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In this paper, we present a novel multisensor combinatory attitude determination method that enables high-accuracy mea-
surement of the attitude of a high rotational speed rigid-body aircraft. We analyze the external moments of the aircraft during
flight and develop the method using theoretical deductions based on the motion equations of a rigid body rotating around the
centroid. The proposed method fuses the data measured from GPS, gyrometer, and magnetometer and uses the improved
unscented Kalman filter (UKF) algorithm to perform filtering. First, appropriate assumptions and simplifying approximations are
made for around-centroid motion equations of a rigid body according to the motion characteristics of the high rotational speed
aircraft. Using these assumptions and approximations, the constraint equations between the Euler attitude angles and flight-path
angle, trajectory deflection angle are derived to serve as the state equation. Second, the roll angle with error is calculated using the
geomagnetic field model and the geomagnetic intensity measured by a three-axis magnetometer and then fused with the angular
velocity information obtained from the gyroscope for constructing the measurement equations. Finally, the state equations are
discretized using the Runge-Kutta method during the UKF prediction stage, improving the prediction accuracy. Simulation
results show that the proposed method can effectively determine the attitude information of the high rotational speed aircraft,
achieving high level of reliability and accuracy thanks to the combination of information from GPS, gyroscope,
and magnetometer.

1. Introduction

Acquisition of high-accuracy flight attitude information of a
high rotational speed aircraft is of great significance for
analyzing the flight dynamics of the carrier and providing
support for the navigation and guidance system. However,
accurate measurement of the attitude has been a major
challenge for the last several years due to high rotational
speeds and highly dynamic characteristics. With the de-
velopment of microelectro-mechanical sensors (MEMS),
microsensor systems such as solar sensor, inertial mea-
surement unit (IMU), and magnetometer could be applied
in a wide range of applications [1-4], significantly advancing
the research on attitude measurement. However, measure-
ment systems consisting of a single type of sensor have

limitations. For example, solar sensors require good weather
conditions [5], angular velocity gyroscopes tend to drift,
where the drift is proportional to the angular velocity [6], the
IMUs are plagued by error accumulation [7], and the
magnetometers are highly susceptible to interference from
external magnetic fields [8]. Therefore, for attitude mea-
surement of the high rotational speed aircraft, different types
of sensors can be combined to take full advantage of the
features of all the sensors, overcoming the limitations of each
type of sensor and consequently improving measurement
accuracy.

Researchers have carried out a significant amount of
work in the area of multisensor combinatory attitude
measurement. Gebre-Egziabher et al. [9] designed an in-
expensive multisensor attitude estimation system, developed
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a sensor fusion algorithm based on Euler angles and qua-
ternions, and proposed methods for scheduling gain and
estimating pole placement. Mao et al. [10] proposed a
method for accurate attitude determination based on data
fusion of a three-axis gyroscope, a three-antenna GPS, and a
star sensor. Tetanize and Shirazi [11] combined low-cost
MEMS and a nonlinear attitude estimation algorithm to
design an inexpensive and accurate system support for
navigation and attitude determination.

The aforementioned combinatory attitude measurement
methods mainly focus on nonrotating or low rotational
speed platforms, such as satellites, vehicles, and airplanes,
and cannot be applied to high rotational speed flight carriers.
Zhang et al. [12] designed a test with geomagnetic sensor
circuit module to reveal the coning motion law of high speed
spin-stabilized projectile. A research group at the Nanjing
University of Science and Technology applied the combined
GPS/SINS attitude measurement method to the high rota-
tional speed rocket platform. The approach solved the at-
titude of the rocket by using segmentation filtering to correct
the roll angle, which is somewhat inefficient [13]. Li et al. [14]
proposed a scheme for constructing a combinatory attitude
determination system using a magnetometer and an inertial
sensor, but the scheme ignored the influence of magnetic
declination in the calculation process. An et al. [15] proposed
a novel method for estimating the pitch and yaw angles of
the projectile through a special combination of magne-
tometers, but did not estimate its roll angle due to the ex-
tremely high rotational speed. All the abovementioned
combinatory attitude measurement methods focus on the
post-processing of measurement data, which indicates that
insuflicient effort has been dedicated to study the pattern of
attitude variations.

