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'e present study tackles the tracking control problem for unstructured uncertain bilinear systems with multiple time-delayed
states subject to control input constraints. First, a new method is introduced to design memory state feedback controllers with
compensator gain based on the use of operational properties of block-pulse functions basis. 'e proposed technique permits
transformation of the posed control problem into a constrained and robust optimization problem. 'e constrained robust least
squares approach is then used for determination of the control gains. Second, new sufficient conditions are proposed for the
practical stability analysis of the closed-loop system, where a domain of attraction is estimated. A real-world example, the headbox
control of a paper machine, demonstrates the efficiency of the proposed method.

1. Introduction

Many physical systems existing in real life exhibit nonlinear
behavior. For system analysis and control, an approximate
model is practically used for the purposes of simplicity
because an exact system model is too difficult to obtain or
too complicated to handle. 'e class of bilinear systems,
representing the particular nonlinear systems whose dy-
namics are jointly linear in state and input variables, was
introduced in the control theory due to its simple structure
and applicability in the 1960s. It is well known that bilinear
structure can model nonlinear phenomena more accurately
compared to linear structure [1]. 'erefore, bilinear models
have been found in various fields of research such as en-
gineering, biology, and economics [1, 2].

A great deal of literature related to the stabilization
control problems of such systems have been developed over
the past decades. Among them, some results were concerned

with continuous-time bilinear systems with only multipli-
cative control [3, 4]. For bilinear systems with both additive
and multiplicative control inputs, there were some control
designs, such as bang-bang control law with a nonlinear
switching function [5], quadratic feedback control [6], and
optimal control [7–9].

Since the exact system models are not always available,
the model uncertainties may occur in the bilinear systems.
Recently, some interesting works that used Lyapunov sta-
bility theory were devoted to the stabilization control
problems for continuous-time bilinear systems affected by
norm bounded uncertainties [10, 11]. 'e main obstacles of
these design controls result firstly from the choice of the
appropriate Lyapunov functional, which is always restricted
to be of quadratic form, and secondly from the difficulty to
test algorithmically the obtained nonnegativity conditions
given in LMI formulation. Another common drawback of
these methods is that they are limited to specific type of

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 7186928, 28 pages
https://doi.org/10.1155/2020/7186928

mailto:bassem.ibenwarrad@ept.rnu.tn
https://orcid.org/0000-0001-8015-7881
https://orcid.org/0000-0002-1748-2873
https://orcid.org/0000-0002-1317-9869
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7186928


uncertainties, in which the system matrix uncertainty has to
satisfy so-called “matching conditions.”

Moreover, due to the transmission of information, natural
properties of system elements, computation of variables, and
so forth, time delays are often present in all actuations and
measurements in practice. 'eir presence can degrade the
performance of control system and even destabilize it [12, 13].
'us, both time delays and uncertainties should be estimated
when modeling an engineering system [14]. Hence, the sta-
bility analysis problem [15, 16] as well as the stabilization
control problem [17] of continuous-time bilinear systems
subject to time delays and uncertainties has received much
attention in the past few years. Existing results are based on
the use of Lyapunov–Krasovskii functional, even for other
subclasses of nonlinear systems [18, 19]. 'e later technique
used a weighting function in the form of a function of the
current state [20]. 'ere are two main drawbacks of these
results, which can be cited as follows:

(i) 'e absence of a systematic way to construct a
suitable Lyapunov–Krasovskii function, which is in
most cases of quadratic form.

(ii) 'e difficulty to apply them to high-order systems
with a high number of delay functions. 'is is due to
the computational requirement increases.

On the other hand, it is well known that all control
actuation devices are subject to magnitude and/or rate limits
and this leads to degradation of the performance and even
instability of closed-loop control systems [21]. Hard input
constraints belong to the very important task in the con-
troller design. At present, there are a few works in which the
stabilization control problem of saturated bilinear systems
without uncertainties and/or time delays has been studied
[22–24]. All of these works have addressed only the case of
discrete systems in which the nonlinear function is absorbed
in a linear differential inclusion. If it exists, a polyhedral
Lyapunov function is used to determine the control gains
through an iterative procedure. 'e main drawback of
polyhedral Lyapunov-based methods is that the computa-
tional burden required by their construction dramatically
increases with the system dimension and the vertices
number of the polytope of the considered quasi-linear
models matrices, resulting from the approximation of the
original bilinear model.

To the best of our knowledge, the setpoint tracking
control problem for continuous-time bilinear systems under
input saturation, affected by norm bounded unstructured
uncertainties and multiple time delays in states, is not yet
developed until now. 'is is mainly due to the difficulty of
synthesizing a saturated tracking control law with the
guaranteed performance and stability of the closed-loop
system under the presence of uncertainties and time delays.
It is for this reason that problems related to the tracking
control synthesis for various nonlinear subclasses are in-
tensively studied nowadays [25–28]. Recently, the setpoint
tracking control problem for continuous-time bilinear
system accompanied with unstructured uncertainties in
matrices system was addressed in [29], where the authors

propose an algebraic approach based on the use of piecewise
orthogonal functions set as well as their operational ma-
trices. 'is has allowed the conversion of the uncertain
differential state equations to an uncertain system of alge-
braic ones.'en, resulting optimization problem is solved by
means of robust least squares minimization, leading to the
control law parameters.

In this article, we aim at extending the study presented in
[29] to deal with the setpoint tracking control problem for a
more complex subclass of continuous-time bilinear systems,
mentioned above, and under the presence of actuator sat-
uration. A new algebraic aspect framework is then presented.
'e whole development uses block-pulse functions as a tool
of approximation as well as their operational matrices.
Among all other piecewise constant basis functions, the
block-pulse functions set proved to be the most funda-
mental, which has the advantage of reducing computational
complexities and execution time [30–34].

'e general idea of this work consists of equalizing the
nondelayed state vector of the controlled system and the
state vector of the reference model and thus the equalization
of their projections on the considered orthogonal functions
basis. 'en, the application of the operational matrices
jointly used with the Kronecker tensor product permits to
obtain a constrained and robust optimization problem. Once
the control gains are determined by solving the latter op-
timization problem in constrained robust least square sense,
the practical stability of the closed-loop system is checked
through simple conditions.

'e main contributions in this work could be summa-
rized as follows:

(1) Overcoming the drawbacks of the existing stabili-
zation control methods based on the Lyapunov
function approach or Lyapunov–Krasovskii function
approach.

(2) Addressing the setpoint tracking control problem of
unstructured uncertain bilinear systems with mul-
tiple time-delayed states subject to control input
constraints, which have not been treated before.

(3) Deriving a memory state feedback control with
feedforward gain using a new formulation based on
the properties of block-pulse functions basis such as
operational matrices jointly used with the Kronecker
tensor product.

(4) Elaborating new sufficient conditions to check the
practical stability of the close-loop system, where a
domain of attraction is estimated.

'is study is outlined in the following manner: the next
section is dedicated for the description of the system under
study and the clarification of the main objective of the work.
In Section 3, the proposed approach of tracking control for
unstructured uncertain bilinear systems with multiple time-
delayed states under bounded input control is presented,
leading to a constrained uncertain linear system of algebraic
equations depending on the parameters of the feedback
regulator, to be solved using the constrained robust least
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squares approach. In Section 4, we present new and simple
sufficient conditions on robust trackability for this class of
closed-loop dynamical systems. Some analytical methods
and a Gronwall–Bellman inequality are employed to derive
these practical stability conditions. Simulation results are
presented in the final section to illustrate the effectiveness
and performance of the proposed technique when applied
on a paper-making machine.

