk r

2
s +

1 − ]
3 + ]

r
2
k ,

uTk
�
1 − υ
4E

ρω2
r
3
k,

(4)

where uSk
is the radial displacement of the spindle at the kth

slide location. uTk
is the radial displacement of the kth slide of

the tool holder. E is the modulus. ρ is the density. υ is
Poisson’s ratio. rs is the spindle’s radius. rk is the radius of
the kth slide of the tool holder, which is varied from r1 to r2.

)e actual interference between the spindle and the kth

slide can be written as

δk � δ0 + uTk
− uSk

− δ′, (5)

where δ0 is the initial interference from drawbar load. δ′ is
the displacement from the cutting force.

According to elastic mechanics theory, the contact stress
is

Z

X
Y

O

α
δa

Oj

(a)

Zs + ϕYssinθj + ϕXscosθj

X j
sin

θ j 
+ 

Y j
co

sθ
j

X s
sin

θ j 
+ 

Y s
co

sθ
j

Oi′

Oi

Oj

Oj′

zj

Oe′

δa

Oe

αej

αij

α0

(f1 – 0.5)Dw

(f2 – 0.5)Dw

(b)

Figure 1: High-speed ball bearing geometric relationship. (a) Balling bearing under preload. (b) Position of raceways and the jth ball.
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σk �
Eδk r

2
r − r

2
k 

2rkr
2
s

. (6)

For the tool holder, the equilibrium equations are
expressed as

Fy � 

nl

k�1
σkrk

lT

nl

cos β, (7)

Fz � 

nl

k�1
σkrk

lT

nl

sin β, (8)

where Fy is the cutting force in the y-direction.Fz is the
drawbar force. β is the taper angle. Solving the above
equations by the Newton iterative method, δ′ and σk are
obtained.

According to fractal theory, a 2D multiscale surface
profile is given based on the W-M function [19].

H(x) � G
D− 1



nmax

nmin

cos 2πxc
n

( 

c
(2− D)n

(1<D< 2), (9)

where H(x) is the height of the profile. G is a characteristic
length scale. D is the fractal parameter. c � 1.5 and cnmin �

(1/L) [3]. L is the sample length. nmin and nmax are the
minimum and maximum frequency.

)e critical elastic contact area is given [20].

aec � G
2 29− 2D

π3− D

E

KH
 

2
ln c 

1/D− 1

, (10)

where K stands for the hardness coefficient. K � 0.454+

0.41υ. H stands for hardness.
)e maximum contact area of the asperities is assumed

as aL. If aL > aec, elastic contact load is given for an asperity
with contact area a.

Fce �
4
3

× 2(5/2)− D
× π(D− 3/2)

× E × G
(D− 1)

×(ln c)
(1/2)

× a
(3− D/2)

.

(11)

)e normal contact stiffness of a single asperity can be
written as

kne �
dFce

dδ
�

4E(3 − D)

3
���
2π

√
(2 − D)

a
1/2

. (12)

Elastoplastic deformation of asperities can be regarded as
two phases [21]. If aepc ≤ aL < aec, aepc is the minimum
contact area of the first phase.

aepc � G
2 29− 2D

6 π3− D( )
ln c

E

KH
 

2
 

1/(D− 1)

. (13)

Contact load and normal contact stiffness of first phase
elastoplastic deformation are given as

Fcep1 � 0.34 × 23.825− 0.85D
E
0.85

G
0.85(D− 1)

(KH)
0.15π0.425D− 1.275

(ln c)
0.425

a
1.425− 0.425D

,

knep1 �
dFcep1

dδ
�
1.03 × 21.825+0.15D

(KH)
0.15

E
0.85

a
0.425+0.075D

(1.425 − 0.425D)

3π0.075D+0.275
G
0.15(D− 1)

(ln c)
0.075

(2 − D)
.

(14)

If apc ≤ aL < aepc, apc is the minimum contact area of the
second phase.

apc � G
2 29− 2D

110 π3− D( )

E

KH
 

2
ln c 

1/(D− 1)

. (15)

Tool holder

Contact interface

P

Spindle

z

y

kth slide

lT

r 2

r 1

rk

r s

Figure 2: Sketch of spindle-tool holder interface.
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Contact load and normal contact stiffness of second
phase elastoplastic deformation are given as

Fcep2 �
1.4
3

× 22.367− 0.526D
E
0.526

G
0.526(D− 1)

(KH)
0.474π0.263D− 0.789

(ln c)
0.263

a
1.263− 0.263D

, (16)

knep2 �
dFcep2

dδ
�
1.4 × 20.367+0.474D

(KH)
0.474

E
0.526

a
0.237D+0.263

(1.263 − 0.263D)

