
Research Article
Improving Maneuver Strategy in Air Combat by Alternate Freeze
Games with a Deep Reinforcement Learning Algorithm

Zhuang Wang ,1 Hui Li ,1,2 Haolin Wu ,1 and Zhaoxin Wu 2

1College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China
2National Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu, Sichuan 610065, China

Correspondence should be addressed to Hui Li; lihuib@scu.edu.cn

Received 11 April 2020; Accepted 9 June 2020; Published 30 June 2020

Academic Editor: Ramon Sancibrian

Copyright © 2020 ZhuangWang et al.'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In a one-on-one air combat game, the opponent’s maneuver strategy is usually not deterministic, which leads us to consider a
variety of opponent’s strategies when designing ourmaneuver strategy. In this paper, an alternate freeze game framework based on
deep reinforcement learning is proposed to generate the maneuver strategy in an air combat pursuit.'emaneuver strategy agents
for aircraft guidance of both sides are designed in a flight level with fixed velocity and the one-on-one air combat scenario.
Middleware which connects the agents and air combat simulation software is developed to provide a reinforcement learning
environment for agent training. A reward shaping approach is used, by which the training speed is increased, and the performance
of the generated trajectory is improved. Agents are trained by alternate freeze games with a deep reinforcement algorithm to deal
with nonstationarity. A league system is adopted to avoid the red queen effect in the game where both sides implement adaptive
strategies. Simulation results show that the proposed approach can be applied to maneuver guidance in air combat, and typical
angle fight tactics can be learnt by the deep reinforcement learning agents. For the training of an opponent with the adaptive
strategy, the winning rate can reach more than 50%, and the losing rate can be reduced to less than 15%. In a competition with all
opponents, the winning rate of the strategic agent selected by the league system is more than 44%, and the probability of not losing
is about 75%.

1. Introduction

Despite long-range radar and missile technology improve-
ments, there is still a scenario that two fighter aircrafts may
not detect each other until they are within the visual range.
'erefore, modern fighters are designed for close combat,
and military pilots are trained in air combat basic fighter
maneuvering (BFM). Pursuit is a kind of BFM, which aims
to control an aircraft to reach a position of advantage when it
is fighting against another aircraft [1].

In order to reduce the workload of pilots and remove the
need to provide them with complex spatial orientation in-
formation, many research studies focus on the autonomous
air combat maneuver decision. Toubman et al. [2–5] used
rule-based dynamic scripting in one-on-one, two-on-one,
and two-on-two air combat, which requires hard coding the
air-combat tactics into a maneuver selection algorithm. A

virtual pursuit point-based combat maneuver guidance law
for an unmanned combat aerial vehicle (UCAV) is presented
and is used in X-Plane-based nonlinear six-degrees-of-
freedom combat simulation [6, 7]. Eklund et al. [8, 9]
presented a nonlinear, online model predictive controller for
pursuit and evasion of two fixed-wing autonomous aircrafts,
which rely on previous knowledge of the maneuvers.

Game-theoretic-based approaches are widely used in the
automation of air combat pursuit maneuver. Austin et al.
[10, 11] proposed a matrix game approach to generate in-
telligence maneuver decisions for one-on-one air combat. A
limited search method is adopted over discrete maneuver
choices to maximize a scoring function, and the feasibility of
real-time autonomous combat is demonstrated in simula-
tion. Ma et al. [12] formulated the cooperative occupancy
decision-making problem in air combat as a zero-sum
matrix game and designed the double-oracle combined

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 7180639, 17 pages
https://doi.org/10.1155/2020/7180639

mailto:lihuib@scu.edu.cn
https://orcid.org/0000-0002-7895-4416
https://orcid.org/0000-0002-7333-6942
https://orcid.org/0000-0002-8824-6288
https://orcid.org/0000-0001-6362-0109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7180639

algorithm with neighborhood search to solve the model. In
[13, 14], the air combat game is regarded as the Markov
game, and then the pursuit maneuver strategy is solved by
computing its Nash equilibrium. 'is approach solves the
problem that the matrix game cannot deal with continuous
multiple states. However, it is only suitable for rational
opponents. An optimal pursuit-evasion fighter maneuver is
formulated as a differential game and then solved by non-
linear programming, which is complex and requires enor-
mous amount of calculation [15].

Other approaches for pursuit maneuver strategy gen-
eration include influence diagram, genetic algorithm, and
approximate dynamic programming. Influence diagram is
used to model the sequential maneuver decision in air
combat, and high-performance simulation results are ob-
tained [16–18]. However, this approach is difficult to be
applied in practice since the influence diagram is converted
into a nonlinear programming problem, which cannot meet
the demand of fast computation during air combat. In [19], a
genetics-based machine learning algorithm is implemented
to generate high angle-of-attack air combat maneuver tactics
for the X-31 fighter aircraft in a one-on-one air combat
scenario. Approximate dynamic programming (ADP) can
be employed to solve the air combat pursuit maneuver
decision problem quickly and effectively [20, 21]. By con-
trolling the roll rate, it can provide fast maneuver response in
a changing situation.

Most of the previous studies have used various algo-
rithms to solve the pursuit maneuver problem and have
some satisfactory results, whereas two problems still exist.
One is that previous studies have assumed the maneuver
strategy of the opponent is deterministic or generated by a
fixed algorithm. However, in realistic situations, these ap-
proaches are difficult to deal with the flexible strategies
adopted by different opponents. 'e other is that traditional
algorithms rely heavily on prior knowledge and have high
computational complexity, which cannot adapt to the
rapidly changing situation in air combat. Since UCAVs have
received growing interest worldwide and the flight control
system of the aircraft is developing rapidly towards intel-
lectualization [22], it is necessary to do research on the
intelligent maneuver strategy in UCAVs and manned air-
craft combat.

In this paper, a deep reinforcement learning- (DRL-)
[23] based alternate freeze game approach is proposed to
train guidance agents which can provide maneuver in-
structions in an air combat. Using alternate freeze games,
in each training period, one agent is learning while its
opponent is frozen. DRL is a type of artificial intelligence,
which combines reinforcement learning (RL) [24] and
deep learning (DL) [25]. RL allows an agent to learn
directly from the environment through trial and error
without perfect knowledge of the environment in advance.
A well-trained DRL agent can automatically determine an
adequate behavior within a specific context trying to
maximize its performance using few computational times.
'e theory of DRL is very suitable for solving sequential
decision-making problems such as maneuver guidance in
air combat.

DRL has been utilized in many decision-making fields,
such as video games [26, 27], board games [28, 29], and
robot control [30] and obtained great achievements of
human level or superhuman performance. For aircraft
guidance research, Waldock et al. [31] proposed a DQN
method to generate a trajectory to perform perched landing
on the ground. Alejandro et al. [32] proposed a DRL strategy
for autonomous landing of the UAV on a moving platform.
Lou and Guo [33] presented a uniform framework of
adaptive control by using policy-searching algorithms for a
quadrotor. An RL agent is developed for guiding a powered
UAV from one thermal location to another by controlling
bank angle [34]. For air combat research, You et al. [35]
developed an innovative framework for cognitive electronic
warfare tasks by using a DRL algorithm without prior in-
formation. Luo et al. [36] proposed a Q-learning-based air
combat target assignment algorithm which avoids relying on
prior knowledge and performs well.

Reward shaping is a method of incorporating domain
knowledge into RL so that the algorithms are guided faster
towards more promising solutions [37]. Reward shaping is
widely adopted in the RL community, and it is also used in
aircraft planning and control. In [4], a reward function is
proposed to remedy the false rewards and punishments for
firing air combat missiles, which allows computer-generated
forces (CGFs) to generate more intelligent behavior. Tumer
and Agogino [38] proposed difference reward functions in a
multiagent air traffic system and showed that agents can
manage effective route selection and significantly reduce
congestion. In [39], two types of reward functions are de-
veloped to solve ground holding and air holding problems,
which assist air traffic controllers in maintaining high
standard of safety and fairness between airlines.

Previous research studies have shown benefits of using
DRL to solve the air maneuver guidance problem. However,
there are still two problems in applying DRL to air combat.
One is that previous studies did not have a specific envi-
ronment for air combat, either developing an environment
based on the universal ones [32] or using a discrete grid
world, which do not have the function of air combat
simulation.