Notation. 'roughout this paper, Rn denotes the
n-dimensional Euclidean space, while Rn×m refers to the set
of all real matrices with n rows and m columns. In denotes

the identity matrix of size n × n. AT represents the trans-
pose of the matrix A. 'e adopted vector norm is the
Euclidean norm and the matrix norm is the corresponding
induced norm.

2. System Description and Control Objective

Consider the uncertain bilinear system with known fixed
multitime delays in states, described by the following state
equations:

_x(t) � A0 + ΔA0( x(t) + 
s

l�1
Dl0 + ΔDl0( x t − τl(  + 

m

i�1
Ai + ΔAi( x(t)ui(t) + 

s

l�1


m

i�1
Dli + ΔDli( x t − τl( ui(t) + Bu(t),

y(t) � Cx(t),

x(t) � ζ(t), for t ∈ [− τ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where u(t) � u1(t) . . . um(t) 
T ∈ Rm is the input vector,

x(t) ∈ Rn is the nondelayed state vector, x(t − τl) ∈ Rn is
the delayed state vector with τl denoted time delay, and
y(t) ∈ Rp is the output vector.

'e continuous vector valued function ζ(t) denotes the
initial data, where τ � max τl for each l ∈ 1, . . . , s{ }.

In equation (1), for each i ∈ 0, . . . , m{ } and for each
l ∈ 1, . . . , s{ }, ΔAi and ΔDli are unknown but bounded
matrices.

'e state model in (1) can be rewritten as follows:

_x(t) � A0 + ΔA0( x(t) + 

s

l�1
Dl0 + ΔDl0( x t − τl(  +(F + ΔF)(u(t)⊗ x(t)) + 

s

l�1
Hl + ΔHl(  u(t)⊗ x t − τl( (  + Bu(t),

y(t) � Cx(t),

x(t) � ζ(t), for t ∈ [− τ, 0],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

with

F � A1, . . . , Am ,

ΔF � ΔA1, . . . ,ΔAm ,
(3)

and, for each l ∈ 1, . . . , s{ },

Hl � Dl1, . . . , Dlm ,

ΔHl � ΔDl1, . . . ,ΔDlm ,
(4)

where ⊗ is the symbol of the Kronecker product [35].

Assumption 1. (i) System (2) is locally controllable around
x0 � ζ(0) and its n state components
are all physically measurable.

(ii) 'e uncertainty matrices are bounded as follows:

ΔA0
����

����≤ c1 ,

‖ΔF‖≤ c2,
(5)

ΔDl0
����

����≤ ηl ,

ΔHl

����
����≤ ηl,

(6)

where, for each l ∈ 1, . . . , s{ }, c1, c2, ηl, and ηl are given
positive reals.

Strategy of Control.'emain objective of the framework
is the synthesis of a memory state feedback control with
compensator gain, given by

u(t) � Nyc(t) − Kx(t) − 
s

l�1
Klx t − τl( , (7)
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where N ∈ Rm×p, K ∈ Rm×n, Kl ∈ Rm×n, and yc(t) ∈ Rp is
the reference input vector.

Each element of the actuator vector ui(t) should satisfy
the following constraint:

− ui ≤ ui(t)≤ ui with 0≺ ui, (8)

which is equivalent to

− umax ≤ u(t)≤ umax, (9)

where umax � u1 . . . um 
T is given positive reals vector.

'e constrained inputs, denoted by sat(ui(t)), are sat-
urating functions and are defined for each i ∈ 1, . . . , m{ } as
follows:

sat ui(t)(  �

ui, if ui(t)≻ui,

ui(t), if − ui ≤ ui(t)≤ ui,

− ui, if ui(t)≺ − ui,

⎧⎪⎪⎨

⎪⎪⎩
(10)

with

sat(u(t)) � sat u1(t)(  . . . sat um(t)(  
T . (11)

Control Objective. Under input control saturation
sat(u(t)), the closed-loop system is modeled by the fol-
lowing state equations:

_x( t ) � ( A0 + ΔA0 )x( t ) + 
s

l�1
( Dl0 + ΔDl0 )x( t − τl ) +(F + ΔF )(sat(u(t))⊗ x( t ))

+
s

l�1
(Hl + ΔHl ) sat(u(t)) ⊗x( t − τl )(  + Bsat(u(t)),

y( t ) � Cx( t ),

x( t ) � ζ( t ), for t ∈ [− τ, 0].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

'emain goal of the proposed control strategy is to force
the controlled system (12) to reproduce sharply the dy-
namical behavior of a linear reference model and therefore
respond to desired performances. Such reference model is
described by the following state equations:

_xr( t ) � Exr( t ) + Fyc( t ),

yr( t ) � Gxr( t ),
 (13)

where xr(t) ∈ Rn and yr(t) ∈ Rp.

Remark 1. 'e structure of the control strategy adopted u(t)

is perfectly adequate to the structure of the considered state
model (12). 'is is justified by the following facts:

(i) 'e compensator gain N is designed to eliminate the
steady-state error for a constant or step input vector:

e(∞) � yc(∞) − y(∞) . (14)

(ii) 'e control gain K is designed to ensure the
stability performance of the following closed-loop
uncertain bilinear system under input control
saturation ua(t):

_x (t) � A0 + ΔA0( x(t) +(F + ΔF) sat ua(t)( (

⊗x(t)) + Bsat ua(t)( 
,

(15)

with

ua(t) � − Kx(t) . (16)

(iii) 'e control gains Kl for each l ∈ 1, . . . , s{ } are
designed to ensure the stability performance of the
following closed-loop uncertain bilinear multiple
time delays system under input control saturation
ub(t):

_x(t) � 
s

l�1
Dl0 + ΔDl0( x t − τl(  + 

s

l�1
Hl + ΔHl( 

· sat ub(t)( ⊗x t − τl( (  + Bsat ub(t)( ,

(17)

with

ub(t) � − 
s

l�1
Klx t − τl(  . (18)

3. Proposed Uncertain Bilinear Time Delays
System Tracking Control Approach

3.1. Control Approach Development. From relations (2) and
(7), state equation could be written as follows:
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_x(t) � A0 + ΔA0( x(t)

+ 
s

l�1
Dl0 + ΔDl0( x t − τl(  +(F + ΔF) N⊗ In(  yc(t)⊗ x(t)(  + BNyc(t) − (F + ΔF)

· K⊗ In( (x(t)⊗ x(t)) − BKx(t)

− 
s

l�1
(F + ΔF) Kl ⊗ In(  x t − τl( ⊗ x(t)( 

− 
s

l�1
BKlx t − τl(  + 

s

l�1
Hl + ΔHl(  N⊗ In(  yc(t)⊗x t − τl( ( 

− 
s

l�1
Hl + ΔHl(  K⊗ In(  x(t)⊗x t − τl( (  − 

s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  x t − τj ⊗x t − τl(  .

(19)

'e integration of equation (19) with respect to t over the
time interval [0, T] leads to

x(t) − x(0) � A0 + ΔA0(  
t

0
x(σ)dσ

+ 
s

l�1
Dl0 + ΔDl0(  

t

0
x σ − τl( dσ +(F + ΔF) N⊗ In(  

t

0
yc(σ)⊗ x(σ)( dσ

+ BN 
t

0
yc(σ)dσ − (F + ΔF) K⊗ In(  

t

0
(x(σ)⊗ x(σ))dσ − BK

t

0
x(σ)dσ

− 
s

l�1
(F + ΔF) Kl ⊗ In(  

t

0
x σ − τl( ⊗ x(σ)( dσ − 

s

l�1
BKl 

t

0
x σ − τl( dσ

+ 
s

l�1
Hl + ΔHl(  N⊗ In(  

t

0
yc(σ)⊗x σ − τl( ( dσ

− 
s

l�1
Hl + ΔHl(  K⊗ In(  

t

0
x(σ)⊗x σ − τl( ( dσ

− 
s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  

t

0
x σ − τj ⊗x σ − τl(  dσ.