3π0.237D− 0.211
G
0.474(D− 1)

(ln c)
0.237

(2 − D)
. (17)

)e statistical distribution of the asperities can be
expressed as [22]

n(a) �
D

2
η2− D/2

aL
D/2

a
− ((D/2)+1)

. (18)

)e real contact area is solved as

Ar � 
aL

0
n(a)ada, (19)

where η is the domain extension factor.
If aL > aec, interface contact load of the kth slide is

Fk � 
aepc

apc

n(a)Fcep2da + 
aec

aepc

n(a)Fcep1da + 
aL

aec

n(a)Fceda.

(20)

If aepc ≤ aL < aec, contact load of the kth slide is

Fk � 
aepc

apc

n(a)Fcep2da + 
aL

aepc

n(a)Fcep1da. (21)

If apc ≤ aL < aepc, contact load of the kth slide is

Fk � 
aL

apc

n(a)Fcep2da. (22)

)e following equation can be obtained according to the
contact load balance of the kth slide of tool holder-spindle
interface:

Fk � Ar · σk. (23)

Parameter aL can be solved from the above equations.
)e normal interface contact stiffness of the kth slide can be
solved by integral of every asperity. If aL > aec, normal
contact stiffness of the kth slide is

KkN
� 

aepc

apc

n(a)knep2da + 
aec

aepc

n(a)knep1da + 
aL

aec

n(a)kneda.

(24)

If aepc ≤ aL < aec, normal contact stiffness of the kth slide
can be written as

KkN
� 

aepc

apc

n(a)knep2da + 
aL

aepc

n(a)knep1da. (25)

If apc ≤ aL < aepc, the following expression is obtained:

KKN
� 

aL

apc

n(a)knep2da. (26)

)e total normal interface contact stiffness Kn is solved
by every slide’s contact stiffness. Similarly, the total shear
interface stiffness Kt can also be solved.)en, radial stiffness
K] and torsional stiffness Kϑ can be determined.

K] � 

nl

k�1
Kn cos β + Kt sin β( ,

Kϑ � 

nl

k�1
Kn sin β + Kt cos β( rk( .

(27)

Similarly, the stiffness between the tool holder and the
tool can also be solved by the same method.

From equations (7) and (8), because cutting force is
varied when the spindle-bearing system is running, radial
stiffness K] and torsional stiffness Kϑ of the tool holder are
dynamic contact stiffness.

2.3. Cutting Force Model. According to the milling stability
model [23], the instantaneous dynamic cutting thickness can
be written as

h φj  � x sinφj + y cosφj g φj , (28)

where x and y stand for the dynamic displacement of two
adjacent cutter teeth in X- and Y-directions.

g φj  �
1, φst <φj <φex ,

0, φj <φst orφj >φex ,

⎧⎪⎨

⎪⎩
(29)

where φst is cutting angle; φex is cut-out angle. Cutting
forces of the jth tooth are

Ftj � Ktcaph φj ,

Frj � KrcFtj,
(30)

where Ftjis the tangential force. Frj is the radial force. ap is
the axial cutting depth. Ktc and Krc are tangential and radial
cutting force coefficients. Assuming periodic average of
cutting forces Fx and Fy are measured by milling test, then
the relationship of the cutting force coefficients and average
cutting force are expressed as
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Fx �
ap

4ω
KrcVf +

Nap

π
Kre, (31)

Fy �
ap

4ω
KtcVf +

Nap

π
Kte, (32)

where N is the cutter teeth number. Vf is the feed rate. Kre
and Kte are radial and tangential edge force coefficients.

Cutting forces in X- and Y-directions are written as

Fx

Fy

⎧⎨

⎩

⎫⎬

⎭ �
− aphxx − aphxy

− aphyx − aphyy

⎡⎣ ⎤⎦
x(t) − x(t − T)

y(t) − y(t − T)
 ,

hxx � 
N

j�1
g φj  sinφj Kct cosφj + Kcr sinφj ,

hxy � 
N

j�1
g φj  cosφj Kct cosφj + Kcr sinφj ,

hyx � 
N

j�1
g φj  sinφj − Kct sinφj + Kcr cosφj ,

hyy � 
N

j�1
g φj  cosφj − Kct sinφj + Kcr cosφj ,

(33)

where T is the tooth cutting cycle.