Both EKF and UKF are common and mature algorithms
for the filtering algorithms used in the combined attitude
measurement system. However, EKF ignores or approxi-
mates the high-order terms of the Taylor expansion and
involves calculation of the Jacobian matrix that is cum-
bersome. Compared with the EKF, the unscented Kalman
filter (UKF) exhibits good robustness in the presence of
nonlinearity and uncertainty; therefore, it is better at dealing
with complex models with high nonlinearity [16-19]. In the
UKEF algorithm, when the continuous system is discretized,
the discretization method and discrete step size directly
affect the filtering accuracy. When the step size is large, the
discrete models processed by the conventional methods such
as the Euler method significantly differ from the continuous
models. On the contrary, reducing the discrete step size
increases the computational complexity. When the fourth-
order classical Runge-Kutta method [20, 21] is used as the
discretization method, the reliance on discrete step size is
reduced greatly. Consequently, the discrete models become
closer to the theoretical continuous models, and the filtering
accuracy is improved.

In this paper, we developed a novel attitude measure-
ment method by studying high rotational speed rocket. First,
appropriate assumptions and simplifying approximations
were made for around-centroid motion equations [22] of a
rigid body with six degrees of freedom based on an analysis
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of the external moments and dynamics of the high rotational
speed flight platform. The lateral angle relationship con-
tained in the external moments was extracted and the new
motion equations containing the constraint relationship
between the lateral attitudes, i.e., pitch and yaw, and flight-
path angle, and trajectory deflection angle were derived.
Second, a complete roll angle calculation formula was ob-
tained based on the geomagnetic field model and the data
was measured using the magnetometer. According to the
angular motion characteristics of the high rotational speed
rocket and the error characteristics of the gyroscope and
magnetometer, the measured gyroscope data and the roll
angle were combined to obtain the angular velocity con-
version relationship between different coordinate systems.
Third, with the derived motion equations serving as state
equations and the angular velocity conversion relationship
serving as the measurement equation, the UKF algorithm
employing the fourth-order Runge-Kutta discretization
method was used to estimate the attitude of the high ro-
tational speed rocket. Finally, the effectiveness and reliability
of the proposed method were verified through simulations.

2. Coordinate Systems

To establish the differential equations of projectile dynamics,
we use the approach described in [22] to introduce several
basic coordinate systems: the ground coordinate system
O - XYZ, the body coordinate system O - X,Y,Z,, the
ballistic coordinate system O — X,Y,Z,, the projectile axis
coordinate system O — &, and the second projectile axis
coordinate system O —¢&#,({,, abbreviated as coordinate
systems N, B, V, A, and A,.

Figure 1 shows the angular relationships between these
coordinate systems. In the figure, the angles ¢, and ¢, are
the pitch and yaw Euler angles, respectively, the angle 0, is
the angle between the velocity vector and the horizontal
plane, the angle v, is the angle between the velocity vector
and the vertical plane, respectively, i.e., flight-path angle and
trajectory deflection angle, and § is the total attack angle of
the rocket. Figure 2 further illustrates the pitch component
6, and the yaw component §, of the total attack angle.

Both coordinate systems A and A, are nonrolling co-
ordinate systems that do not roll with the rocket. The axis O
of each coordinate system is the vertical axis of the rocket
and the only difference between the coordinate planes Ong
and On,(, is a turning angle f3. The coordinate system B was
attached to the carrier and moves along with it. It differs
from the coordinate system A by a rotational angle y, i.e., the
roll angle [22].

3. Combinatory Attitude
Determination Method

3.1. Establishing Dynamic Constraint Equations. The
movement of the rocket in air consists of two parts: the
centroid motion and the around-centroid motion. The
former is mainly characterized by the position and velocity
of the projectile and is governed by the law of centroid
movement. The latter is characterized by the attitude of the
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FiGure 1: The angular relationships between these coordinate
systems.

Up &)

N V<L

(2 82

FiGure 2: Coordinate system V turns to coordinate system A,.

rocket and is governed by the theorem of angular mo-
mentum. To study the attitude variation pattern of a rigid
body, it is necessary to analyze the pattern of around-cen-
troid motion and conduct an in-depth analysis of the ex-
ternal moments acting on the rigid body.

where M, and M, are the projected components of the
extreme damping moment and the tail guiding moment
along axis O§; M, and M are the projection components

Assume that the research object is an ideal axisymmetric
model and that both earth’s surface curvature and earth’s
rotation are ignored. Subsequently, a new set of around-
centroid motion equations can be derived from the trajec-
tory equations of the rigid body with six degrees of freedom
given in reference [22] as follows:

. 1

(,UE = EME,

. 1 2

w, = ZM” - waw( + w, tan @,

. 1 C
W = ZM( + waa)ﬂ — W, w; tan ¢,,

1 (1)
w
P ¢
Pa = cos ®,
¢2 = _wq’

ﬂ.’: wg — w tan @,,

where M, M,, and M; are the components of the external
moments in the coordinate system O — &7(; A and C are the
rotational inertia coeflicients; w,, @, and w; are the pro-
jection components of the angular velocity in the coordinate
system O —&y(; and ¢,, ¢, and y are the Euler attitude
angles.