(20)

'e expansion of the fixed reference input vector yc(t)

over the basis of block-pulse functions SN(t) truncated to an
order N can be written as

yc(t) � YcNSN(t) , (21)

where YcN denote reference input coefficients resulting from
the scalar product (A.4).

We underline that the main idea consists of equalizing
the nondelayed state vector of the controlled bilinear
system and the state vector of the reference model. 'at is
to say,

x(t) � xr(t) � XrNSN(t), (22)

where XrN denotes the state coefficients of the reference
model, which are computed from the scalar product (A.4).

'erefore, for each l ∈ 1, . . . , s{ }, the delayed state vector
of the controlled system x(t − τl) is expressed as follows:

x( t − τl ) �
ζ( t − τl ), for 0≤ t≤ τl,

x( t − τl ) � xr( t − τl ), for τl < t≤T,


(23)

and then the block-pulse series approximation of x(t − τl) is
given:

x t − τl(  � X
∗
rN τl( SN(t), (24)

where X∗rN(τl) denote the delayed state coefficients, which
are computed from the scalar product (A.9).

Based on the operational matrix of integration (see
equation (A.14) in Appendix A), the Kronecker product
terms in equation (20) can be also written as follows:
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yc(t)⊗x(t) � YcNSN(t)( ⊗ XrNSN(t)( (  � YcN ⊗XrN(  SN(t)⊗ SN(t)( 

� YcN ⊗XrN( MNSN(t),

x(t)⊗x(t) � XrNSN(t)( ⊗ XrNSN(t)( (  � XrN ⊗XrN(  SN(t)⊗ SN(t)( 

� XrN ⊗XrN( MNSN(t),

x t − τl( ⊗x(t) � X
∗
rN τl( SN(t)( ⊗ XrNSN(t)( ( 

� X
∗
rN τl( ⊗XrN(  SN(t)⊗ SN(t)(  � X

∗
rN τl( ⊗XrN( MNSN(t),

yc(t)⊗ x t − τl(  � YcNSN(t)( ⊗ X
∗
rN τl( SN(t)( ( 

� YcN ⊗X
∗
rN τl( (  SN(t)⊗ SN(t)(  � YcN ⊗X

∗
rN τl( ( MNSN(t),

x(t)⊗ x t − τl(  � XrNSN(t)( ⊗ X
∗
rN τl( SN(t)( ( 

� XrN ⊗X
∗
rN τl( (  SN(t)⊗ SN(t)(  � XrN ⊗X

∗
rN τl( ( MNSN(t),

x t − τj ⊗ x t − τl(  � X
∗
rN τj SN(t) ⊗ X

∗
rN τl( SN(t)(  

� X
∗
rN τj ⊗X

∗
rN τl(   SN(t)⊗ SN(t)(  � X

∗
rN τj ⊗X

∗
rN τl(  MNSN(t).

(25)

'en, the expansion of equation (20) over the considered
block-pulse functions basis yields

XrNSN(t) − X0NSN(t) � A0 + ΔA0( XrN 
t

0
SN(σ)dσ

+ 
s

l�1
Dl0 + ΔDl0( X

∗
rN τl(  

t

0
SN(σ)dσ

+(F + ΔF) N⊗ In(  YcN ⊗XrN( MN 
t

0
SN(σ)dσ + BNYcN 

t

0
SN(σ)dσ

− (F + ΔF) K⊗ In(  XrN ⊗XrN( MN 
t

0
SN(σ)dσ − BKXrN 

t

0
SN(σ)dσ

− 
s

l�1
(F + ΔF) Kl ⊗ In(  X

∗
rN τl( ⊗XrN( MN 

t

0
SN(σ)dσ

− 
s

l�1
BKlX

∗
rN τl(  

t

0
SN(σ)dσ

+ 
s

l�1
Hl + ΔHl(  N⊗ In(  YcN ⊗X

∗
rN τl( ( MN 

t

0
SN(σ)dσ

− 
s

l�1
Hl + ΔHl(  K⊗ In(  XrN ⊗X

∗
rN τl( ( MN 

t

0
SN(σ)dσ

− 
s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  X

∗
rN τj ⊗X

∗
rN τl(  MN 

t

0
SN(σ)dσ.

(26)
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'e use of the integration operational matrix PN defined
by relation (A.11) yields

XrNSN(t) − X0NSN(t) � A0 + ΔA0( XrNPNSN(t)

+ 
s

l�1
Dl0 + ΔDl0( X

∗
rN τl( PNSN(t)

+(F + ΔF) N⊗ In(  YcN ⊗XrN( MNPNSN(t)

− (F + ΔF) K⊗ In(  XrN ⊗XrN( MNPNSN(t)

− 

s

l�1
(F + ΔF) Kl ⊗ In(  X

∗
rN τl( ⊗XrN( MNPNSN(t)

+ BNYcNPNSN(t) − BKXrNPNSN(t) − 
s

l�1
BKlX

∗
rN τl( PNSN(t)

+ 
s

l�1
Hl + ΔHl(  N⊗ In(  YcN ⊗X

∗
rN τl( ( MNPNSN(t)

− 
s

l�1
Hl + ΔHl(  K⊗ In(  XrN ⊗X

∗
rN τl( ( MNPNSN(t)

− 
s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  X

∗
rN τj ⊗X

∗
rN τl(  MNPNSN(t).

(27)

Simplifying the vector SN(t) in both sides of (27) gives

XrN − X0N � A0 + ΔA0( XrNPN + 
s

l�1
Dl0 + ΔDl0( X

∗
rN τl( PN

+(F + ΔF) N⊗ In(  YcN ⊗XrN( MNPN

− (F + ΔF) K⊗ In(  XrN ⊗XrN( MNPN

− 
s

l�1
(F + ΔF) Kl ⊗ In(  X

∗
rN τl( ⊗XrN( MNPN

+ BNYcNPN − BKXrNPN − 
s

l�1
BKlX

∗
rN τl( PN

+ 

s

l�1
Hl + ΔHl(  N⊗ In(  YcN ⊗X

∗
rN τl( ( MNPN

− 
s

l�1
Hl + ΔHl(  K⊗ In(  XrN ⊗X

∗
rN τl( ( MNPN

− 
s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  X

∗
rN τj ⊗X

∗
rN τl(  MNPN.

(28)
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'e use of vec operator (see Appendix B) leads to

vec( XrN ) − vec( X0N ) � P
T
N ⊗A0 vec( XrN ) + P

T
N ⊗ΔA0 vec( XrN )

+ 
s

l�1
P

T
N ⊗Dl0 vec( X

∗
rN( τl ) ) + 

s

l�1
P

T
N ⊗ΔDl0 vec( X

∗
rN( τl ) )

+ YcN ⊗XrN( MNPN( 
T ⊗F vec N⊗ In( 

− XrN ⊗XrN( MNPN( 
T ⊗F vec K⊗ In( 

+ YcN ⊗XrN( MNPN( 
T ⊗ΔF vec N⊗ In( 

− XrN ⊗XrN( MNPN( 
T ⊗ΔF vec K⊗ In( 

− 
s

l�1
X
∗
rN( τl )⊗XrN( MNPN( 

T ⊗F vec Kl ⊗ In( 

− 
s

l�1
X
∗
rN( τl )⊗XrN( MNPN( 

T ⊗ΔF vec Kl ⊗ In( 

+ YcNPN( 
T ⊗B vec(N) − XrNPN( 

T ⊗B vec(K)

− 
s

l�1
X
∗
rN( τl )PN( 

T ⊗B vec Kl( 

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl vec N⊗ In( 

− 
s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl vec K⊗ In( 

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl vec N⊗ In( 

− 
s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl vec K⊗ In( 

− 
s

j�1


s

l�1
X
∗
rN( τj )⊗X

∗
rN( τl ) MNPN 

T
⊗Hl vec Kj ⊗ In 

− 

s

j�1


s

l�1
X
∗
rN( τj )⊗X

∗
rN( τl ) MNPN 

T
⊗ΔHl vec Kj ⊗ In .