2.4. Chatter Stability Prediction Method of the Spindle-Tool
Holder-Tool System. Figure 3 shows the distribution spring-
damping model of spindle-tool holder interface. Assuming
the interface is divided into n elements, there are n + 1 nodes,
i, i + 1, . . . i + n, on the spindle and j, j + 1, . . . j + n on the
tool holder, respectively.

Stiffness coupling matrix of the interface can be
expressed as

i

j
i j

Kc = 
KST

–KST

–KST

KST

. . .

. . .

. . .

... ... .... . .
(34)

where KST stands for the stiffness matrix of one single
spring-damping unit.

KST �

Kv 0 0 0 0 0

0 Kv 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 Kϑ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Damping matrix of the interface includes radial struc-
tural damping and torsional structural damping and can be
determined according to [24].

)e spindle system consists of CFV Xi motorized
spindle, BT-40 holder, and HSS-Co8 square 4 flute end
milling cutter. Figure 4 gives the FEM model of the system.
)ere are 38 Euler–Bernoulli elements and 41 nodes in the
FEM model. )e cutting force acts on the 41st node. Front
bearings are located at 14th and 15th nodes. Back bearings are
located at 3rd and 4th nodes. Spindle-tool holder interface is
located from 17th to 21st nodes and from 23rd to 27th nodes.
Tool holder-tool interface is located from 30th to 33rd nodes
and from 35th to 38th nodes.

Dynamic equation of the system can be given based on
the finite element method as follows:

M €X +(C + J) _X + KX � P(t) + G,

X � χ1, χ2, . . . χ41 
T
,

χi � xi, yi, zi, θxi, θyi, θzi 
T
, i � 1, 2, . . . , 41,

(36)

where M, K, C, and J are mass, stiffness, damping, and
gyroscopic matrix, respectively. P, G, and X are cutting
force, gravity, and displacement vector, respectively.

)ese matrices are assembled by the integration method.
Taking stiffness matrix as an example, Figure 5 gives the flow
chart of dynamic stiffness assembly process. First, dynamic
stiffness matrix of spindle, tool holder, and tool are solved
through the Euler–Bernoulli element model. )en, the node
stiffness matrix is assembled into the global matrix starting
from the first node. If there is bearing at this node, then the
bearing stiffness matrix is assembled to the corresponding
node in the global stiffness matrix. If there is spindle-holder
interface at this node, by using the same method, the holder-
tool coupling stiffness matrix can be assembled into the
global stiffness matrix. )en, the spindle-holder coupling
stiffness matrix is assembled to the corresponding node in
the global stiffness matrix.

Solving the FEM dynamic equations by using the
Runge–Kutta method, nonlinear responses at tool tip can
be obtained. Periodic motion bifurcation is solved by
continuation-shooting method [25]. According to the
extended Floquet theory, chatter stability of the response is
analyzed [26]. By increasing the cutting depth, the critical
stability condition can be found when one of the

Tool holder

Spindle

Contact interface

...

...

...

i i + 1

j j + 1

i + n – 1
i + n

j + n – 1 j + n

Figure 3: Distribution spring-damping model.
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eigenvalues lies out of the unit circle or one of Floquet
multipliers absolute value is larger than 1. Repeating
solving the solution and judging the eigenvalues, the sta-
bility lobes diagram can be obtained.

3. Analysis and Discussion

)e spindle system consists of CFV Xi motorized spindle,
BT-40 holder, and HSS-Co8 square 4 flute end milling
cutter. )e workpiece material is aluminum alloy 6061-T6.
)e dynamometer is installed on the machine table. )e
cutting force acting on the workpiece can be measured.
YOLO-YDC01 three-way dynamometer and a milling force
measurement system are used. Figure 6(a) shows the setup of
the test system.Milling force coefficients can be measured by
milling experiment. When spindle speed is 4000 r/min, axial
cutting depth is 1mm, radial cutting depth is 6mm, and the
average milling forces are measured by the test system.
Figure 6(b) shows the linear regression diagram of average
milling forces in X- and Y-directions. )en, tangential and
radial cutting force coefficients are solved according to
equations (31) and (32).

Ktc �
0.073 × 4 × 4000

1
� 1168N/mm2

,

Krc �
0.051 × 4 × 4000

1
� 816N/mm2

.

(37)

Similarly, different tangential and radial cutting force
coefficients can be obtained by changing the spindle speed,
axial cutting depth, radial cutting depth, and feed rate.