During flight, the external moments acting on the rocket
mainly include static moment, equatorial damping moment,
extreme damping moment, and tail guiding moment. When
the external moments are projected onto the coordinate
system A, the extreme damping moment and the tail guiding
moment only have projection components along axis O and
the static moment and the equatorial damping moment only
have projection components along axes Oy and O(. Thus,
the moment components on the three axes of the coordinate
system A are as follows [22]:

( 2
Vv 1%
Mg = M+ My = —’%summ’wE + ‘%Slmxujaf,

Sl
1M, =M, +M,, = %vrm;v,( - %Sldmzz'wn, (2)
SI
M( = MZ( + Mzz( = —p_V’,mZ,VTW - %Sldmzzrw(,

of the static moment; M_,, and M_,, are the projection
components of the equatorial damping moment; p is the air
density; S is the cross-sectional area; [ is the length of the



rocket; d is the diameter of the rocket; § 7 is the slanting angle
of the tail; m_, m,., m,., and m,, represent the derivative of
the static moment coefficient, the derivative of the equatorial
damping moment coefficient, the derivative of the extreme
damping moment coeflicient, and the derivative of the tail
guiding moment, respectively; v, is the speed relative to the
wind, in the absence of wind, v, is replaced by v; and v,, and
vy are the components of the speed v, along axes Oz and O{
of coordinate system A, respectively.

Let the components of velocity v, in system A, be
denoted as v, and v, , and the relationship between v,, and
v,¢ and v, and v, is as follows:

Vg = Vpy, €OS B+ v, sin 3)

Vi = ~Vpy, SIN P+ v, cOs B,

As shown in Figure 2, the rotation relationship between
the coordinate system B and A, leads to v,, =-v,6; and
vy, = —v,0,. Consequently, (3) can be further written as

Vg = —V,0; cos - v,0, sin 5,

(4)

Voe = v,6; sin f —v,8, cos .

For a normally flying projectile, as the attack angle and
the ballistic deflection are small, the following relationship
holds:

B~o0,
81’~7§Da—9a, (5)
0 =0, - ¥,

Consequently, (5) can be further written as
Vig = _Vr8 =V \Pa _ea >
n 1 ( ) (6)
Vie = _Vr‘Sz =V (?2 - I//2)

If the influence of wind is ignored, the static moment
components M_, and M, in (2) can be written as

pSI

M, = _TVZ”"Z, (92— v2),
. (7)

p
Mz( = TVZmZI ((Pa - ea)'
Defining A,, = (pSI/2A)m., (7) can be rewritten as
M :—AAmv2 0= V5),
zn ( 2 2) (8)

Mz( = AAmvz (¢a - ea)'

In the same way, defining C,, = —(pSI  d/2A)m,,, the
components M_,, and M_,; of equatorial damping moment
in (2) can be written as

MZZ” = ACmvwﬂ,

)
M, = AC, vw,.

Defining B,, = —(pSld/2C)m,, component M, of
extreme damping moment in (2) can be written as

M, = CB,, vy (10)

xz& —
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Defining D,, = (pSI/2C)m,,,0 > component M, of tail
guiding moment in (2) can be written as

M, = CD,v". (11)

Substituting (8)-(11) into (2), the equations can be
obtained as follows:

My = CB,,vwg + CD,,v?,
M11 = _AAmV2 (902 - V/Z) + Acmvwn’ (12)
M = AA,v* (9, - 6,) + AC, va,.

The dynamics constraint equations between two Euler
angles and flight-path angle and trajectory deflection angle
are obtained as follows:

wg = B, vwg + D, v?,
. ) C 2
@, = =4,V (9, = ¥,) + Cpyw, - Q0 T w, tan ¢y,

. C
wg = A,V (9, - 0,) + Cvwp + 0@y ~ @y tan g,

. wr
Pa = >
cos @,
I ¢2 = —(1),1,

Y = w — wytan @,

A, =0,
C,=0,
B, =0,
| D,, =0,

(13)
where the rocket velocity v, the flight-path angle 0,, and the
trajectory deflection angle v, can be calculated from the GPS
data. The calculation formula can be derived from around-
centroid motion equations of the rigid body as follows:

Yy
0, = arctan| = |,
V.X

v
v, = arctan(—z cosf, ),

X

(14)

where v,, v, and v, are components of velocity v in the
coordinate system N, which can be calculated from GPS
data.