(29)
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Based on Property 2 (see Appendix B), it comes out that

vec( XrN ) − vec( X0N ) � P
T
N ⊗A0 vec( XrN )

+ P
T
N ⊗ΔA0 vec( XrN ) + 

s

l�1
P

T
N ⊗Dl0 vec( X

∗
rN( τl ) )

+ 
s

l�1
P

T
N ⊗ΔDl0 vec( X

∗
rN( τl ) )

+ YcN ⊗XrN( MNPN( 
T ⊗F Πm,p( In )vec(N)

− XrN ⊗XrN( MNPN( 
T ⊗F Πm,n( In )vec(K)

+ YcN ⊗XrN( MNPN( 
T ⊗ΔF Πm,p( In )vec(N)

− XrN ⊗XrN( MNPN( 
T ⊗ΔF Πm,n( In )vec(K)

− 
s

l�1
X
∗
rN( τl )⊗XrN( MNPN( 

T ⊗F Πm,n( In )vec Kl( 

− 
s

l�1
X
∗
rN( τl )⊗XrN( MNPN( 

T ⊗ΔF Πm,n( In )vec Kl( 

+ YcNPN( 
T ⊗B vec(N) − XrNPN( 

T ⊗B vec(K)

− 
s

l�1
X
∗
rN( τl )PN( 

T ⊗B vec Kl( 

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl Πm,p( In )vec(N)

− 
s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl Πm,n( In )vec(K)

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl Πm,p( In )vec(N)

− 
s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl Πm,n( In )vec(K)

− 
s

j�1


s

l�1
X
∗
rN( τj )⊗X

∗
rN( τl ) MNPN 

T
⊗Hl Πm,n( In )vec Kj 

− 
s

j�1


s

l�1
X
∗
rN( τj )⊗X

∗
rN( τl ) MNPN 

T
⊗ΔHl Πm,n( In )vec Kj ,

(30)
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which is equivalent to

β + Δβ � α1vec(N) + α2vec(K) + 
s

l�1
ℵlvec Kl( 

+ 
s

j�1


s

l�1
ϑjlvec Kj  + Δα1vec(N) + Δα2vec(K)

+ 
s

l�1
Δℵlvec Kl(  + 

s

j�1


s

l�1
Δϑjlvec Kj ,

(31)

where

β � vec( XrN ) − vec( X0N ) − P
T
N ⊗A0 vec( XrN )

− 
s

l�1
P

T
N ⊗Dl0 vec( X

∗
rN( τl ) ),

Δβ � − P
T
N ⊗ΔA0 vec( XrN ) − 

s

l�1
P

T
N ⊗ΔDl0 vec( X

∗
rN( τl ) ),

α1 � YcN ⊗XrN( MNPN( 
T ⊗F Πm,p( In ) + YcNPN( 

T ⊗B 

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl Πm,p( In ),

α2 � − XrN ⊗XrN( MNPN( 
T ⊗F Πm,n( In ) − XrNPN( 

T ⊗B 

− 

s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗Hl Πm,n( In ),

Δα1 � YcN ⊗XrN( MNPN( 
T ⊗ΔF Πm,p( In )

+ 
s

l�1
YcN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl Πm,p( In ),

Δα2 � − XrN ⊗XrN( MNPN( 
T ⊗ΔF Πm,n( In )

− 
s

l�1
XrN ⊗X

∗
rN( τl )( MNPN( 

T ⊗ΔHl Πm,n( In ),

(32)

and, for each j, l ∈ 1, . . . , s{ },

ℵl � − X
∗
rN τl( ⊗XrN( MNPN( 

T ⊗F Πm,n In( 

− X
∗
rN τl( PN( 

T ⊗B ,

ϑjl � − X
∗
rN τj ⊗X

∗
rN τl(  MNPN 

T
⊗Hl Πm,n In( ,

Δℵl � − X
∗
rN τl( ⊗XrN( MNPN( 

T ⊗ΔF Πm,n In( ,

Δϑjl � − X
∗
rN τj ⊗X

∗
rN τl(  MNPN 

T
⊗ΔHl Πm,n In( .

(33)

'e uncertainty vector Δβ becomes

Δβ � IN ⊗ΔA0( Γ1 + 
s

l�1
IN ⊗ΔDl0( Γl , (34)

with

Γ1 � − P
T
N ⊗ In vec XrN(  , (35)

and, for each l ∈ 1, . . . , s{ },

Γl � − P
T
N ⊗ In vec X

∗
rN τl( ( . (36)

Furthermore, the uncertainty matrices Δα1 and Δα2 can
be written as follows:

Δα1 � IN ⊗ΔF( Υ1 + 
s

l�1
IN ⊗ΔHl( Υl , (37)

with

Υ1 � YcN ⊗XrN( MNPN( 
T ⊗ Inm Πm,p In(  , (38)

and, for each l ∈ 1, . . . , s{ },
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Υl � YcN ⊗X
∗
rN τl( ( MNPN( 

T ⊗ Inm Πm,p In(  ,

Δα2 � IN ⊗ΔF( Ω1 + 

s

l�1
IN ⊗ΔHl( Ωl ,

(39)

with

Ω1 � − XrN ⊗XrN( MNPN( 
T ⊗ Inm Πm,n In(  , (40)

and, for each l ∈ 1, . . . , s{ },

Ωl � − XrN ⊗X
∗
rN τl( ( MNPN( 

T ⊗ Inm Πm,n In(  .

(41)

Likewise, for each j, l ∈ 1, . . . , s{ }, the uncertainty ma-
trices Δℵl and Δϑjl can be written as follows:

Δℵl � IN ⊗ΔF( Ψl , (42)

with

Ψl � − X
∗
rN τl( ⊗XrN( MNPN( 

T ⊗ Inm Πm,n In( ,

Δϑjl � IN ⊗ΔHl( Φjl ,

(43)

with

Φjl � − X
∗
rN τj ⊗X

∗
rN τl(  MNPN 

T
⊗ Inm Πm,n In(  .

(44)

'en, relation (31) becomes

β + IN ⊗ΔA0( Γ1 + 
s

l�1
IN ⊗ΔDl0( Γl � α1vec(N) + α2vec(K)

+ 

s

l�1
ℵlvec Kl(  + 

s

j�1


s

l�1
ϑjlvec Kj  + IN ⊗ΔF( Υ1vec(N)

+ 
s

l�1
IN ⊗ΔHl( Υlvec(N) + IN ⊗ΔF( Ω1vec(K)

+ 
s

l�1
IN ⊗ΔHl( Ωlvec(K)

+ 
s

l�1
IN ⊗ΔF( Ψlvec Kl(  + 

s

j�1


s

l�1
IN ⊗ΔHl( Φjlvec Kj .