'e other problem is that classic DRL algorithms are
almost all one-sided optimization algorithms, which can
only guide an aircraft to a fixed location or a regularly
moving destination. However, the opponent in air combat
has diversity and variability maneuver strategies, which are
nonstationary, and the classic DRL algorithms cannot deal
with them. Hernandez-Leal et al. reviewed how the non-
stationarity is modelled and addressed by state-of-the-art
multiagent learning algorithms [40]. Some researchers
combine MDP with game theory to study reinforcement
learning in stochastic games to solve the nonstationarity
problem [41–43], while there are still two limitations. One is
to assume the opponent’s strategy is rational. In each
training step, the opponent chooses the optimal action. A
trained agent can only deal with a rational opponent, but
cannot fight against a nonrational one. 'e other is to use
linear programming or quadratic programming to calculate
the Nash equilibrium, which leads to a huge amount of

2 Mathematical Problems in Engineering

calculations. 'e Minimax-DQN [44] algorithm which
combines DQN and Minimax-Q learning [41] for the two-
player zero-sumMarkov game is proposed in a recent paper.
Although it can be applied to complex games, it still can only
deal with rational opponents and needs to use linear pro-
gramming to calculate the Q value.

'e main contributions of this paper can be summarized
as follows:

(i) Middleware is designed and developed, which
makes specific software for air combat simulation
used as an RL environment. An agent can be trained
in this environment and then used to guide an
aircraft to reach the position of advantage in one-
on-one air combat.

(ii) Guidance agents for air combat pursuit maneuver of
both sides are designed.'e reward shaping method
is adopted to improve the convergence speed of
training and the performance of the maneuver
guidance strategies. An agent is trained in the en-
vironment where its opponent is also an adaptive
agent so that the well-trained agent has the ability to
fight against an opponent with the intelligent
strategy.

(iii) An alternate freeze game framework is proposed to
deal with nonstationarity, which can be used to
solve the problem of variable opponent strategies in
RL. 'e league system is adopted to select an agent
with the highest performance to avoid the red queen
effect [45].

'is paper is organized as follows. Section 2 intro-
duces the maneuver guidance strategy problem of one-
on-one air combat maneuver under consideration and
the DRL-based model as well as training environment to
solve it. 'e training optimization includes reward
shaping and alternate freeze games which are presented
in Section 3. 'e simulation and results of the proposed
approach are given in Section 4. 'e final section con-
cludes the paper.

2. Problem Formulation

In this section, the problem of maneuver guidance in air
combat is introduced.'e training environment is designed,
and the DRL-based model is set up to solve it.

2.1.ProblemStatement. 'eproblem solved in this paper is a
one-on-one air combat pursuit-evasion maneuver problem.
'e red aircraft is regarded as our side and the blue one as an
enemy. 'e objective of the guidance agent is to learn a
maneuver strategy (policy) to guide the aircraft from its
current position to a position of advantage and maintain the
advantage. At the same time, it should guide the aircraft not
to enter the advantage position of its opponent.

'e dynamics of the aircraft is described by a point-mass
model [17] and is given by the following differential
equations:

_x � v cos θ cosψ,

_y � v cosθ sinψ,

_z � vsinθ,

θ
.

�
1

mv
((L + Tsinβ) × cosϕ − mgcosθ),

_ψ �
1

mvcosθ
(L + Tsinβ) × sinϕ,

_v �
1
m

(Tcosβ − D) − gsinθ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where (x, y, z) are 3-dimensional coordinates of the aircraft.
'e terms v, θ, and ψ are speed, flight path angle, and the
heading angle of the aircraft, respectively. 'e mass of the
aircraft and the acceleration due to the gravity are denoted
by m and g, respectively. 'e three forces are lift force L,
drag force D, and thrust force T. 'e remaining two vari-
ables are the angle of attack β and the bank angle ϕ, as shown
in Figure 1.

In this paper, the aircraft is assumed to fly at a fixed
velocity in the horizontal plane, and the assumption can be
written as follows:

β � 0,

θ � 0,

T � D,

L �
mg

cosϕ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

'e equations of motion for the aircraft are simplified as
follows:

xt+δt � xt + vδtcos ψt+δt(􏼁,

yt+δt � yt + vδtsin ψt+δt(􏼁,

ψt+δt � ψt + _ψt+δtδt,

_ψt+δt �
g

v
tan ϕt+δt(􏼁,

ϕt+δt � ϕt + At
_ϕtδt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where v, _ϕt, ϕt, _ψt, and ψt are the speed, roll rate, bank angle,
turn rate, and heading angle of the aircraft at time t, re-
spectively. 'e term At is the action generated by the
guidance agent, and the control actions available to the
aircraft are a ∈ {roll-left, maintain-bank-angle, roll-right}.
'e simulation time step is denoted by δt.

Mathematical Problems in Engineering 3

In aircraft maneuver strategy design, maneuvers in a fixed
plane are usually used to measure its performance. Figure 2
shows a one-on-one air combat scenario [20], in which each
aircraft flies at a fixed velocity in the X-Y plane under a ma-
neuver strategy at time t. 'e position of advantage is that one
aircraft gains opportunities to fire at its opponent. It is defined as

dmin <dt <dmax,

μr
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< μmax,

ηb
t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< ηmax,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where superscripts r and b refer to red and blue, respectively.
'e term dt is the distance between the aircraft and the target at
time t, μr

t is the deviation angle which is defined as the angle
difference between the line-of-sight vector and the heading of
our aircraft, and ηb

t is the aspect angle which is between the
longitudinal symmetry axis (to the tail direction) of the target
plane and the connecting line from the target plane’s tail to
attacking the plane’s nose.'e terms dmin, dmax, μmax, and μmin
are thresholds, where the subscriptsmax andmin represent the
upper and lower bounds of the corresponding variables, re-
spectively, which are determined by the combat mission and
the performance of the aircraft.

'e expression dmin <dt <dmax makes sure that the
opponent is within the attacking range of the air-to-air
weapon of the aircraft. 'e expression |μr

t |< μmax refers to an
area in which the blue aircraft is difficult to escape with
sensor locking. 'e expression |ηb

t |< ηmax defines an area
where the killing probability is high when attacking from the
rear of the blue aircraft.

2.2. DRL-Based Model. An RL agent interacts with an envi-
ronment over time and aims tomaximize the long-term reward
[24]. At each training time t, the agent receives a state St in a
state space S and generates an actionAt from an action spaceA

following a policy π: S × A⟶ R. 'en, the agent receives a
scalar reward Rt and transitions to the next state St+1 according
to the environment dynamics, as shown in Figure 3.

A value function V(s) is defined to evaluate the air
combat advantages of each state, which is the expectation of
discounted cumulated rewards on all states following time t:

V(s) � Eπ Rt + cRt+1 + c
2
Rt+2 + . . . St � s

􏼌􏼌􏼌􏼌􏽮 􏽯, (5)

where c ∈ [0, 1] is the discount factor and policy π(s, a) is a
mapping from the state space to the action space.

'e agent guides an aircraft to maneuver by changing its
bank angleϕ using roll rate _ϕ.'e action space of DRL is {−1, 0,
1}, and At can take a value from three options at time t, which
means roll-left, maintain-bank-angle, and roll-right, respec-
tively. 'e position of the aircraft is updated according to (3).
'e action-value functionQ(s, a) can be used, which is defined
as the value of taking action a in state s under a policy π:

Q(s, a) � Eπ 􏽘

∞

k�0
c

k
Rt+k St � s

􏼌􏼌􏼌􏼌 , At � a
⎧⎨

⎩

⎫⎬

⎭. (6)

'e Bellman optimality equation is

Q
∗
(s, a) � E Rt + cmax

a′
Q
∗

St+1, a′(􏼁St � s, At � a􏼨 􏼩.

(7)

Any policy that is greedy with respect to the optimal
evaluation function Q∗(s, a) is an optimal policy. Actually,
Q∗(s, a) can be obtained through iterations using temporal-
difference learning, and its updated formula is defined as

dmin
dmax

vb

vr

(xb
t, yb

t)

(xr
t, yr

t)

ηb
t

µr
t

Goal zone
Red aircra� (our side)
Blue aircra� (enemy)

Figure 2: Aircraft maneuver guidance problem in air combat.

L

D

T

v

β

θ ψ

ϕ

Figure 1: Aircraft dynamics parameters.

Air combat
environment

Air combat
guidance agent

At = Changing bank angle

St = {aircra� status, opponent status}

Rt–1 = R(St–1, At–1, St)

St+1

Rt

Figure 3: Reinforcement learning in air combat.

4 Mathematical Problems in Engineering

Q St, At(􏼁⟵Q St, At(􏼁 + α Rt + cmax
a

Q St+1, a(􏼁 − Q St, At(􏼁􏼒 􏼓,

(8)

where Q(St, At) is the estimated action-value function and α
is the learning rate.