3.2. Solving Roll Angle with Three-Axis Magnetometer.
Among the three angular velocity components of the high
rotational speed aircraft, the roll angular velocity is much
larger than the angular velocities in the other two directions,
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resulting in a very large gyrodrift error in the roll direction.
Consequently, the gyroscope’s measurement is inaccurate
even after calibration, and the calculated roll angle can have
a very large error. By contrast, the magnetometer can
prevent the accumulation of the calculation error and will
not generate measurement distortion under the condition of
a large angular velocity, which makes it very suitable for
measuring the angular velocity and roll angle of the high
rotational speed carrier.

3.2.1. Longitudinal Rotation Angle of Rocket. As shown in
Figure 3, when the rocket is flying in the air, the coordinate
system B rotates along with it in the Earth’s magnetic field.
The projection components of the geomagnetic intensity
vector M on the coordinate system B are M,,, M,;,, and
M,,, respectively, wherein, M;, and M,, constitute the
lateral projection component M. Thus, the longitudinal
rotation angle ¢ of the carrier is as follows:

¢ = arctan(}ﬁbz). (15)

by

When M, =0, a calculation blind spot occurs in
equation (15). As can be seen from Figure 3(b), axis OY,
rotates to an angle perpendicular to the direction of the
Earth’s magnetic field and the roll angle should be either 77/2
or 37/2, depending on the sign of M,,.

3.2.2. Calculation of the Roll Angle. The roll angle y is the
angle between axis OY, of the coordinate system B and the
vertical plane containing the longitudinal axis of the body,
i.e, the angle that the coordinate system B has rotated
relative to the coordinate system A. The rotation angle ¢
calculated by equation (15) is the longitudinal rotation angle
of the body, which is mistaken as a roll angle in many papers.
The rotation angle ¢ is calculated from the projection
component of the geomagnetic intensity. Since the geo-
magnetic field does not coincide with the geographic field,
giving rise to magnetic declination, there is a phase differ-
ence y, between ¢ and y, as shown in Figure 4.

The calculation formula of the roll angle can be obtained
from Figure 4 as follows:

Y=Y —¢ (16)

In Figure 4, the projected components of the geomag-
netic vector M along axes Oy and O( of the coordinate
system A are M, and M, respectively. Therefore, the phase
difference vy, is given as follows:

Y 17
Yo = arctan ) (17)

n

Then, the complete calculation formula for the roll angle
can be obtained by combining (15)-(17):

M( sz
y = arctan| — | — arctan , (18)
M, My,

where M,,, and M,, are the magnetometer output signals
and M, and M, can be obtained using the geomagnetic field

F1GURE 3: The component of the geomagnetic vector on the rocket.
(a) Overall view (b) Lateral view.

FIGURE 4: Projection of the geomagnetic component M, in the
lateral direction of coordinate system A and B.

model and the relevant coordinate system transfer matrix.
The geomagnetic field vector is generally described by a
geographic coordinate system OX Y ;Z,, referred to as the



coordinate system E. Assuming that the components of the
geomagnetic intensity vector in the north-east-down (NED)
are My, M, and M, respectively, they can be calculated
using the geomagnetic field model. Subsequently, M, and
M, can be calculated through two rounds of coordinate
system conversion: transferring from the coordinate system
E to N, followed by transferring from the coordinate system
N to A.

Assume that the fire direction, i.e., the angle between the
shooting direction and the geographical north is ay. The
matrix for transferring from the coordinate system E to N is

cosay sinay 0
cy=| o 0o -1/ (19)

—sinay cosay O

COS @, COS ¢, COS &y — sin @, sin ay
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The matrix for transferring from the system N to A is
sin ¢,

cos ¢, 0

COS @, COS @, COS @, sin @,

Ch=| -sing, (20)

—sin ¢, cos ¢, —sin¢, sing, cos ¢,

The transfer matrix from the coordinate system E to A
can be obtained by combining (19) and (20):

COS ¢, COS @, Sin &y + sin @, COS &y, —COS @, Sin @,

Ch=CiCy = —sin ¢, cos ay —sin ¢, sin oy cos g, (21)
—sin ¢, COs ¢, COS Ay — COS P, sin @y, —sin @, COS ¢, Sin Ay + COS ¢, coOs Ay sin ¢, sin ¢,
Then, the projection component M, M,, and M, of the ~ wherein, M, and M required for (18) are
geomagnetic vector M in the coordinate system A is
M My
A
M, |=Cy| Mg |, (22)
M, Mp
M, = —sin g, cos ay My — sin ¢, sin ay Mg + cos ¢, Mp,
M, = (—sin @, cos ¢, cos oy — cos ¢, sinay )My -+, (23)
—(sin ¢, cos ¢, sin ay — cos @, cos ay )M + sin @, sin ¢, M,
1 0 0
Since the attack angle of the rocket during steady flight is
& 5 8 Cg =[0 cosy —sinvy |. (24)

small, the attitude angles ¢, and ¢, in the abovementioned
equation can be replaced by the flight-path angle 6, and
trajectory deflection angle y,, respectively.