(45)

Let

α � α1 α2 ,

ℵ � ℵ1 ℵ2 . . . ℵs ,

εl � ϑ1l ϑ2l . . . ϑsl ,

[l � Φ1l Φ2l . . . Φsl ,

[ � Ψ1 Ψ2 . . . Ψs ,

℘ � Υ1 Ω1 ,

℘l � Υl Ωl ,

θ1 �
vec(N)

vec(K)
 ,

θ2 �

vec K1( 

vec K2( 

⋮
vec Ks( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(46)

It comes out that

β + IN ⊗ΔA0( Γ1 + 
s

l�1
IN ⊗ΔDl0( Γl � αθ1 + ℵθ2

+ 
s

l�1
εlθ2 + IN ⊗ΔF( ℘θ1 + 

s

l�1
IN ⊗ΔHl( ℘lθ1 + IN ⊗ΔF( [θ2

+ 

s

l�1
IN ⊗ΔHl( [lθ2.

(47)
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Hence, it would be interesting to formulate this problem
under the following unstructured linear system of algebraic
equations:

(A + ΔA)θ � B + ΔB, (48)

where

A � �α ℵ + 
s

l�1
εl

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

θ �
θ1
θ2

 ,

B � β,

ΔA � IN ⊗ΔF(  ℘ [  + 
s

l�1
IN ⊗ΔHl(  ℘l [l ,

ΔB � IN ⊗ΔA0( Γ1 + 
s

l�1
IN ⊗ΔDl0( Γl.

(49)

Furthermore, the control law u(t) has to respect upper
and lower bounds (9), that is,

− umax ≤ u(t)≤ umax⇔ − umax ≤Nyc(t) − Kx(t)

− 
s

l�1
Klx t − τl( ≤ umax,

(50)

and, by taking into account relation (22), it results that

− umax ≤Nyc(t) − Kxr(t) − 
s

l�1
Klxr t − τl( ≤ umax, (51)

and then the expansion of (51) over the considered block-
pulse functions basis yields

− Umax ,NSN(t)≤ NYcN − KXrN − 

s

l�1
KlX
∗
rN τl( ⎛⎝ ⎞⎠SN(t)

≤Umax ,NSN(t),

(52)

where Umax ,N denote the upper bound coefficients, which
are computed from the scalar product (A.4).

Simplifying the vector SN(t) in both sides of (52) and
using the vec operator gives

− vec Umax ,N ≤Cθ ≤ vec Umax ,N , (53)

where

C � Y
T
cN ⊗ Im  − X

T
rN ⊗ Im L  , (54)

with

L � − X
∗
rN τ1( ( 

T ⊗ Im  . . . X
∗
rN τs( ( 

T ⊗ Im  .

(55)

Finally, the posed control problem is reduced to the fol-
lowing constrained uncertain linear system, that depending on
the vector of the controller parameters to be tuned:

(A + ΔA)θ � B + ΔB, (56a)

subject to

− vec Umax ,N ≤Cθ≤ vec Umax ,N . (56b)

3.2. Resolution. From (5) and (6), it comes out that

‖ΔA‖≤ δA � c2 ℘ [ 
����

���� + 
s

l�1
ηl ℘l [l 

�����

�����,

‖ΔB‖≤ δB � c1 Γ1
����

���� + 
s

l�1
ηl Γl

����
����.

(57)

'e problem of finding a solution to the obtained
problem in (56a) and (56b) can be solved in the constrained
robust least squares sense by the formulation as an opti-
mization problem as follows [36]:

minθ∈Rm(p+(1+s)n)max‖ΔA‖≤δA,‖ΔB‖≤ δB
‖(A + ΔA)θ − (B + ΔB)‖,

(58a)

subject to

− vec Umax ,N ≤Cθ≤ vec Umax ,N . (58b)

From Lemma 1 (see Appendix C), the problem in (58a)
and (58b) is reduced to the following minimization problem:

minθ∈Rm(p+(1+s)n) ‖Aθ − B‖ + δA‖θ‖ + δB, (59a)

subject to

− vec Umax ,N ≤Cθ≤ vec Umax ,N . (59b)

'e latter problem can be rewritten as a second-order
cone programming problem [37]:

min α subject to

‖Aθ − B‖≤ α − τ

δA‖θ‖ ≤ τ

− vec Umax,N ≤Cθ≤ vec Umax,N 

(60)
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with the variables θ ∈ Rm(p+(1+s)n), α≥ 0, and τ ≥ 0.

4. Practical Stability Analysis and Attraction
Domain Estimation

Once control parameters N and K and for each
l ∈ 1, . . . , s{ }Kl are determined by solving equation (60) for
constant reference input yc(t) � δ ∈ Rp and for given
positive real c1, c2, ηl, and ηl, we propose to analyze the
controlled system.

Now, let us define the following matrices:

M0 � A0 −
1
2
BK +

1
2
F N⊗ In(  δ ⊗ In(  , (61)

ΔM0 � ΔA0 +
1
2
ΔF N⊗ In(  δ ⊗ In(  , (62)

and, for each l ∈ 1, . . . , s{ },

Ml � Dl0 −
1
2

BKl +
1
2
Hl N⊗ In(  δ ⊗ In(  , (63)

ΔMl � ΔDl0 +
1
2
ΔHl N⊗ In(  δ ⊗ In(  . (64)

Furthermore, let us define the following positive reals,
for each l ∈ 1, . . . , s{ }:

β0 � c1 +
1
2
c2‖N‖‖δ‖,

βl � ηl +
1
2
ηl‖N‖‖δ‖,

(65)

Q1 � β0 + 
s

l�1
Ml

����
���� + βl  +

1
2

‖F‖ + c2( ‖Nδ‖

+
1
2

‖Nδ‖

s

l�1
Hl

����
���� + ηl ,

Q2 �
1
2

‖F‖ + c2(  K⊗ In( 
����

���� +
1
2

‖F‖ + c2( 

s

l�1
Kl ⊗ In( 

����
����

+
1
2

K⊗ In( 
����

����

s

l�1
Hl

����
���� + ηl 

+
1
2



s

l�1


s

j�1
Hl

����
���� + ηl  Kj ⊗ In 

�����

�����

+
1
2

‖F‖ + c2(  ‖K‖ + 
s

l�1
Kl

����
����⎛⎝ ⎞⎠

+
1
2

‖K‖
s

l�1
Hl

����
���� + ηl 

+
1
2



s

l�1


s

j�1
Hl

����
���� + ηl  Kj

�����

�����,

Q3 �
1
2

‖BNδ‖ +
1
2

‖B‖ umax
����

����.

(66)

Definition 1. System (12) is said to be practically stable, if
there exist R0 and r, with 0<R0 < r, such that [38]

‖x(0)‖ <R0⇒‖x(t)‖< r, ∀t≥ 0. (67)

Theorem 1. 9e closed-loop system (12) is practically stable if
all eigenvalues of matrix M0 have a strictly negative real part
and if

ω
λ

+ Q1 < 0, (68)

and if

‖x(0)‖< −
1

λQ2

ω
λ

+ Q1  , (69)

where ω< 0 and λ> 0 are given scalars satisfying

e
M0t

����
����≤ λe

ωt
, ∀t≥ 0. (70)

Proof. We propose to prove the existence of a region of
initial conditions ensuring the practical stability of closed-
loop system (12).'is region is assumed to be a ball centered
in the origin and of radius R0; that is,

B 0, R0(  � x(0) ∈ Rn
, ‖x(0)‖<R0 . (71)

From (12) and by taking into account the fact that
sat(u(t)) � sat(u(t)) − (1/2)u(t) + (1/2)u(t), the state
equation of the closed-loop system can be written as
follows:

_x(t) � A0 + ΔA0( x(t) + 
s

l�1
Dl0 + ΔDl0( x t − τl( 

+(F + ΔF) sat(u(t)) −
1
2

u(t) ⊗ x(t) 

+
1
2

(F + ΔF)(u(t) ⊗x(t))

+ 
s

l�1
Hl + ΔHl(  sat(u(t)) −

1
2

u(t) ⊗x t − τl(  

+
1
2



s

l�1
Hl + ΔHl(  u(t)⊗x t − τl( ( 

+ B sat(u(t)) −
1
2

u(t)  +
1
2

Bu(t).