In air combat maneuvering applications, the reward is
sparse, and only at the end of a game (the terminal state),
according to the results of winning, losing, or drawing, a
reward value is given. 'is makes learning algorithms to use
delayed feedback to determine the long-term consequences
of their actions in all nonterminal states, which is time
consuming. Reward shaping is proposed by Ng et al. [46] to
introduce additional rewards into the learning process,
which will guide the algorithm towards learning a good
policy faster. 'e shaping reward function F(St, At, St+1) has
the form

F St, At, St+1(􏼁 � cΦ St+1(􏼁 −Φ St(􏼁, (9)

where Φ(St) is a real-valued function over states. It can be
proven that the final policy after using reward shaping is
equivalent to the final policy without it [46]. Rt in previous
equations can be replaced by Rt + F(St, At, St+1).

Taking the red agent as an example, the state space of one
guidance agent can be described with a vector:

St � x
r
t , y

r
t ,ψ

r
t , ϕ

r
t , x

b
t , y

b
t ,ψb

t􏽮 􏽯. (10)

'e state that an agent received in one training step
includes the position, heading angle, and bank angle of itself
and the position, heading angle, and bank angle of its op-
ponent, which is a 7-dimensional infinite vector. 'erefore,
the function approximate method should be used to com-
bine features of state and learned weights. DRL is a solution
to address this problem. Great achievements have beenmade
using the advanced DRL algorithms, such as DQN [26],
DDPG [47], A3C [48], and PPO [49]. Since the action of
aircraft guidance is discrete, DQN algorithm can be used.
'e action-value function can be estimated with function
approximation such as 􏽢Q(s, a,w) ≈ Qπ(s, a), where w are
the weights of a neural network.

DQN algorithm is executed according to the training
time step. However, there is not only training time step but
also simulation time step. Because of the inconsistency,
DQN algorithm needs to be improved to train a guidance
agent. 'e pseudo-code of DQN for aircraft maneuver
guidance training in air combat is shown in Algorithm 1. At
each training step, the agent receives information about the
aircraft and its opponent and then generates an action and
sends it to the environment. After receiving the action, the
aircraft in the environment is maneuvered according to this
action in each simulation step.

2.3. Middleware Design. An RL agent improves its ability
through continuous interaction with the environment.
However, there is no maneuver guidance environment for
air combat, and some combat simulation software can only
execute agents, not train them. In this paper, middleware is
designed and developed based on commercial air combat

simulation software [50] coded in C++. 'e functions of
middleware include interface between software and RL
agents, coordination of the simulation time step and the RL
training time step, and reward calculation. By using it, an RL
environment for aircraft maneuver guidance training in air
combat is performed. 'e guidance agents of both aircrafts
have the same structure. Figure 4 shows the structure and the
training process of the red side.

In actual or simulated air combat, an aircraft perceives
the situation through multisensors. By analyzing the situ-
ation after information fusion, maneuver decisions are made
by the pilot or the auxiliary decision-making system. In this
system, situation perception and decision-making are the
same as in actual air combat. An assumption is made that a
sensor with full situation perception ability is used, through
which an aircraft can obtain the position and heading angle
of its opponent.

Maneuver guidance in air combat using RL is an episodic
task, and there is the notion of episodes of some length, where
the goal is to take the agent from a starting state to a goal state
[51]. First, a flight level with fixed velocity and the one-on-one
air combat scenario is setup in simulation software. 'en, the
situation information of both aircrafts is randomly initialized,
including their positions, heading angles, bank angles, and roll
rates, which constitute the starting state of each agent.'e goal
states are achieved when one aircraft reaches the position of
advantage and maintains it, one aircraft flies out of the sector,
or the simulation time is out.

Middleware can be used in the training and application
phases of agents. 'e training phase is the process of making
the agent from zero to have the maneuver guidance ability,
which includes training episodes and testing episodes. In the
training episode, the agent is trained by the DRL algorithm,
and its guidance strategy is continuously improved. After a
number of training episodes, some testing episodes are
performed to verify the ability of the agent in the current
stage, in which the strategy does not change. 'e application
phase is the process of using the well-trained agent to
maneuver guidance in air combat simulation.

A training episode is composed of training steps. In each
training step, first, the information recognized by the air-
borne sensor is sent to the guidance agent through mid-
dleware as a tuple of state coded in Python, see Steps 1, 2, and
3 in Figure 4. 'en, the agent generates an action using its
neural networks according to the exploration strategy, as
shown in Steps 4 and 5. Simulation software receives a
guidance instruction transformed by middleware and sends
the next situation information to middleware, see Steps 6
and 7. Next, middleware transforms the situation infor-
mation into state information and calculates reward and
sends them to the agent, as shown in Steps 2, 3, and 8.
Because agent training is an iterative process, all the steps
except Step 1 are executed repeatedly in an episode. Last, the
tuple of the current state, action, reward, and the next state
in each step is stored in the replay memory for the training of
the guidance agent, see Steps 9 and 10. In each simulation
step, the aircraft maneuvers according to the instruction and
recognizes the situation according to its sensor
configuration.

Mathematical Problems in Engineering 5

3. Training Optimization

3.1. Reward Shaping. Two problems need to be solved when
using the DRL method to train a maneuver guidance agent
in air combat. One is that the only criterion to evaluate the
guidance is the successful arrival to the position of advan-
tage, which is a sparse reward problem, leading to slow
convergence of training. Secondly, in realistic situations, the
time to arrive at the position of advantage and the quality of
the trajectory need to be considered. In this paper, a reward
shaping method is proposed to improve the training speed
and the performance of the maneuver guidance strategy.

Reward shaping [46] is usually used to modify the re-
ward function to facilitate learning while maintaining op-
timal policy, which is a manual endeavour. In this study,
there are four rules to follow in reward shaping:

(i) Limited by the combat area and the maximum
number of control times, the aircraft is guided to the
position of advantage

(ii) 'e aircraft should be guided closer and closer to its
goal zone

(iii) 'e aircraft should be guided away from the goal
zone of its opponent

(1) Set parameters of the controlled aircraft and opponent
(2) Set training time step size Δt and simulation time step size δt

(3) Initialize maximum number of training episode M and maximum simulation time T in each episode
(4) Initialize replay memory D to capacity N

(5) Initialize action-value function Q and target action-value function Q− with random weights
(6) for episode� 0, Mdo
(7) Initialize state S0
(8) for t� 0, T/Δtdo
(9) With probability ϵ select a random action At

(10) Otherwise select At � argmax
a

Q(St, a,w)

(11) for i� 0, Δt/δtdo
(12) Execute action At in air combat simulation software
(13) Obtain the positions of aircraft and target
(14) if episode terminates then
(15) break
(16) end if
(17) end for
(18) Observe reward Rt and state St+1
(19) Store transition [St, At, Rt, St+1] in D

(20) if episode terminates then
(21) break
(22) end if
(23) Sample random minibatch of transitions [Sj, Aj, Rj, Sj+1] from D

(24) if episode terminates at step j + 1then
(25) set Yj � Rj

(26) else
(27) set Yj � Rj + max

a
Q− (Sj+1, a,w−)

(28) end if
(29) Perform a gradient descent step on (Yj − Q(Sj, Aj,wj))

2 with respect to the network parameters w
(30) Every C steps reset Q− � Q

(31) end for
(32) end for

ALGORITHM 1: DQN [26] for maneuver guidance agent training.

1

7

2 6

9
3 8

4 5

10

Air combat simulation so�ware

Initialization Visualization

Situation recognition
Air combat

Aircra� motion

Loop ∆t/δt times

InstructionSituation

Middleware

ActionRewardState

State perception

Action generation

Blue
aircra�

guidance
agent

Learning
Train

[S0, A0, R0, S1]
[S1, A1, R1, S2]

[St, At, Rt, St+1]

[ST–1, AT–1, RT–1, ST]

Replay memory
Red aircra� guidance agent

Store

Figure 4: Structure and training process of the red side.

6 Mathematical Problems in Engineering

(iv) 'e aircraft should be guided to its goal zone in
short time as much as possible

According to the above rules, the reward function is
defined as

R St, At, St+1(􏼁 � Rt + F St, At, St+1(􏼁, (11)

where Rt is the original scalar reward and F(St, At, St+1) is
the shaping reward function. Rt is given by

Rt � w1T St+1(􏼁 + w2, (12)

where T(St+1) is the termination reward function. 'e term
w1 is a coefficient, and w2 is a penalty for time consumption,
which is a constant.

'ere are four kinds of termination states: the aircraft
arrives at the position of advantage; the opponent arrives at
its position of advantage; the aircraft moves out of the
combat area; and the maximum number of control times has
been reached, and each aircraft is still in the combat area and
has not reached its advantage situation. Termination reward
is the reward obtained when the next state is termination,
which is often used in the standard RL training. It is defined
as

T St+1(􏼁 �

c1, if win,

c2, else if loss,

c3, else if out of the sector,

c4, else if no control times left,

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Usually, c1 is a positive value; c2 is a negative value; and
c3 and c4 are nonpositive.