)e fractal parameters of BT-40 holder can be obtained by
power spectrum method [8]. )e micromorphology of rough
surfaces wasmeasured by a lasermicroscope; then the data are
used to identify the fractal parameters. Power spectrum of the
measured morphology can be expressed as [27]

S(χ) �
G
2(D− 1)

2 ln c

1
χ(5− 2D)

, (38)

where S(χ) is the power of the spectrum and χ is the re-
ciprocal of the wavelength of roughness. Expressing the
previous equation by a function of log-log plot, equation
(38) can be written as

lgS(χ) � 2(D − 1)lgG − lg(2 ln c) − (5 − 2D)lgχ. (39)

It can be seen that the power law behavior is a straight
line, as shown in Figure 7. )e power spectrum can be
written as a linear function.

lgS(χ) � − 1.53lgχ − 12.627. (40)

Spindle

Tool holder

Tool

Back bearing Front bearing

1 2

3 4

5 6 7 8 9 10 11 12 16 17 18 19 20 21 22

28 29 30 31 32 33 34

23 24 25 26 27

35 36 37 38

39 40 41

13

14 15

Figure 4: FEM model of the spindle-tool holder-tool bearing system.
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Figure 5: Dynamic stiffness matrix assembly of spindle-tool
holder-tool system.
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)en the fractal dimension parameters can be identified
as D � 1.735, G � 2.23 × 10− 9m.

3.1. Influence of Interface Parameters on Milling Stability.
Spindle rotating speed changes from 2000 r/min to 10,000 r/
min. Radial cutting depth is set as 6mm, and the feed rate
remains 800mm/min. )e preloads of front bearings and
back bearings are set as 8 μm. )e initial interference fit
between spindle and tool holder interface is 8 μm. Figure 8
shows that Floquet multipliers vary with axial cutting depth.
Figure 8(a) gives changes of tool tip Floquet multipliers at
3000 r/min when axial cutting depth varies from 2.2mm to
2.6mm. )e maximum Floquet multiplier comes out of the
unit circle by a pair of conjugate complex number at 2.6mm,
which explains that the system becomes unstable. It can be
demonstrated that the critical axial cutting depth is 2.6mm
at 3000 r/min. Similarly, Figure 8(b) demonstrates that the
critical axial cutting depth is 3.1mm at 5000 r/min.

Solving the Floquet multipliers under different rotating
speeds, the chatter stability lobes diagram can be obtained, as
shown in Figure 9(a). Figure 9(b) gives the influence of front
bearings’ preload on the critical axial cutting depth. As front
bearings’ preload increases, the stable milling depth in-
creases. )e increase of preload of the front bearings is
beneficial to improve the milling stability. However,
Figure 9(c) shows stable milling depth decrease as back
bearings’ preload increases. )e increase of preload of the
back bearings is not conducive to improving the milling
stability. Figure 9(d) illustrates that stable milling depth
increases as initial interference fit increases. )e increase of
spindle-tool holder’s interference fit is significantly benefi-
cial to improve the milling stability.

3.2. Influence of Feed Rate on Milling Stability. Spindle ro-
tating speed varies from 2000 r/min to 10,000 r/min. Radial
cutting depth is set as 6mm, and feed rate is set as 400mm/
min, 800mm/min, and 1200mm/min, respectively. Fig-
ure 10 shows the critical axial cutting depth varies with feed
rate. As feed rate increases, the stable milling depth decreases
first and then increases with the increase of spindle speed. In
order to improve milling stability, feed rate should change
with the spindle speed.

Figure 11 gives the influence of feed rate on critical axial
cutting depth. Figure 11 demonstrates that the critical axial
cutting depth increases first and then decreases with the
increase of feed rate. In order to maximize the critical axial
cutting depth, there exists an optimal feed rate corre-
sponding to a spindle speed. When spindle speed is 3000 r/
min, 5000 r/min, and 8000 r/min, the optimal feed rate is
600mm/min, 1200mm/min, and 1800mm/min,

(a)

Rotating speed: 4000r/min
Axial cutting depth:1mm
Radial cutting depth: 6mm
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Figure 6: Setup of milling forces and stability test system. (a) Setup of the test system. (b) Test results of average milling forces.
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Figure 9: Continued.
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respectively. It can be concluded that feed rate should match
the spindle speed and change with the spindle speed.

3.3. Influence of Radial Cutting Depth on Milling Stability.
Spindle rotating speed changes from 2000 r/min to 10,000 r/
min, and the feed rate is set as 800mm/min. Radial cutting
depth is set as 2mm, 6mm, and 10mm, respectively. Fig-
ure 12 shows the influence of radial cutting depth on chatter
stability. As radial cutting depth changes from 2mm to
10mm, the stable milling depth decreases. )e increase of

radial cutting depth is not conducive to improving milling
stability.