(72)

By taking into account relation (7) and equations
(61)–(64), it comes out that
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_x(t) − M0x(t) � ΔM0x(t) + 
s

l�1
Ml + ΔMl( x t − τl( 

−
1
2

(F + ΔF) K⊗ In( (x(t)⊗x(t)) +
1
2

BNδ

−
1
2



s

l�1
(F + ΔF) Kl ⊗ In(  x t − τl( ⊗ x(t)( 

−
1
2



s

l�1
Hl + ΔHl(  K⊗ In(  x(t)⊗x t − τl( ( 

−
1
2



s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  x t − τj ⊗ x t − τl(  

+(F + ΔF) sat(u(t)) −
1
2

u(t) ⊗ x(t) 

+ 
s

l�1
Hl + ΔHl(  sat(u(t)) −

1
2

u(t) ⊗x t − τl(   + B sat(u(t)) −
1
2

u(t) .

(73)

Suppose that x(t) is a solution of equation (73) with
x0 � ζ(0); then, by taking into account the fact that

M0e
− M0t � e− M0tM0 which may be shown directly from the

series definition, we can write

d

dt
e

− M0t
x(t)  � − M0e

− M0t
x(t) + e

− M0t
_x(t) � e

− M0t
_x(t) − M0x(t)( 

� e
− M0t ΔM0x(t) + 

s

l�1
Ml + ΔMl( x t − τl( ⎛⎝ ⎞⎠

−
1
2
e

− M0t
(F + ΔF) K⊗ In( (x(t)⊗ x(t)) − BNδ( 

−
1
2
e

− M0t


s

l�1
(F + ΔF) Kl ⊗ In(  x t − τl( ⊗x(t)( ⎛⎝ ⎞⎠

−
1
2
e

− M0t


s

l�1
Hl + ΔHl(  K⊗ In(  x(t)⊗x t − τl( ( ⎛⎝ ⎞⎠

−
1
2
e

− M0t


s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  x t − τj ⊗ x t − τl(  ⎛⎝ ⎞⎠

+ e
− M0t

(F + ΔF) sat(u(t)) −
1
2

u(t) ⊗x(t)  

+ e
− M0t



s

l�1
Hl + ΔHl(  sat(u(t)) −

1
2

u(t) ⊗ x t − τl(  ⎛⎝ ⎞⎠

+ e
− M0t

B sat(u(t)) −
1
2

u(t)  ,

(74)
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and then the integration of the last equation from 0 to t gives

e
− M0t

_x(t) − x0 � 
t

0
e

− M0σ ΔM0x(σ) + 
s

l�1
Ml + ΔMl( x σ − τl( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

− M0σ (F + ΔF) K⊗ In( (x(σ)⊗x(σ)) − BNδ( dσ

−
1
2


t

0
e

− M0σ 

s

l�1
(F + ΔF) Kl ⊗ In(  x σ − τl( ⊗ x(σ)( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

− M0σ 

s

l�1
Hl + ΔHl(  K⊗ In(  x(σ)⊗ x σ − τl( ( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

− M0σ 

s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  x σ − τj ⊗x σ − τl(  ⎛⎝ ⎞⎠dσ

+ 
t

0
e

− M0σ (F + ΔF) sat(u(σ)) −
1
2

u(σ) ⊗x(σ)  dσ

+ 
t

0
e

− M0σ 

s

l�1
Hl + ΔHl(  sat(u(σ)) −

1
2

u(σ) ⊗ x σ − τl(  ⎛⎝ ⎞⎠dσ

+ 
t

0
e

− M0σ B sat(u(σ)) −
1
2

u(σ)  dσ,

(75)

which is equivalent to

_x(t) � e
M0t

x0 + 
t

0
e

M0(t− σ) ΔM0x(σ) + 
s

l�1
Ml + ΔMl( x σ − τl( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

M0(t− σ)
(F + ΔF) K⊗ In( (x(σ)⊗ x(σ)) − BNδ( dσ

−
1
2


t

0
e

M0(t− σ)


s

l�1
(F + ΔF) Kl ⊗ In(  x σ − τl( ⊗x(σ)( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

M0(t− σ)


s

l�1
Hl + ΔHl(  K⊗ In(  x(σ)⊗x σ − τl( ( ⎛⎝ ⎞⎠dσ

−
1
2


t

0
e

M0(t− σ)


s

j�1


s

l�1
Hl + ΔHl(  Kj ⊗ In  x σ − τj ⊗ x σ − τl(  ⎛⎝ ⎞⎠dσ

+ 
t

0
e

− M0(t− σ)
(F + ΔF) sat(u(σ)) −

1
2

u(σ) ⊗x(σ)  dσ

+ 
t

0
e

− M0(t− σ)


s

l�1
Hl + ΔHl(  sat(u(σ)) −

1
2

u(σ) ⊗ x σ − τl(  ⎛⎝ ⎞⎠dσ

+ 
t

0
e

− M0(t− σ)
B sat(u(σ)) −

1
2

u(σ)  dσ.

(76)
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If the obtained gain matrices N, K, and Kl for each
l ∈ 1, . . . , s{ } verify that all eigenvalues of matrix M0 have a

strictly negative real part such that relation (70) holds on,
then ‖x(t)‖ can be bounded as

‖x(t)‖≤ λe
ωt

x0
����

���� + λe
ωt ΔM0

����
���� 

t

0
e

− ωσ
‖x(σ)‖dσ

+ λe
ωt



s

l�1
Ml + ΔMl( 

����
���� 

t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λe

ωt
‖(F + ΔF)‖ K⊗ In( 

����
���� 

t

0
e

− ωσ
‖(x(σ)⊗x(σ))‖dσ

+
1
2
λe

ωt
‖BNδ‖ 

t

0
e

− ωσdσ

+
1
2
λe

ωt
‖(F + ΔF)‖

s

l�1
Kl ⊗ In( 

����
���� 

t

0
e

− ωσ
x σ − τl( ⊗x(σ)( 

����
����dσ

+
1
2
λe

ωt
K⊗ In( 

����
����

s

l�1
Hl + ΔHl( 

����
���� 

t

0
e

− ωσ
x(σ)⊗x σ − τl( ( 

����
����dσ

+
1
2
λe

ωt


s

l�1


s

j�1
Hl + ΔHl( 

����
���� Kj ⊗ In 
�����

����� 
t

0
e

− ωσ
x σ − τj ⊗ x σ − τl(  

�����

�����dσ

+ λe
ωt

‖(F + ΔF)‖ 
t

0
e

− ωσ
( ( sat( u(σ) ) −

1
2

u(σ) )⊗x(σ) )

�������

�������
dσ

+ λe
ωt



s

l�1
Hl + ΔHl( 

����
���� 

t

0
e

− ωσ
( ( sat( u(σ) ) −

1
2

u(σ) )⊗x σ − τl(  )

�������

�������
dσ

+ λe
ωt

‖B‖ 
t

0
e

− ωσ
( sat( u(σ) ) −

1
2

u(σ) )

�������

�������
dσ.