'e shaping reward function F(St, At, St+1) has the form
as described in (9). 'e real-value function Φ(St) is an
advantage function of the state. 'e larger the value of this
function, the more advantageous the current situation is.
'is function can provide additional information to help the
agent to select action, which is better than only using the
termination reward. It is defined as

Φ St(􏼁 �
D St(􏼁O St(􏼁

100
, (14)

where D(St) is the distance reward function and O(St) is the
orientation reward function, which are defined as

D St(􏼁 � exp
−dt − dmax + dmin(􏼁
􏼌􏼌􏼌􏼌 /2

􏼌􏼌􏼌􏼌

180°k
􏼠 􏼡, (15)

O St(􏼁 � 1 −
μr

t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ηb

t

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

180°
, (16)

where k has units of meters/degrees and is used to adjust the
relative effect of range and angle, and a value of 10 is
effective.

3.2. Alternate Freeze Game DQN for Maneuver Guidance
Agent Training. Unlike board and RTS games, the data of
human players in air combat games are very rare, so

pretraining methods using supervised learning algorithms
cannot be used. We can only assume a strategy used by the
opponent and then propose a strategy to defeat it. We then
think about what strategies the opponent will use to confront
our strategy and then optimize our strategy.

In this paper, alternate freeze learning is used for games
to solve the nonstationarity problem. Both aircrafts in a one-
on-one air combat scenario use DRL-based agents to adapt
their maneuver strategies. In each training period, one agent
is learning from scratch, while the strategy of its opponent,
which was obtained from the previous training period, is
frozen. 'rough games, the maneuver guidance perfor-
mance of each side rises alternately, and different agents with
high level of maneuver decision-making ability are gener-
ated. 'e pseudo-code of alternate freeze game DQN is
shown in Algorithm 2.

An important effect that must be considered in this
approach is the red queen effect. When one aircraft uses a
DRL agent and its opponent uses a static strategy, the
performance of the aircraft is absolute with respect to its
opponent. However, when both aircrafts use DRL agents, the
performance of each agent is only related to its current
opponent. As a result, the trained agent is only suitable for its
latest opponent, but cannot deal with the previous ones.

'rough K training periods of alternate freeze learning,
K red agents and K + 1 blue agents are saved in the training
process. 'e league system is adopted, in which those agents
are regarded as players. By using a combination of strategies
from multiple opponents, the opponent’s mixed strategy
becomes smoother. In different initial scenarios, each agent
guides the aircraft to confront the aircraft guided by each
opponent. 'e goal is to select one of our strategies through
the league so that the probability of winning is high, and the
probability of losing is low. According to the result of the
competition, the agent obtains different points. 'e top
agent in the league table is selected as the optimum one.

4. Simulation and Results

In this section, first, random air combat scenarios are ini-
tialized in simulation software for maneuver guidance agent
training and testing. Second, agents of both sides with re-
ward shaping are created and trained using the alternate
freeze game DQN algorithm. 'ird, taking the well-trained
agents as players, the league system is adopted, and the top
agent in the league table is selected. Last, the selected agent is
evaluated, and the maneuver behavior of the aircraft is
analyzed.

4.1. SimulationSetup. 'e air combat simulation parameters
are shown in Table 1. 'e Adam optimizer [52] is used for
learning the neural network parameters with a learning rate
of 5 × 10− 4 and a discount c � 0.99. 'e replay memory size
is 1 × 105. 'e initial value of ϵ in ϵ-greedy exploration is 1,
and the final value is 0.1. For each simulation, the reward
shaping parameters c1, c2, c3, and c4 are set to 2, −2, −1, and
−1, respectively. 'e terms w1 and w2 are set to 0.98, and
0.01, respectively. 'e training period K is 10.

Mathematical Problems in Engineering 7

We evaluated three neural networks and three mini-
batches. Each neural network has 3 hidden layers, and the
number of units is 64, 64, 128 for the small neural network
(NN), 128, 128, 256 for the medium one, and 256, 256, 512
for the large one. 'e sizes of minibatch (MB) are 256, 512,
and 1024, respectively. 'ese neural networks and mini-
batches are used in pairs to train red agents and play against
the initial blue agent. 'e simulation result is shown in

Figure 5. First, a large minibatch cannot make the training
successful for small and medium neural networks, and its
training speed is slow for a large network. Second, using a
small neural network, the average reward obtained will be
lower than that of the other two networks. 'ird, if the same
neural network is adopted, the training speed using the
medium minibatch is faster than using a small one. Last,
considering the computational efficiency, the selected net-
work has 3 hidden layers with 128, 128, and 256 units,
respectively. 'e selected minibatch size is 512.

In order to improve the generality of a single agent,
initial positions are randomized in air combat simulation. In
the first iteration of the training process, the initial strategy is
formed by a randomly initialized neural network for the red
agent, and the conservative strategy of the maximum-
overload turn is adopted by the blue one. In the subsequent
training, the training agent is trained from scratch, and its
opponent adopts the strategy obtained from the latest
training.

Air combat geometry can be divided into four categories
(from red aircraft’s perspective): offensive, defensive, neu-
tral, and head-on [7], as shown in Figure 6(a). Defining the
deviation angle and aspect angle from −180° to 180°,
Figure 6(b) shows an advantage diagram where the distance
is 300m. Smaller |μr| means that the heading or gun of the
red aircraft has better aim at its opponent, and smaller |ηb|

implies a higher possibility of the blue aircraft being shot or
facing a fatal situation. For example, in the offensive

(1) Set parameters of both aircrafts
(2) Set simulation parameters
(3) Set the number of training periods K and the condition for ending each training period Wthreshold
(4) Set DRL parameters
(5) Set the opponent initialization policy πblue0
(6) for period� 1, Kdo
(7) for aircraft� [red, blue] do
(8) if aircraft� red then
(9) Set the opponent policy π � πblueperiod−1
(10) Initialize neural networks of red agent
(11) while Winning rate< Wthresholddo
(12) Train agent using Algorithm 1
(13) end while
(14) Save the well-trained agent, whose maneuver guidance policy is πredperiod
(15) else
(16) if period� K + 1then
(17) break
(18) else
(19) Set the opponent policy π � πredperiod
(20) Initialize neural networks of blue agent
(21) while Winning rate< Wthresholddo
(22) Train agent using Algorithm 1
(23) end while
(24) Save the well-trained agent, whose maneuver guidance policy is πblueperiod
(25) end if
(26) end if
(27) end for
(28) end for

ALGORITHM 2: Alternate freeze game DQN for maneuver guidance agent training in air combats.

Table 1: Air combat simulation parameters.

Red aircraft parameters
Velocity 200m/s
Maximum roll angle 75°
Roll rate 40° s
Initial position Random position and heading angle

Blue aircraft parameters
Velocity 200m/s
Maximum roll angle 75°
Roll rate 40° s
Initial position Map center, northward
Initial policy (πb

0) Maximum overload turn
Simulation parameters

Position of advantage dmax: 500m; dmin: 100m;
μmax: 60°; ηmax: 30°

Combat area 5 km × 5 km
Simulation time T 500 s
Simulation time step δt 0.1 s
Training time step Δt 0.5 s

8 Mathematical Problems in Engineering

scenario, the initial state value of the red agent is large
because of small |μr| and |ηb|, according to equations (14)
and (16). 'erefore, in the offensive initial scenario, the win
probability of our side will be larger than that of the op-
ponent, while the defensive initial scenario is reversed. In
neutral and head-one initial scenarios, the initial state values
of both sides are almost equal. 'e performance of the well-
trained agents is verified according to the classification of
four initial situations in the league system.

4.2. Simulation Results. 'e policy naming convention is πb
i

or πr
i , which means a blue or red policy produced after i

periods, respectively. After every 100 training episodes, the
test episodes run 100 times, and the learning curves are
shown in Figure 7. For the first period (πr

1 vs. πb
0), due to the

simple maneuver policy of the blue aircraft, the red aircraft
can achieve almost 100% success rate through about 4000
episodes of training, as shown in Figure 7(a). At the be-
ginning, most of the games are draw because of the random
initialization of the red agent and the evasion strategy of its
opponent. Another reason is that the aircraft often flies out
of the airspace in the early stages of training. Although the
agent will get a penalty for this, the air combat episode will
still get a draw. During the training process, the red aircraft is
looking for winning strategies in the airspace, and its
winning rate is constantly increasing. However, because of

its pursuit of offensive and neglect of defensive, the winning
rate of its opponent is also rising. In the later stage of
training, the red aircraft gradually understands the oppo-
nent’s strategy, and it can achieve a very high winning rate.