3.2.3. Angular Velocity Conversion Equations. The three-
axis gyroscope measures the three angular velocities of the
carrier, i.e., the components w,,, w,,, and w,, along the
three axes of the coordinate system B, whereas the results of
calculation using (13) are the projection components w,
wy, and w; of the angular velocity on the coordinate system
A. Therefore, a conversion between the gyroscope mea-
surements and the calculated results is needed. Since the
coordinate system A differs from the coordinate system B
only by a roll angle y, the required transfer matrix is as
follows:

0 siny cosy

Thus, the conversion equations between the two sets of
angular velocities are given as

Wy, = wE,

Wy, = W, COSY + Wy SR (25)

Wy, = —W, siny + w; cps

4. UKF Design for Combinatory
Attitude Identification

The UKF mainly consists of two phases: the prediction phase
and the correction phase. In the prediction phase, a set of
state prediction Sigma points should be generated. Since the
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state equation is a continuous model, discretization needs to
be carried out that can directly affect the accuracy of the
filtering results. The Runge-Kutta method is often used in
ballistic calculations as it outperforms other methods in
terms of discretization accuracy under the same step size. In
this paper, the fourth-order classical Runge-Kutta method is
used for state estimation in the prediction stage. Therefore,
the filtering algorithm used in this paper is called the RK4-
UKF algorithm.

Assume that the state equation of a continuous nonlinear
system is

Xy = f[ X k= 1] + W, (26)

The measurement equation is
Yk = h[Xk, k] + Vk' (27)

The workflow of the RK4-UKF algorithm is as follows:

@ Calculation of the sigma point set:

0 o~

Xi1 = Xp1s

X X +A/n+ NP, i=12,...,n (28)
ke X —\Jm+ VP, i=n+1,...,2n

Y;'c/k—l = h(XZ/k71))

2n .
—~ M~y 1
Yiik-1 = Z WY
i=0

® Prediction phase:
ky = f (X;c—l)’

; h
k, = f(Xk—l +2k1)’
; h
ky = f{ Xiy +Ek2 >
ky = f(X;c—l + hk3)’

. A h
Xy = Xjp + A (ki + 2k, + 2k; + ky),

2n

=~ _ m i
Xijk-1 = Zwi Xi-1>
i=0

2n
c[ i =~ i ~ T
Prjp = Z Wi [Xk/k—l - xk/k—l] [Xk/k—l - xk/k—l] + Q.
i=0

(29)

® Correction phase:

2n ) )
Piyyyr-1 = Z W; [Y;c/k—l - ;T’k/k-l] [Y Kik-1 ~ Vkik-1 ]T + Ry,
i=0

(30)

2n . .
P(XY)k/k—l = Z ch [X;dk—l - ik/k—I] [Y;clk—l - )A/k/k—l]T’

i=0

-1
Ky = P xyyem-1P yyri-1o

Xy = Xpor + K (Vi = Prer)»

T
Pi = Prjor — Kiyyysr-1 K -

4.1. State Equation. Given the continuous nonlinear state
equations in (13), the state variables are written as

x:[xl Xy X3 X4 X5 Xg X7 Xg Xg xm]

=[w5 w, W 9, ¢, v A, C, B, Dm].

(31)



Then, (17) can be written as
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XgX |V + X gV

x=f(x)=

As the nonlinear equations given in (13) only approxi-
mately describe the around-centroid motion of the high
rotational speed rocket, there will be certain errors.
Therefore, Gaussian white noise W ~ N (0, Q) is introduced
to model these errors.

4.2. Measurement Equation. The output of the three-axis
gyroscope and the roll angle calculated by the magnetometer
are taken as the measured values and are recorded as
y= [wbx Wpy W, y]T. According to (25), the measure-
ment equation is constructed as follows:

X1

X, COS Xg + X3 Sin x4
y=H(x)+V = . +V,  (33)
—X, sin x4 + X3 COS X

X6

where, the measurement noise V' is Gaussian white noise and
V ~N(0, R).