(77)

It has been shown in [39, 40] that

sat(u(t)) −
1
2

u(t)

�������

�������
≤
1
2

‖u(t)‖ , (78)

and then, by taking into account relation (9), the use of the
following matrix norm property, for each l, j ∈ 1, . . . , s{ },

sat(u(t)) −
1
2

u(t) ⊗x(t) 

�������

�������
≤ sat(u(t)) −

1
2

u(t) 

�������

�������
‖x(t)‖≤

1
2

‖u(t)‖‖x(t)‖≤
1
2

‖N

sat(u(t)) −
1
2

u(t) ⊗ x t − τl(  

�������

�������
≤ sat(u(t)) −

1
2

u(t) 

�������

�������
x t − τl( 

����
����≤

1
2

‖u(t)‖ x t − τl( 
����

����≤
1
2

‖N

sat(u(t)) −
1
2

u(t) 

�������

�������
≤
1
2

‖u(t)‖≤
1
2

umax
����

����,

(79)
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leads to

e
− ωt

‖x(t)‖ ≤ λ x0
����

���� + λ ΔM0
����

���� 
t

0
e

− ωσ
‖x(σ)‖dσ

+ λ
s

l�1
Ml + ΔMl( 

����
���� 

t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ‖(F + ΔF)‖ K⊗ In( 

����
���� 

t

0
e

− ωσ
‖(x(σ)⊗x(σ))‖dσ +

1
2
λ‖BNδ‖ 

t

0
e

− ωσdσ

+
1
2
λ‖(F + ΔF)‖

s

l�1
Kl ⊗ In( 

����
���� 

t

0
e

− ωσ
x σ − τl( ⊗ x(σ)( 

����
����dσ

+
1
2
λ K⊗ In( 
����

����

s

l�1
Hl + ΔHl( 

����
���� 

t

0
e

− ωσ
x(σ)⊗x σ − τl( ( 

����
����dσ

+
1
2
λ

s

l�1


s

j�1
Hl + ΔHl( 

����
���� Kj ⊗ In 
�����

����� 
t

0
e

− ωσ
x σ − τj ⊗x σ − τl(  

�����

�����dσ

+
1
2
λ‖(F + ΔF)‖ 

t

0
e

− ωσ
‖Nδ(

����‖x(σ)‖ +‖K‖‖x(σ)‖
2
)dσ

+
1
2
λ‖(F + ΔF)‖

s

l�1
Kl

����
���� 

t

0
e

− ωσ
x σ − τl( 

����
����‖x(σ)‖dσ

+
1
2
λ

s

l�1
Hl + ΔHl( 

����
���� 

t

0
e

− ωσ
‖Nδ(

���� x σ − τl( 
����

���� +‖K‖‖x(σ)‖ x σ − τl( 
����

����)dσ

+
1
2
λ

s

l�1


s

j�1
Hl + ΔHl( 

����
���� Kj

�����

����� 
t

0
e

− ωσ
x σ − τj 

�����

����� x σ − τl( 
����

����dσ

+
1
2
λ‖B‖ umax

����
���� 

t

0
e

− ωσdσ.

(80)
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From relation (65), it comes out that

e
− ωt

‖x(t)‖ ≤ λ x0
����

���� + λβ0 
t

0
e

− ωσ
‖x(σ)‖dσ

+ λ
s

l�1
Ml

����
���� + βl  

t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ ‖F‖ + c2(  K⊗ In( 

����
���� 

t

0
e

− ωσ
‖(x(σ)⊗x(σ))‖dσ +

1
2
λ‖BNδ‖

t

0

e
− ωσdσ

+
1
2
λ ‖F‖ + c2( 

s

l�1
Kl ⊗ In( 

����
���� 

t

0
e

− ωσ
x σ − τl( ⊗x(σ)( 

����
����dσ

+
1
2
λ K⊗ In( 
����

����

s

l�1
Hl

����
���� + ηl  

t

0
e

− ωσ
x(σ)⊗ x σ − τl( ( 

����
����dσ

+
1
2
λ

s

l�1


s

j�1
Hl

����
���� + ηl  Kj ⊗ In 

�����

����� 
t

0
e

− ωσ
x σ − τj ⊗x σ − τl(  

�����

�����dσ

+
1
2
λ ‖F‖ + c2(  

t

0
e

− ωσ
‖Nδ(

����‖x(σ)‖ +‖K‖‖x(σ)‖
2
)dσ

+
1
2
λ ‖F‖ + c2( 

s

l�1
Kl

����
���� 

t

0
e

− ωσ
x σ − τl( 

����
����‖x(σ)‖dσ

+
1
2
λ

s

l�1
Hl

����
���� + ηl  

t

0
e

− ωσ
‖Nδ(

���� x σ − τl( 
����

���� +‖K‖‖x(σ)‖ x σ − τl( 
����

����)dσ

+
1
2
λ

s

l�1


s

j�1
Hl

����
���� + ηl  Kj

�����

����� 
t

0
e

− ωσ
x σ − τj 

�����

����� x σ − τl( 
����

����dσ

+
1
2
λ‖B‖ umax

����
���� 

t

0
e

− ωσdσ.

(81)
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Let us assume that

‖x(t)‖<R . (82)

'en, using the following matrix norm property, for
each l, j ∈ 1, . . . , s{ },

‖x(t)⊗x(t)‖<R‖x(t)‖,

x t − τl( ⊗x(t)
����

����<R‖x(t)‖,

x(t)⊗ x t − τl( 
����

����<R‖x(t)‖,

x t − τj ⊗ x t − τl( 
�����

�����<R x t − τl( 
����

����,

(83)

and inequality (81) could be written as

e
− ωt

‖x(t)‖≤ λ x0
����

���� + λβ0
t

0

e
− ωσ

‖x(σ)‖dσ

+ λ
s

l�1
Ml

����
���� + βl  

t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ ‖F‖ + c2(  K⊗ In( 

����
����R 

t

0
e

− ωσ
‖x(σ)‖dσ +

1
2
λ‖BNδ‖ 

t

0
e

− ωσdσ

+
1
2
λ ‖F‖ + c2( 

s

l�1
Kl ⊗ In( 

����
����R 

t

0
e

− ωσ
‖x(σ)‖dσ

+
1
2
λ K⊗ In( 
����

����

s

l�1
Hl

����
���� + ηl R 

t

0
e

− ωσ
‖x(σ)‖dσ

+
1
2
λ

s

l�1


s

j�1
Hl

����
���� + ηl  Kj ⊗ In 

�����

�����R 
t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ ‖F‖ + c2( ‖Nδ‖ 

t

0
e

− ωσ
‖x(σ)‖dσ

+
1
2
λ ‖F‖ + c2(  ‖K‖ + 

s

l�1
Kl

����
����⎛⎝ ⎞⎠R 

t

0
e

− ωσ
‖x(σ)‖dσ

+
1
2
λ‖Nδ‖

s

l�1
Hl

����
���� + ηl  

t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ‖K‖

s

l�1
Hl

����
���� + ηl R 

t

0
e

− ωσ
‖x(σ)‖dσ

+
1
2
λ

s

l�1


s

j�1
Hl

����
���� + ηl  Kj

�����

�����R 
t

0
e

− ωσ
x σ − τl( 

����
����dσ

+
1
2
λ‖B‖ umax

����
���� 

t

0
e

− ωσdσ.

(84)
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Let

X(t) � supρ∈[t− τ,t]‖x(ρ)‖ e
− ωt

, ∀t≥ 0, (85)

and then, by taking into account the fact that ∀t≥ 0 and
l ∈ 1, . . . , s{ }

‖x(t)‖≤ supρ∈[t− τ,t]‖x(ρ)‖,

x t − τl( 
����

����≤ supρ∈[t− τ,t]‖x(ρ)‖,
(86)

it comes out that

e
− ωt

‖x(t)‖ ≤ λ x0
����

���� + λQ1 
t

0
X(σ)dσ + λQ2R

· 
t

0
X(σ)dσ + λQ3 

t

0
e

− ωσdσ
, (87)

where Q1, Q2, and Q3 are given in relation (66).
Let us define S(t) as the right-handmember of inequality

(84):

S(t) � λ x0
����

���� + λ Q1 + Q2R(  
t

0
X(σ)dσ + λQ3 

t

0
e

− ωσdσ .