With the iterations in games, both agents have learnt the
intelligent maneuver strategy, which can guide the aircraft in
the pursuit-evasion game. Figure 7(b) shows a typical ex-
ample that πb

5 is the trainer and πr
5 is its opponent. After

about 5,000 episodes of training, the blue aircraft can reduce
the losing rate to a lower level. Since the red one adopts an
intelligent maneuver guidance strategy, the blue agent
cannot learn a winning strategy in a short time. After about
20,000 episodes, the agent gradually understands the op-
ponent’s maneuver strategy, and its winning rate keeps
increasing. 'e final winning rate is stable between 50% and
60%, and the losing rate is below 10%.

'e training process iteration of πr
10 vs. πb

9 is shown in
Figure 7(c). Because the maneuver strategy of the blue aircraft
is an intelligent strategy which has been trained iteratively,
training for the red agent ismuchmore difficult than that in the
first iteration. 'e well-trained agent can win more than 60%
and lose less than 10% in the game against πb

9.
It is hard to get a higher winning rate in every training

except for the scenario that the opponent is πb
0. 'is is because

both aircrafts are homogeneous, the initial situations are
randomized, and the opponent in the training environment is
intelligent. In some situations, as long as the opponent’s
strategy is intelligent enough, the trained agent is almost
impossible to win. Interestingly, in some scenarios where the
opponent is intelligent enough and the aircraft cannot defeat it
no matter how the agent operates, the agent will guide the
aircraft out of the airspace to obtain a draw. 'is gives us an
inspiration, that is, in a scenario where you cannot win, it may
be the best way to get out of the combat area.

For four initial air combat situations, two aircrafts are
guided by the agents trained in each iteration stage. 'e
typical flight trajectories are shown in Figure 8. Since πb

0 is a
static strategy, πr

1 can easily win in offensive, head-on, and
neutral situations, as shown in Figures 8(a), 8(c), and 8(d). In
the defensive situation, the red aircraft first turns away from
its opponent who has the advantage and then looks for
opportunities to establish an advantage situation. 'ere are
no fierce rivalries in the process of combat, as shown in
Figure 8(b).

Although πr
5 is an intelligent strategy, well-trained π

b
5 can

still gain an advantage in combat, as shown in Figures 8(e)–
8(h). In the offensive situation (from the red aircraft’s
perspective), the blue aircraft cannot easily get rid of red
one’s following, and after fierce confrontation, it can es-
tablish an advantage situation, as shown in Figure 8(e).
Figure 8(f) shows the defensive situation that the blue
aircraft can keep its advantage until it wins. In the other two
scenarios, the blue aircraft performs well, especially in the
initial situation of neutral, which adopts the delayed-turning
tactics and successfully wins in air combat.

πb
9is an intelligent strategy, and well-trained πr

10 can
achieve more than half of the victory and less than 10% of the
failure. However, unlike πr

1 vs. πb
0, π

r
10 cannot easily win,

especially in head-on situations, as shown in Figures 8(i)–8(l).

5000 100000
Training episodes

–2

–1

0

1

2
Av

er
ag

e r
ew

ar
d

Small NN,
small MB
Small NN,
medium MB
Small NN,
large MB
Medium NN,
small MB
Medium NN,
medium MB

Medium NN,
large MB
Large NN,
small MB
Large NN,
medium MB
Large NN,
large MB

Figure 5: Evaluation of the neural network and minibatch.

Mathematical Problems in Engineering 9

In the offensive situation, the blue aircraft tries to get rid of
the red one by constantly adjusting its bank angle, but it is
finally captured by the red one. In the defensive situation, the
red aircraft adopted the circling back tactics cleverly and
quickly captured its opponent. In the head-on situation, the
red and blue aircrafts alternately occupy an advantage sit-
uation, and after fierce maneuver confrontation, the red
aircraft finally wins. In the neutral situation, the red one
constantly adjusts its bank angle according to the opponent’s
position and wins.

For the above three pairs of strategies, the head-on initial
situations are taken as examples to analyze the advantages of
both sides in the game, as shown in Figure 9. For the πr

1 vs. π
b
0

scenario, because πb
0 has no intelligent maneuver guidance

ability, although both sides are equally competitive at first half
time, the red aircraft continues to expand its advantages until
it wins, as shown in Figure 9(a). When the blue agent learns
the intelligence strategy, it can defeat the red one, as shown in

Figure 9(b). For the πr
10 vs. πb

9 scenario, the two sides have
alternately established an advantage position, and the red
aircraft has not won easily, as shown in Figure 9(c). Com-
bining with the trajectories shown in Figures 8(c), 8(g), and
8(k), the maneuver strategies of both sides have been im-
proved using the alternate freeze game DQN algorithm. 'e
approach has the benefit of discovering newmaneuver tactics.

4.3. League Results. 'e objective of the league system is to
select a red agent who generates maneuver guidance in-
structions according to its strategy, so as to achieve the best
results without knowing the strategy of its opponent. 'ere
are ten agents on each side, which are saved in the iteration
of games. Each red agent fights each blue agent 400 times,
including 100 times for each of four initial scenarios. 'e
detailed league results are shown in Table 2. Results with a
win/loss ratio greater than 1 are highlighted in bold.

μr

ηb
Offensive

Defensive

Neutral

Head-on

(a)

Offensive

Defensive–180

0

180

A
sp

ec
t a

ng
le

 η
b (

de
gr

ee
)

0 180–180
Deviation angle μr (degree)

(b)

Figure 6: Situation recognition based on deviation angle and aspect angle. (a) Four initial air combat situation categories. (b) Situation
recognition diagram.

1000 2000 3000 40000
Training episodes

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Blue win

Red win
Draw

(a)

10000 200000
Training episodes

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Blue win

Red win
Draw

(b)

10000 200000
Training episodes

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Blue win

Red win
Draw

(c)

Figure 7: Learning curves in the training process. (a) πr
1 vs. πb

0. (b) πb
5 vs. πr

5. (c) πr
10 vs. πb

g.

10 Mathematical Problems in Engineering

0 0
3

3

6

6

9

9

12

12

12

16

(a)

133
133

120 120

105
105

90

9075

75
60

60

45

45

30

30

15

15

00

(b)

0 0
16

16

32

32

48

48

64

64

80

80

(c)

0
0

3
3 6

6 9
9

13
13

(d)

150

150

300
300

30

30

240

240
9060

60

120

180

180

270
120

0 0
270

210

210

90

(e)

0 0 2 2 4
4 6

6 8
8

(f)

40

120

120 0 0

100

100

14060

60

80

20

190

190160

16040

140

20 80

(g)

50 50
40

40

30

30

20

2010

10

0

0

(h)

0

10

10

20

30

30

102

102

20

40

40

50

50

6060

7070

80

80
0

90

90

(i)

0 0

6

6 12

12

18

18

24

24

30

30

(j)

50

50

466
466300

300150
200

150
350

0
0

250

250 400
400

100

100

200

350

(k)

0
0 16

16

32

32

4848

64

64

79

79

(l)

Figure 8: Typical trajectory results in the training iteration of air combat games. (a) πr
1 vs. πb

0, offensive. (b) πr
1 vs. πb

0, defensive. (c) πr
1 vs. πb

0,
head-on. (d) πr

1 vs. πb
0, neutral. (e) πb

5 vs. πr
5, offensive. (f) πb

5 vs. πr
5, defensive. (g) πb

5 vs. πr
5, head-on. (h) πb

5 vs. πr
5, neutral. (i) πr

10 vs. πb
g,

offensive. (j) πr
10 vs. π

b
g, defensive. (k) π

r
10 vs. π

b
g, head-on. (l) π

r
10 vs. π

b
g, neutral.

25 50 750
Training steps

–0.50

–0.25

0.00

0.25

0.50

Ad
va

nt
ag

e f
un

ct
io

n
va

lu
e

Red value
Blue value

(a)

100 2000
Training steps

–0.50

–0.25

0.00

0.25

0.50

Ad
va

nt
ag

e f
un

ct
io

n
va

lu
e

Red value
Blue value

(b)

200 4000
Training steps

–0.5

0.0

0.5

Ad
va

nt
ag

e f
un

ct
io

n
va

lu
e

Red value
Blue value

(c)

Figure 9: Advantage curves in head-on air combat games. (a) πr
1 vs. πb

0. (b) πb
5 vs. πr

5. (c) πr
10 vs. πb

g.