5. Combinatory Attitude Determination System

The combinatory attitude determination system consists of
a data acquisition unit, a preprocessing unit, and a filtering
unit, and the block diagram of which is shown in Figure 5.
The data acquisition unit of the system is responsible for
data collection, which consists of a GPS, a three-axis gy-
roscope, and a three-axis magnetometer. The preprocessing
unit is responsible for (1) denoising the signals; (2)

2 ¢ 24
—x,v* (X5 — W) + XX,V — 2% + X tan X

) C
X,V (x4 = 0,) + xgx3v + J 1% XX tan x5

%5
COS X5

X] — X3 tan x5

—x, +W. (32)

calculating the velocity, flight-path angle, and trajectory
deflection angle using the GPS signal; (3) obtaining the
geomagnetic information using the position information
and the geomagnetic model; (4) calculating the roll angle
using the magnetometer signal. The filtering unit is re-
sponsible for processing signals according to the con-
structed state equations and measurement equations and
finally outputting the attitude and other additional
information.

6. Simulation and Analysis

Assume an ideally axisymmetric rocket with uniform mass
distribution. The shape of the rocket has no aerodynamic
eccentricity and there is no wind. The combinatory attitude
determination method proposed above is simulated, and the
performance of the proposed RK4-UKEF is evaluated.

Firstly, the data of the entire rocket trajectory is simu-
lated as the data source according to the rocket motion
equations [22].

Because the combinatory attitude determination method
uses magnetometer signal of the lateral axis of the carrier and
the geomagnetic direction is approximately north-south, the
elevation angle 0, is set to 42 and the fire direction ay is set
to 100, as shown in Figure 6. The launch position can be set
to any value on the ground. In the simulation, the latitude
and longitude coordinates of the launch position are (N40°,
E100°), and the altitude is set to zero. C++ language is used in
the simulation program, and the time step size of the
simulation is 1 ms.
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Preprocessing unit

Calculations of velocity and

velocity angles
GPS . :
Calculations of geomagnetic

i
!
———> State equation !
1
i

I
I
I I
. ! teri . Information
T field information 1 RS — output
1 | Denoising I !
Three-axis ! Calculation of roll angle 1 Measurement |
magnetometer : : & ! equation |
[
Three-axis . | ' :
gyroscope e i i
I_______________n____________________________'I ______________________________ 3
FIGURE 5: Flowchart of combinatory attitude determination.
Up disturbance. Pitch angle ¢, oscillates up and down around

North

FiGUre 6: The elevation angle and fire direction.

Then, the output signals of various sensors required by
the combined attitude determination method are simulated
by the ballistic data source. The error-free output signal of
the gyroscope is simulated using the transfer matrix C5 of
coordinate system A to coordinate system B, i.e., the inverse
matrix of (24). The GPS output signal is simulated using the
rocket position information, the transfer matrix of related
coordinate system [22]. The output signal of the magne-
tometer is simulated using the rocket position information,
the initial launching element, the geomagnetic field model,
and the transfer matrix CE of coordinate system E to co-
ordinate system B, where matrix C% is obtained as follows:

ct=chch, (34)

where C5 and C# can be obtained by formulas (24) and (21),
respectively.

The signal simulation process is shown in Figure 7. In
order to facilitate the visualization of the data, MATLAB is
used for data conversion in the simulation process.

Finally, the combinatory attitude determination method
proposed in paper is simulated after the signals simulation.
MATLAB is used in the simulation program. For displaying
the details clearly, the figure only shows the simulation data
and processing results corresponding to the trajectory
segment during the initial 5s.

6.1. Relationship between Attitude Angles and Flight-Path
Angle and Trajectory Deflection Angle. When a high rota-
tional speed rocket is in stable flight, its stability fits with the
Lyapunov stability if resonance is not considered. The
longitudinal axis of the rocket will oscillate periodically
around the velocity line after the rocket experiences a

the flight-path angle 6, and yaw angle ¢, oscillates left and
right around the trajectory deflection angle y,, with the
oscillation amplitude diminishing continuously, as shown in
Figure 8. The simulation results also indicate that the attitude
angles of the rocket are affected by the initial disturbance at
the time of launch. The oscillation amplitude is large at the
beginning and then decreases gradually.

6.2. Simulation of Roll Angle Calculation. The simulated GPS
signal provides position information such as latitude and
longitude, and altitude and can be used to calculate the flight
velocity v, velocity components v,, v,, and v,, flight-path
angle 0,, and trajectory deflection angle y,. Meanwhile, it is
also possible to calculate the geomagnetic information of the
whole trajectory using the IGRF12, chiefly the geomagnetic
components M, My, and M, in the NED directions, and
then calculate the projected components M, and M;. The
simulated magnetometer signal provides the projection
components M, and M, of the geomagnetic intensity
vector M on the rocket body.