Figure 13 gives the influence of radial cutting depth on
critical axial cutting depth. It illustrates that the critical axial
cutting depth decreases with the increase of radial cutting
depth. Particularly, the critical axial cutting depth decreases
sharply when radial cutting depth exceeds 6mm. To increase
the critical axial cutting depth and, simultaneously, ensure
cutting efficiency, the radial cutting depth should not exceed
the critical value.
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Figure 9: Influence of interface parameters on chatter stability. (a) Original interface parameter. (b) Front bearing interface parameter
changes. (c) Back bearing interface parameter changes. (d) Tool holder interface parameter changes.
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Figure 14: Surface of the unprocessed workpiece.
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Figure 15: Comparison of calculated and measured milling forces. (a) Milling force in the X-direction. (b) Milling force in the Y-direction.
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4. Chatter Stability Experiment

)e milling experiments were performed. )e workpiece
material is 6061-T6 aluminum alloy. Figure 14 shows the
surface of unprocessed workpiece. )e cutting forces acting
on the workpiece are measured by dynamometer.

)e occurrence of chatter in the experiment can be
judged by analyzing the milling force and its frequency
spectrum. In the milling force spectrum, if a certain fre-
quency is not an integer multiple of the tooth passing fre-
quency (TPF), chatter vibration occurs and this frequency is
the chatter frequency (CF). However, if all frequencies are
integer multiples of the cutting frequency of the teeth, no
chatter vibration occurs. In addition, it can also provide
evidence for chattering judgment results by the roughness of
machined workpiece surface.

)e spindle rotating speed is set as 4000 r/min. Radial
cutting depth is set as 6mm, and feed rate remains 800mm/
min. When axial cutting depth is 1mm, Figure 15 gives the
comparison of calculated and measured cutting forces in X-
and Y-directions. It shows that the calculated results are in
good agreement with the measured milling forces and the
maximum relative error of the average milling force between
the calculated and measured data is 5.7%.

Figure 16 gives test results of the frequency spectrum of
the cutting force in the Y-direction and workpiece surface
under different axial cutting depth. Figure 16(a) illustrates
that when axial cutting depth is 1mm, the system is stable.
Figure 16(b) shows a smooth machined workpiece surface.
When axial cutting depth increases to 2mm, Figures 16(c)
and 16(d) demonstrate that chatter frequency occurs in the
frequency spectrum and the machined workpiece surface
becomes rough, which indicates that the cutting system
causes slight chatter vibration. When axial cutting depth
increases to 3mm, Figures 16(e) and 16(f) show that more
chatter frequencies occur in the frequency spectrum and the
machined workpiece surface becomes rougher, which

illustrate that the cutting system exists severe chatter
vibration.

Figure 17 gives the comparison between calculation
results and test results of milling stability. When the milling
depth is in the area below the calculation curve, the milling
status is stable; otherwise, the milling is in chatter status. It
can be concluded that calculation results agree well with
experimental results.

5. Conclusions

(1) A chatter stability prediction method of spindle-tool
holder-tool system is constructed considering in-
terface contact characteristics.)e fractal parameters
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Figure 17: Comparison between calculation results and test results
of milling stability.
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and cutting force coefficients are identified from the
tests. )e reliability of the method was proved by
milling force tests and milling stability experiments.

(2) )e increase of front bearings preload is beneficial
while increase of back bearings stiffness is not
conducive to improving the milling stability. )e
increase of spindle-tool holder’s interference fit is
significantly beneficial to improve the milling
stability.

(3) In order to improve the milling stability, feed rate
should vary with spindle speed. )ere exists an
optimal feed rate corresponding to a spindle speed.
)e optimal feed rate can be determined by the
milling stability prediction proposed in this paper.
Results find that the optimal feed rate should change
with the spindle speed. For the spindle studied in this
paper, the optimal feed rate should be 600mm/min,
1200mm/min, and 1800mm/min when the spindle
speed changes from 3000 r/min to 5000 r/min and
8000 r/min, respectively.

(4) )e critical axial cutting depth decreases with in-
crease of radial cutting depth. Results find that the
critical axial cutting depth decreases sharply when
radial cutting depth exceeds a critical value. In order
to increase the critical axial cutting depth and, si-
multaneously, ensure cutting efficiency, the radial
cutting depth should not exceed the critical value.

(5) )e method proposed in this paper can be used as an
instruction for predicting and suppressing chatter
vibration and optimizing cutting parameters and
also is helpful for designing the spindle-tool holder-
tool system.
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