Mathematical Problems in Engineering 11

πr
i , where i ∈ [1, 10], is trained in the environment with

πb
i−1 as its opponent, and πb

j is trained against πr
j,

j ∈ [1, 10]. 'e result of πr
1 fighting with πb

0 is ideal.
However, since πb

0 is a static strategy rather than an in-
telligent strategy, πr

1 does not perform well in the game
with other intelligent blue agents. For πr

2 to πr
10, although

there is no special training for against πb
0, the performance

is still very good because πb
0 is a static strategy. In the

iterative game process, the trained agents can get good
results in the confrontation with the frozen agents in the
environment. For example, πr

2 has an overwhelming ad-
vantage over πb

1, so does πb
2 and πr

2.
Because of the red queen effect, although πr

10 has an ad-
vantage against πb

9, it is in a weak position against the early blue
agents, such as πb

2, πb
3, and πb

4. 'e league table is shown in
Table 3, in which 3 points are for win, 1 point for draw, and 0
points for loss. In the early stage of training, the performance of
the trained agents will be gradually improved.'e later trained
agents are better than the former ones, such as from πr

1 to πr
6.

As the alternate freeze training goes on, the performance does
not get better, such as πr

7 to π
r
10.'e top of the score table is πr

6,
which not only has the highest score but also has advantages
when playing with all blue agents except πb

6, as shown in
Table 2. In the competition with all the opponents, it can win
44% and remain unbeaten at 75%.

In order to verify the performance of this agent, it is
confronted with the opponent agents trained by ADP [20]
and Minimax-DQN [44]. Each of the four typical initial
situations is performed 100 times for both opponents, and
the results are shown in Table 4. 'e time cost to generate an
action for each algorithm is shown in Table 5. It can be found
that the performance of the agent presented in this paper is
comparable to that of ADP, and the computational time is
slightly reduced. However, ADP is a model-based method,
which is assumed to know all the information such as the roll
rate of the opponent. Compared with Minimax-DQN, the
agent has the overall advantage. 'is is because Minimax-
DQN assumes that the opponent is rational, while the op-
ponent in this paper is not, which is closer to the real world.
In addition, compared with Minimax-DQN, the computa-
tional efficiency of the algorithm proposed has been sig-
nificantly improved because linear programming is used to
select the optimal action at each step in Minimax-DQN,
which is time consuming.

4.4. Agent Evaluation and Behavior Analysis. Evaluating
agent performance in air combat is not simply a matter of
either winning or losing. In addition to winning and losing
rate, two criteria are added to represent success level: average

Table 2: League results.

πb
0 πb

1 πb
2 πb

3 πb
4 πb

5 πb
6 πb

7 πb
8 πb

9 πb
10

πr
1

Win 393 17 83 60 137 75 96 126 119 133 123
Draw 7 103 213 198 95 128 131 117 113 113 114
Loss 0 280 104 142 168 197 173 157 168 154 163

πr
2

Win 384 267 4 82 78 94 88 135 142 161 152
Draw 16 120 128 178 143 137 157 76 100 87 94
Loss 0 13 268 140 179 169 155 189 158 152 154

πr
3

Win 387 185 253 5 82 97 103 123 134 154 131
Draw 11 104 131 115 194 148 145 132 84 102 97
Loss 2 111 16 280 124 155 152 145 182 144 172

πr
4

Win 381 172 182 237 31 92 137 154 149 167 158
Draw 19 123 102 117 110 151 101 97 144 92 104
Loss 0 105 116 46 259 157 162 149 107 141 138

πr
5

Win 382 164 172 187 221 29 95 137 168 154 162
Draw 18 122 113 142 139 144 118 103 121 143 113
Loss 0 114 115 71 40 227 187 160 111 103 125

πr
6

Win 380 162 177 193 197 217 52 106 134 152 143
Draw 19 105 98 132 101 134 139 194 176 131 144
Loss 1 133 125 75 102 49 209 100 90 117 113

πr
7

Win 383 169 169 180 165 187 210 56 82 122 133
Draw 14 98 111 105 123 134 133 137 180 132 156
Loss 3 133 120 115 112 79 57 207 138 144 111

πr
8

Win 383 154 157 172 168 177 182 213 36 107 114
Draw 16 123 109 114 132 102 97 134 141 124 138
Loss 1 123 134 114 100 121 121 53 223 169 148

πr
9

Win 387 140 162 157 154 162 179 182 215 37 102
Draw 11 133 97 105 127 131 97 104 149 125 147
Loss 2 127 141 138 119 107 124 114 36 238 151

πr
10

Win 379 155 146 147 143 159 167 169 170 219 42
Draw 10 102 84 92 105 97 131 104 85 140 131
Loss 11 143 170 161 152 144 102 127 145 41 227

12 Mathematical Problems in Engineering

time to win (ATW) and average disadvantage time (ADT).
ATW is measured as the average elapsed time required to
maneuver to the advantage position in the scenario where
our aircraft wins. Smaller ATW is better than a larger one.
ADT is the average accumulated time that the advantage
function value of our aircraft is less than that of the op-
ponent, which is used as a criterion to evaluate the risk
exposure from the adversary weapons.

A thousand air combat scenarios are generated in
simulation software, and the opponent in each scenario is
randomly chosen from ten blue agents. Each well-trained
red agent is used to perform these confrontations, and the
results are shown in Figure 10. Agent number i means the
policy trained after i periods. From πr

1 to πr
5, the per-

formance of agents is gradually improving. After πr
5, their

performance is stabilized, and each agent has different
characteristics. Comparing πr

5 to πr
10, the winning and

losing rates are almost the same as those in Table 3. 'e
winning rate of the six agents is similar, with the highest
πr
5 winning 6% higher than the lowest πr

10, as shown in
Figure 10(a). However, πr

6 is the agent with the lowest
losing rate, and its losing rate is more than 10% lower than

that of other agents, as shown in Figure 10(b). For ATW,
πr
7 is less than 100 s, πr

6 is 108.7 s, and that of other agents is
more than 110 s, as shown in Figure 10(c). For ADT, πr

5,
πr
6, and πr

8 are less than 120 s, πr
7 is above 130 s, and πr

9 and
πr
10 are between 120 and 130 s, as shown in Figure 10(d).
In summary, with the increase in the number of itera-

tions, the red queen effect appears obviously. 'e perfor-
mance of πr

8, π
r
9, and πr

10 is no better than that of πr
6 and πr

7.
Although the winning rate of πr

7 is not high and has more
disadvantage time, it can always win quickly. It is an ag-
gressive agent and can be used in scenarios where our
aircraft needs to beat the opponent quickly.'e winning rate
of πr

6 is similar to other agents, while its losing rate is the
lowest. Its ATW is only higher than πr

7, and ADT is the
lowest. In most cases, it can be selected to achieve more
victories while keeping itself safe. πr

6 is an agent with good
comprehensive performance, which means that the selection
method of the league system is effective.

For the four initial scenarios, air combat simulation
using πr

6 is selected for behavior analysis, as shown in
Figure 11. In the offensive scenario, the opponent tried to
escape by turning in the opposite direction. Our aircraft used
a lag pursuit tactic, which is simple but effective. At the 1st
second, our aircraft did not keep up with the opponent but
chose to fly straight. At the 9th second, it gradually turned to
the opponent, established, and maintained the advantage
and finally won, as shown in Figure 11(a).

In the defensive scenario, our aircraft was at a disad-
vantage position, and the opponent was trying to lock us in

Table 3: League table.

Rank Agent (strategy) Win Draw Loss Score
1 πr

6 1913 1373 1114 7112
2 πr

7 1858 1323 1219 6897
3 πr

5 1871 1276 1253 6889
4 πr

9 1877 1226 1297 6857
5 πr

8 1863 1230 1307 6819
6 πr

10 1896 1081 1423 6769
7 πr

4 1860 1160 1380 6740
8 πr

3 1654 1263 1483 6225
9 πr

2 1587 1236 1577 5997
10 πr

1 1362 1332 1706 5418

Table 4: Algorithm comparison.

vs. ADP [20] vs. Minimax-DQN [44]

Offensive
Win 57 66
Draw 28 21
Loss 15 13

Defensive
Win 19 20
Draw 31 42
Loss 50 38

Head-on
Win 43 46
Draw 16 26
Loss 41 28

Neutral
Win 32 43
Draw 32 22
Loss 36 35

Table 5: Time cost to generate an action.

Algorithm Time cost (ms)
'e proposed algorithm 13.8
ADP 14.2
Minimax-DQN 786

Mathematical Problems in Engineering 13

with a lag pursuit tactic, as shown in Figure 11(b). At the
30th second, our aircraft adjusted its roll angle to the right to
avoid being locked by the opponent, as shown in
Figure 11(c). After that, it continued to adjust the roll angle,

and when the opponent noticed that our strategy had
changed, our aircraft had already flown out of the sector. In
situations where it is difficult to win, the agent will use a safe
maneuver strategy to get a draw.