According to equation (18), the roll angle is obtained and
compared with the true value, as shown in Figure 9.
Comparing the calculated value and the true value, it can be
observed that the calculation accuracy is high, the difference
between the two values is on the order of magnitude of
107" rad. The main cause of this error is the use of flight-path
angle and trajectory deflection angle instead of attitude
angles. As seen by observing the calculation error shown in
Figure 9(b) and the correlation of the relationship between
the attitude angles and the flight-path angle and trajectory
deflection angle shown in Figure 8, it is evident that the
larger the amplitude of the attitude angles oscillation, the
larger the calculation error, with the error decreasing as the
amplitude of the oscillation diminishes. Since flight-path
angle and trajectory deflection angle differ slightly from the
attitude angles, the error is generally small and within an
acceptable range.

6.3. RK4-UKF Simulation. Gaussian white noise was added
to the gyroscope error-free signal to simulate real gyroscope
output signal. According to the angular variation charac-
teristics of the high rotational speed rocket, Gaussian white
noise with different variances were added to the angular
velocities and served as measured values. As shown in
Figure 10, noise with distribution d, ~ N (0.1rad, 1 rad/s)
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was added to the angular velocity wj,, noise with distri-
bution dyz ~ N (0.01 rad, 0.1 rad/s) was added to both an-
gular velocities w,, and wj,, and noise with distribution
dy ~ N (0, 1.5") was added to the real value of the roll angle.
Figure 10(a) shows the Gaussian white noise added to the
three-axis gyroscope. The maximum error of the angular
velocity w,, is about +4ra d/s, and the maximum error of
both angular velocities w,, and w,, is about +0.4ra d/s.
Figure 10(b) shows the Gaussian white noise added to the
roll angle, and the maximum error is about +6°.

Filtering was performed separately using the RK4-UKF
algorithm and the UKF algorithm with the standard Euler
method, with the discretization step sizes set to 1 ms and
10 ms. The attitude angles of the rocket were estimated and
compared with the true values.

Figure 11 shows the filtering result under the dis-
cretization step size of 1 ms. Figures 11(a) and 11(b) com-
pare pitch, yaw, and roll angles. It can be seen from the
figures that the estimated values are very close to the true
values for both UKF and RK4-UKF algorithms. Only minor
deviations can be observed at certain locations.

Figure 12 further shows the filtering errors for the three
attitude angles. Both the standard UKF and RK4-UKF yield
relatively high filtering accuracy: the errors for pitch and
yaw angles are on the order of magnitude of 10~ rad, and
the error for roll angle is slightly larger, on the order of
magnitude of 107> rad. Since the filter step size is the same
as the step size of the ballistic data simulation, both of
which is 1 ms, the approximation model used for filtering
exhibits higher precision. The standard UKF and RK4-UKF
yield roughly the same filtering precision. It can also be
seen from the figures that the error is relatively large in the
initial segment of the trajectory, where the oscillation
amplitude of the longitudinal axis is relatively large and the
error decreases as the oscillation amplitude diminishes. The
key causes of the error include @ the combinatory attitude
determination method proposed in this paper is derived

using the kinematics equations, and assumptions are made
for constraining the attitude angles with flight-path angle
and trajectory deflection angle. Therefore, the more dif-
ferent the attitude angles are compared to the flight-path
angle and trajectory deflection angle, the lower the filtering
accuracy; @ as the flight-path angle and trajectory de-
flection angle are used instead of the attitude angles in the
calculation of the roll angle measured value, the resulting
calculation error will be passed to the attitude estimation
system. In short, the larger the oscillation of the longitu-
dinal axis of the rocket, consequently, the larger the fil-
tering error.

The filtering result with the discretization step size set to
10ms is shown in Figure 13. Compared with the filtering
result under the discretization step size of 1 ms, the filtering
accuracies of pitch, yaw, and roll angles decrease. It can be
seen from the figure that the filtering sampling points are
sparse, and the filtering result deviates significantly from the
true value at some locations.

Figure 14 shows the estimation errors. Compared with
the filtering results under the discretization step size of 1 ms,
both UKF and RK4-UKEF yield larger filtering errors, but the
filtering accuracy of the latter algorithm is significantly
higher than that of the latter algorithm. The pitch and yaw
errors of the standard UKF increase to the order of mag-
nitude of 10 *rad, and the roll angle error increases to the
order of magnitude of 10~ rad. The RK4-UKF algorithm is
more robust than the standard UKF.

Finally, the computing time of UKF and RK4-UKEF is
compared. Perform 1000 calculations and record the
computing time. When the step size is 1ms, the average
computing time of UKF is about 3.6143 s and the average
computing time of RK4-UKF is about 5.0344 s. When the
step size is 10 ms, the average computing time of UKF is
about 0.4272 s and the average computing time of RK4-UKF
is about 0.5347s. Compared with UKF, RK4-UKF takes
slightly longer time to calculate.
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FIGURE 11: Comparison of filtered results and true values. (a) Pitch and yaw angles. (b) Roll angle.
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6.4. Simulation Analysis. As shown by the simulations and
processing results, the combinatory attitude determination
method proposed in the paper could estimate the attitude
angles of stable flying rockets with high precision. Moreover,
the RK4-UKF algorithm is more robust than the standard
UKEF algorithm and can determine attitude parameters with
relatively high accuracy when the discretization step size is
large. The following points can be summarized based on the
simulation process and analysis:

® Several assumptions were made for deriving the
motion model of the high rotational speed aircraft: the

rocket was ideally axisymmetric, the shape of the rocket
had no aerodynamic eccentricity, and the rocket mass
was distributed uniformly. Moreover, during the der-
ivation process, the influence of wind and the relatively
small Magnus moment were ignored, and the ap-
proximations of &, =¢,—0,andd, = ¢, — v, were
made for the attack angle components. Consequently,
the Gaussian white noise W in the state equations (32)
is uncertain.

@ The attitude information is often used for navigation
and guidance of aircraft, which is usually based on the
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geographic coordinate system, for example, the GPS.
Therefore, during the process of measuring and cal-
culating the roll angle with a magnetometer, it is
necessary to consider the magnetic declination, i.e., the
angle between the geomagnetic north and the geo-
graphic north. Therefore, when the geomagnetic data
are used to calculate the roll angle, a phase difference
must be introduced if the geographic coordinate system
is used as the benchmark.

® Under the same sampling step size, the fourth-order
Runge-Kutta discretization method vyields lower

discretization errors, and the state equations after
discretization are close to the continuous model.
Compared with the UKF algorithm employing the
Euler discretization method, the RK4-UKF algorithm is
more robust and less dependent on the discretization
step size, but takes slightly longer time.

7. Conclusions

The attitude measurement system of a rigid-body aircraft has
higher requirements on the sensors due to high rotational
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speed and highly dynamic characteristics. Combining
measurement system of multiple sensors can increase the
accuracy of attitude estimation. In this study, we analyzed
the external moments and angular motion characteristics of
the aircraft during stable flight and made a few appropriate
assumptions and approximations for around-centroid
motion equations of the rigid body. Subsequently, we ob-
tained a set of dynamic constraint equations involving the
lateral attitude angles and the flight-path angle and trajec-
tory deflection angle through deduction. The dynamic
constraint equations were used as the driving equations for
attitude determination. The advantages of different sensors
were combined by fusing the data from multiple sensors, and
accurate flight attitudes were obtained using the RK4-UKF
algorithm. Finally, the feasibility and effectiveness of the
proposed method were verified through a simulation in
which different discretization step sizes were used. The
problems encountered in the simulation process were an-
alyzed and discussed, and the following points are worth
noting:

® During the process of deriving the dynamic con-
straint equations, the following approximations can be
made only when the aircraft is in stable flight state: the
attack angle component 6, in the pitch direction is the
difference between the pitch angle ¢, and the flight-
path angle 0,, and the attack angle component 6, in the
yaw direction is the difference between the yaw angle ¢,
and the trajectory deflection angle y,. For flight carriers
that do not have the three major stability properties, the
proposed method is less suitable.

® The research object studied in this paper is a high
rotational speed rocket. Therefore, the motion equa-
tions and external moments described in this paper are
only relevant to high rotational speed rockets. For other
types of aircrafts, the motion equations and external
moments will be different. Nonetheless, the combi-
natory attitude determination method proposed in this
paper is applicable to all high rotational speed un-
controlled axisymmetric flight carriers such as rotating
tail projectiles.

Based on the motion equations and dynamics of the rigid
body, the proposed method combines the advantages of
multiple types of sensors and is easy to implement. In line
with the current trend of intelligent aircraft, the proposed
method can play an important role in navigation and
guidance of high rotational speed flight carriers and has the
potential of being widely used in high-precision flight
control.
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