2 3 4 5 6 7 8 9 101
Agent number

W
in

s

300

351

387

425
443440436438429

418

(a)

2 3 4 5 6 7 8 9 101
Agent number

Lo
ss

es

402

371
342

309

279
259

278281290
312

(b)

2 3 4 5 6 7 8 9 101
Agent number

Ti
m

e (
s)

151.3 150.4
143.7

108.7
115.9 116.3

117.6

98.4

121.5

223.4

(c)

2 3 4 5 6 7 8 9 101
Agent number

Ti
m

e (
s)

135.4

152.8

129.6

117.0
115.7

119.9

111.3

128.9 129.6
125.1

(d)

Figure 10: Agent evaluation. (a) Number of winning. (b) Number of losing. (c) Average time to win. (d) Average disadvantage time.

11
5

5

9

9

13

13

17

17

21

21

24

24

(a)

1
1

4

4

7

7

10

10

13

13

16

16

19

19

21

21

(b)

21

21

24

24

27

27

30

30

33

33

36 36

39 39

43 43

(c)

1 1 66 1111
16

16

21

21

26

26

31

31

36

36

41

41

46

46

50

50

(d)

50

50

55

55

60

60

65

65

70

70

75

75

80

80
85

85 90

90 95

95 100

100

(e)

100

100

105

105

110
110

115
115

120

120

125

125

130

130

135

135

140

140

145

145

150

150

154

154

(f)

40

40

36

36

31

31

26

26

21

21

16

16

11

11

6

6
1
1

(g)

74 7470

70
65

65
60

60
55

5550

50
45

45

40

40

(h)

Figure 11: Trajectories under four typical initial situations. (a) Offensive. (b) Defensive (0–21 s). (c) Defensive (21–43 s). (d) Head-on
(0–50 s). (e) Head-on (50–100 s). (f) Head-on (100–154 s). (g) Neutral (0–40 s). (h) Neutral (40–74 s).

14 Mathematical Problems in Engineering

In the head-on scenario, both sides adopted the same
maneuver strategy in the first 50 s, that is, the maximum
overload turn and waiting for opportunities, as shown in
Figure 11(d). 'e crucial decision was made in the 50th
second; the opponent was still hovering and waiting for an
opportunity, while our aircraft stopped hovering and re-
duced its turning rate to fly towards the opponent. At the
90th second, the aircraft reached an advantage situation over
its opponent, as shown in Figure 11(e). In the final stage, our
aircraft adopted the lead pursuit tactic to establish and
maintain the advantage and won, as shown in Figure 11(f).

In the neutral scenario, our initial strategy was to turn away
from the opponent to find opportunities. 'e opponent’s
strategy was to lag pursuit and successfully reached the rear of
our aircraft at the 31st second, as shown in Figure 11(g).
However, after the 40th second, our aircraft made a wise
decision to reduce the roll angle, thereby increasing the turning
radius. At the 60th second, the disadvantaged situation was
terminated, as shown in Figure 11(h). After that, our aircraft
increased its roll angle, and the opponent was in a state of
maximum overload right-turn, which made it unable to get rid
of our aircraft, and finally, it lost. It can be seen that trained by
alternate freeze games using the DQN algorithm and selected
through the league system, the agent can learn tactics such as
lead pursuit, lag pursuit, and hovering and can use them in air
combat.

5. Conclusion

In this paper, middleware connecting air combat simulation
software and the reinforcement learning agent is developed.
It provides an idea for researchers to design different
middleware to transform existing software into reinforce-
ment learning environment, which can expand the appli-
cation field of reinforcement learning. Maneuver guidance
agents with reward reshaping are designed. 'rough
training in the environment, an agent can guide an aircraft to
fight against its opponent in air combat and reach an ad-
vantage situation in most scenarios. An alternate freeze
game algorithm is proposed and combined with RL. It can be
used in nonstationarity situations where other players’
strategies are variable. 'rough the league system, the agent
with improved performance after iterative training is se-
lected.'e league results show that the strategy quality of the
selected agent is better than that of the other agents, and the
red queen effect is avoided. Agents can learn some typical
angle tactics and behaviors in the horizontal plane and
perform these tactics by guiding an aircraft to maneuver in
one-on-one air combat.

In future works, the problem would be extended to 3D
maneuvering with less restrictive vehicle dynamics. 'e 3D
formulation will lead to a larger state space and more
complex actions, and the learning mechanism would be
improved to deal with them. Beyond an extension to 3D
maneuvering, a 2-vs-2 air combat scenario would be
established, in which there are collaborators as well as ad-
versaries. One option is to use a centralized controller, which
turns to a single-agent DRL problem to obtain the joint
action of both aircrafts to execute in each time step. 'e

other option is to adopt a decentralized system, in which
both agents take a decision for themselves and might co-
operate to achieve a common goal.

In theory, the convergence of the alternate freeze game
algorithm needs to be analyzed. Furthermore, in order to
improve the diversity of potential opponents in amore complex
air combat scenario, the league system would be refined.

Nomenclature

(x, y, z): 3-dimensional coordinates of an aircraft
v: Speed
θ: Flight path angle
ψ: Heading angle
β: Angle of attack
ϕ: Bank angle
m: Mass of an aircraft
g: Acceleration due to gravity
T: 'rust force
L: Lift force
D: Drag force
_ψ: Turn rate
_ϕ: Roll rate
dt: Distance between the aircraft and the target

at time t

dmin: Minimum distance of the advantage
position

dmax: Maximum distance of the advantage
position

μt: Deviation angle at time t

μmax: Maximum deviation angle of the advantage
position

ηt: Aspect angle at time t

ηmax: Maximum aspect angle of the advantage
position

S: State space
St: State vector at time t

s: All states in the state space
A: Action space
At: Action at time t

a: All actions in the action space
π: S⟶ A: Policy
R(St, At, St+1): Reward function
Rt: Scalar reward received at time t

V(s): Value function
Q(s, a): Action-value function
Q∗(s, a): Optimal action-value function
Q(St, At): Estimated action-value function at time t

c: Discount factor
α: Learning rate
T: Maximum simulation time in each episode
Δt: Training time step size
δt: Simulation time step size
F(St, At, St+1): Shaping reward function
Φ(St): A real-valued function on states
T(St): Termination reward function
D(St): Distance reward function
O(St): Orientation reward function
K: Number of training periods.

Mathematical Problems in Engineering 15

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'is work was supported in part by the National Natural
Science Foundation of China under Grants 91338107 and
U1836103 and the Development Program of Sichuan, China,
under Grants 2017GZDZX0002, 18ZDYF3867, and
19ZDZX0024.

Supplementary Materials

Aircraft dynamics: the derivation of the kinematic and
dynamic equations of the aircraft. Code: a simplified version
of the environment used in this paper. It does not have
commercial software and middleware, but its aircraft model
and other functions are the same as those proposed in this
paper. 'is environment and the RL agent are packaged as a
supplementary material. 'rough this material, the alternate
freeze game DQN algorithm proposed in this paper can be
reproduced. (Supplementary Materials)

References

[1] L. R. Shaw, “Basic fighter maneuvers,” in Fighter Combat
Tactics and Maneuvering, M. D. Annapolis, Ed., Naval In-
stitute Press, New York, NY, USA, 1st edition, 1985.

[2] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Herik,
Dynamic Scripting with Team Coordination in Air Combat
Simulation, Lecture Notes in Computer Science, Kaohsiung,
Taiwan, 2014.

[3] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Herik,
“Centralized versus decentralized team coordination using
dynamic scripting,” in Proceedings of the European Modeling
and Simulation Symposium, pp. 1–7, Porto, Portugal, 2014.

[4] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Herik,
“Rewarding air combat behavior in training simulations,” in
Proceedings of IEEE International Conference on Systems, Man
and Cybernetics, pp. 1397–1402, Kowloon, China, 2015.

[5] A. Toubman, J. J. Roessingh, P. Spronck, A. Plaat, and J. Herik,
“Transfer learning of air combat behavior,” in Proceedings of
the IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 226–231, Miami, FL, USA, 2015.

[6] D. I. You and D. H. Shim, “Design of an aerial combat
guidance law using virtual pursuit point concept,” Proceedings
of the Institution of Mechanical Engineers, vol. 229, no. 5,
pp. 1–22, 2014.

[7] H. Shin, J. Lee, and D. H. Shim, “Design of a virtual fighter
pilot and simulation environment for unmanned combat
aerial vehicles,” in Prodeedings of the Advances in Flight
Control Systems, pp. 1–21, Grapevine, TX, USA, 2017.

[8] J. M. Eklund, J. Sprinkle, and S. S. Sastry, “Implementing and
testing a nonlinear model predictive tracking controller for
aerial pursuit/evasion games on a fixed wing aircraft,” in

Poceedings of the Control System Applications, pp. 1509–1514,
Portland, OR, USA, 2005.

[9] J. M. Eklund, J. Sprinkle, and S. S. Sastry, “Switched and
symmetric pursuit/evasion games using online model pre-
dictive control with application to autonomous aircraft,” IEEE
Transactions on Control Systems Technology, vol. 20, no. 3,
pp. 604–620, 2012.

[10] F. Austin, G. Carbone, M. Falco, H. Hinz, and M. Lewis,
Automated Maneuvering Decisions for Air-to-Air Combat,
Grumman Corporate Research Center, Bethpage, NY, USA,
1987.

[11] F. Austin, G. Carbone, M. Falco, H. Hinz, and M. Lewis,
“Game theory for automated maneuvering during air-to-air
combat,” Journal of Guidance, Control, and Dynamics, vol. 13,
no. 6, pp. 1143–1149, 1990.

[12] Y. Ma, G. Wang, X. Hu, H. Luo, and X. Lei, “Cooperative
occupancy decision making of multi-uav in beyond-visual-
range air combat a game theory approach,” IEEE Access,
vol. 323, 2019.

[13] J. P. Hespanha, M. Prandini, and S. Sastry, “Probabilistic
pursuit-evasion games: a one-step Nash approach,” in Pro-
ceedings of the 36th IEEE Conference on Decision and Control,
Sydney, NSW, Australia, 2000.

[14] A. Xu, Y. Kou, L. Yu, B. Xu, and Y. Lv, “Engagement ma-
neuvering strategy of air combat based on fuzzy markov game
theory,” in Proceedings of IEEE International Conference on
Computer, pp. 126–129, Wuhan, China, 2011.

[15] K. Horic and B. A. Conway, “Optimal fighter pursuit-evasion
maneuvers found via two-sided optimization,” Journal of
Guidance, Control, and Dynamics, vol. 29, no. 1, pp. 105–112,
2006.

[16] K. Virtanen, T. Raivio, and R. P. Hamalainen, “Modeling
pilot’s sequential maneuvering decisions by a multistage in-
fluence diagram,” Journal of Guidance, Control, and Dy-
namics, vol. 27, no. 4, pp. 665–677, 2004.

[17] K. Virtanen, J. Karelahti, and T. Raivio, “Modeling air combat
by a moving horizon influence diagram game,” Journal of
Guidance, Control, and Dynamics, vol. 29, no. 5, pp. 1080–
1091, 2006.

[18] Q. Pan, D. Zhou, J. Huang et al., “Maneuver decision for
cooperative close-range air combat based on state predicted
influence diagram,” in Proceedings of the Information and
Automation for Sustainability, pp. 726–730, Macau, China,
2017.

[19] R. E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and
A. El-Fallah, “Classifier systems in combat: two-sided learning
of maneuvers for advanced fighter aircraft,” Computer
Methods in Applied Mechanics and Engineering, vol. 186,
no. 2–4, pp. 421–437, 2000.

[20] J. S. McGrew, J. P. How, B.Williams, and N. Roy, “Air-combat
strategy using approximate dynamic programming,” Journal
of Guidance, Control, and Dynamics, vol. 33, no. 5,
pp. 1641–1654, 2010.

[21] Y. Ma, X. Ma, and X. Song, “A case study on air combat
decision using approximated dynamic programming,”
Mathematical Problems in Engineering, vol. 2014, 2014.

[22] I. Bisio, C. Garibotto, F. Lavagetto, A. Sciarrone, and
S. Zappatore, “Blind detection: advanced techniques forWiFi-
based drone surveillance,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 1, pp. 938–946, 2019.

[23] Y. Li, “Deep reinforcement learning,” 2018.
[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, MIT Press, London, UK, 2nd edition, 2018.

16 Mathematical Problems in Engineering

http://downloads.hindawi.com/journals/mpe/2020/7180639.f1.zip

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[26] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[27] Z. Kavukcuoglu, R. Liu, Z. Meng, Y. Zhang, Y. Yu, and T. Lu,
“On reinforcement learning for full-length game of starcraft,”
2018.

[28] D. Silver and C. J. Maddison, “Mastering the game of Go with
deep neural networks and tree search,” Nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[29] D. Hubert and I. Antonoglou, “A general reinforcement
learning algorithm that masters chess, shogi, and Go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[30] J. Schrittwieser, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: a survey,” Be International Journal of
Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[31] A. Waldock, C. Greatwood, F. Salama, and T. Richardson,
“Learning to perform a perched landing on the ground using
deep reinforcement learning,” Journal of Intelligent and Ro-
botic Systems, vol. 92, no. 3-4, pp. 685–704, 2018.

[32] R. R. Alejandro, S. Carlos, B. Hriday, P. Paloma, and
P. Campoy, “A deep reinforcement learning strategy for UAV
autonomous landing on a moving platform,” Journal of In-
telligent and Robotic Systems, vol. 93, no. 1-2, pp. 351–366,
2019.

[33] W. Lou and X. Guo, “Adaptive trajectory tracking control
using reinforcement learning for quadrotor,” Journal of In-
telligent and Robotic Systems, vol. 13, no. 1, pp. 1–10, 2016.

[34] C. Dunn, J. Valasek, and K. Kirkpatrick, “Unmanned air
system search and localization guidance using reinforcement
learning,” in Proceedings of the of the AIAA Infotech Aerospace
2014 Conference, pp. 1–8, Garden Grove, CA, USA, 2014.

[35] S. You, M. Diao, and L. Gao, “Deep reinforcement learning for
target searching in cognitive electronic warfare,” IEEE Access,
vol. 7, pp. 37432–37447, 2019.

[36] P. Luo, J. Xie, and W. Che, C. Man, “Q-learning based air
combat target assignment algorithm,” in Proceedings of IEEE
International Conference on Systems, pp. 779–783, Budapest,
Hungary, 2016.

[37] M. Grzes, S. Paulo, “Reward shaping in episodic reinforce-
ment learning,” in Proceedings of the International Foundation
for Autonomous Agents and Multiagent Systems, pp. 565–573,
Brazil, 2017.

[38] K. Tummer and A. Agogino, H. Hakodate, “Agent reward
shaping for alleviating traffic congestion,” in Proceedings of the
International Foundation for Autonomous Agents and Mul-
tiagent Systems, pp. 1–7, Japan, 2006.

[39] L. L. B. V. Cruciol, A. C. de Arruda, L. Weigang, L. Li, and
A. M. F. Crespo, “Reward functions for learning to control in
air traffic flow management,” Transportation Research Part C:
Emerging Technologies, vol. 35, pp. 141–155, 2013.

[40] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote,
“A survey of learning in multiagent environments: dealing
with non-stationarity,” 2019.

[41] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Proceedings of the International
Conference on International Conference on Machine Learning,
pp. 157–163, New Brunswick, NJ, USA, 1994.

[42] M. L. Littman, “Friend-or-foe Q-learning in general-sum
games,” in Proceedigs of the International Conference on In-
ternational Conference on Machine Learning, pp. 322–328,
Williamstown, MA, USA, 2001.

[43] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum
stochastic games,” Journal of Machine Learning Research,
vol. 4, pp. 1039–1069, 2003.

[44] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of
deep Q-learning,” 2020.

[45] R. E. Smith, B. A. Dike, B. Ravichandran, A. Fallah, and
R. Mehra, “Two-sided, genetics-based learning to discover
novel fighter combat maneuvers,” in Lecture Notes in Com-
puter Science, pp. 233–242, Springer, Berlin, Heidelberg, 2001.

[46] A. Ng, D. Harada, and S. Russell, S. Bled, “Policy invariance
under reward transformations: theory and application to
reward shaping,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning,
pp. 278–287, Berlin, Germany, 1999.

[47] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control
with deep reinforcement learning,” in Proceedings of the In-
ternational Conference on Learning Representations, Puerto
Rico, MA, USA, 2016.

[48] V. Mnih, A. P. Badia, M.Mirza et al., “Asynchronous methods
for deep reinforcement learning,” in Proceedings of the 32nd
International Conference on International Conference on
Machine Learning, pp. 1–19, New York, NY, USA, 2016.

[49] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” 2017.

[50] Commercial Air Combat Simulation Software FG_SimStudio,
http://www.eyextent.com/producttail/11/7.

[51] M. Wiering and M. van Otterlo, Reinforcement Learning:
State-of-Be-Art, Springer Press, Heidelberg, Germany, 2014.

[52] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning,
pp. 1–15, San Diego, CA, USA, 2015.

Mathematical Problems in Engineering 17

http://www.eyextent.com/producttail/11/7