(88)

It is clear that S(t) is a nondecreasing function in terms
of the definition of X(t); then, from inequality (87), we can
have

∀t≥ 0, X(t)< S(t). (89)

'e derivation of function S(t) leads to

dS(t)

dt
� λ Q1 + Q2R( X(t) + λQ3e

− ωt , (90)

and the following inequality can be deduced from (87):

dS(t)

dt
< λ Q1 + Q2R( S(t) + λQ3e

− ωt . (91)

Now, using Lemma 2 (see Appendix C), the integration
of inequality (91) on the time interval [0, t] leads to

S(t)< e


t

0
λ Q1 + Q2R( dτ

S(0) + 
t

0
λQ3e

− ωτ
e

− 
τ

0
λ Q1 + Q2R( d]

dτ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (92)

where

S(0) � λ x0
����

����. (93)

Inequality (87) and expression (92) imply

e
− ωt

‖x(t)‖ < λ x0
����

����e
λ Q1+Q2R( )t

+
λQ3

λ Q1 + Q2R(  + ω
e
λ Q1+Q2R( )t

· 1 − e
− λ Q1+Q2R( )+ω( )t

 ,

(94)

which is equivalent to

‖x(t)‖ < λ x0
����

����e
λ Q1+Q2R( )+ω( )t

+
λQ3

λ Q1 + Q2R(  + ω

· e
λ Q1+Q2R( )+ω( )t

− 1 

.

(95)

If condition (68) holds on, then, for

R< −
1

Q2

ω
λ

+ Q1 , (96)

it results that

λ Q1 + Q2R(  + ω< 0 , (97)

which permits deducing the following inequality ensuring
the boundedness of solution x(t):

∀t≥ 0, ‖x(t)‖< λ x0
����

���� −
λQ3

λ Q1 + Q2R(  + ω
. (98)

Now, to ensure the hypothesis given by inequality (82),
for all t≥ 0, it suffices to have

λ x0
����

����< −
1

Q2

ω
λ

+ Q1  . (99)

So, from inequality (98) and condition (99), it follows
that

x0
����

����<R0 � −
1

λQ2

ω
λ

+ Q1 ⇒‖x(t)‖< r

� λR0 −
λQ3

λ Q1 + Q2R(  + ω
.

(100)

Hence, the closed-loop system (12) is practically
stable. □

5. Application to a Paper-Making Machine

A precision paper-making machine at a paper mill, which
produces the super-thin condenser paper, can be described
concisely in Figure 1.

'e thick stock from pulp workshop is pumped into a
mixing box where it is mixed with chemicals and white
water; then the mixture is filled into the headbox through a
filter in which the dregs in stock are removed. 'e next step
is to place the stock onto the forming wire and to remove
most of the water to form paper. 'e paper sheet goes
through the press part and dryer section to remove the
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remaining water and mill paper and subsequently to ac-
complish the process of production.

As we know, the headbox system is very important in
paper-making process. 'e level and consistency of stock in
the headbox are the main factors affecting production
quality. In general, we take the flow rate of white water and
stock going into the mixing box as control variables to
control the level and consistency of stock in headbox. Since
there exists strong interaction between level control system
and consistency control system [41], it is important to recall
here that all published researches based on the certain and
undelay bilinear modeling of paper-making machine have
studied only the control problems without input constraints
[41–45].

In this paper, an unstructured uncertain bilinear model
with multiple time-delayed states is used to describe the
dynamic behavior of the paper-making machine. Such
mathematical modeling leads to complex model, which can
be turned out to be difficult to apply for the synthesis of a
performance controller. Nevertheless, the adopted control
strategy is applied in order to guarantee the robust track-
ability of both level and consistency control systems for a
constant reference input vector under the presence of
constraints on the input vector. 'us, those features con-
stitute the major superiority of the proposed control law
compared to existing results.

5.1. SystemModeling. For the mixing tank, according to the
mass balance law, we have [42, 43]

dH1

dt
�

1
A1

Gp + Gw − G1 , (101)

dN1

dt
�

GpNp + GwNw − H1/R1( N1 − N10 Gp + Gw − H1/R1(  

A1H10 + Gp + Gw − H1/R1( 
,

(102)

where Gp, Np are flow rate and consistency of the stock from
pulp workshop, respectively; Gw, Nw are flow rate and
consistency of the white water, respectively; G1, N1 are flow
rate and consistency of the mixing stock out of mixing tank,
respectively; A1, H1 are cross-sectional area and liquid level
of the mixing tank, respectively; H10 is the steady state of
liquid level H1; N10 is the steady state of consistency of the
mixing stock out N1; and R1 is the flow resistance of mixing
tank.

Using steady-state operation conditions,

G10 � Gp0 + Gw0,

G10N10 � Gp0Np0 + Gw0Nw0,
(103)

and approximate relationship is

zG1 �
zH1

R1
, (104)

and then, by taking the deviation of equations (101) and
(102), we get

dH1

dt
�

1
A1

Gp + Gw −
H1

R1
 , (105)

dN1

dt
�

1
A1H10

Np0 − N10 Gp + Nw0 − N10( Gw −
H10

R1
N1 

+
H10

A1H10( 
2
R1

GpN1 + GwN1 

+
1

A1H10( 
2
R1

Np0 − N10 GpH1

+ Nw0 − N10( GwH1).

(106)

Similarly, for the headbox, we have

dH2

dt
�

1
A2R1

H1 −
1

A2R2
H2, (107)

dN2

dt
�

H10

A2H20R1
N1 +

N10 − N20

A2H20R1
H1 −

N20 − N10

A2H20R1
H2

+
1

A2R2
N2,

(108)

where H2, N2 are the level and consistency of the stock in
headbox, respectively; A2 is the cross-sectional area of the
headbox; and R2 is the flow resistance of the headbox.

Substituting all steady-state data

Gp0 � 5.28T/h Np0 � 1.015%

Gw0 � 11.64T/h Nw0 � 0.05%

H10 � 650mm H2O H20 � 190mm H2O

N10 � 0.35% N20 � 0.34%

(109)

into equations (105)–(108), we finally get the bilinear model
for the headbox system as follows:
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_x(t) � A0x(t) + 
2

i�1
Aix(t)ui(t) + Bu(t), (110)

where state vector x(t), input vector u(t), and system
matrices are given as follows:

x(t) �

H1

H2

N1

N2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 �

− 1.930 0 0 0

0.394 − 0.426 0 0

0 0 − 0.63 0

0.095 − 0.103 0.413 − 0.426

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

u (t) �
u1(t)

u2(t)
  �

Gp

Gw

 ,

B �

1.274 1.274

0 0

1.34 − 0.65

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A1 �

0 0 0 0

0 0 0 0

0.755 0 − 0.718 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

0 0 0 0

0 0 0 0

− 0.366 0 − 0.718 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(111)

In our paper, we assume the following:

(i) All state variables of the considered bilinear system
are measurable and accompanied by two time delays
in states and nonconstant initial conditions.
According to state model (110), it comes out that

_x( t ) � A0x( t ) + 
2

l�1
Dl0x( t − τl ) + 

2

i�1
Aix( t )ui( t )

+
2

l�1


2

i�1
Dlix( t − τl )ui( t ) + Bu( t ),

x( t ) � ζ( t ) � 1 − cos( t ) sin( t ) 1 − cos( t ) sin( t ) 
T
,

t ∈ [− 3, 0],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(112)

with

D10 �

0 0 0 0

0 0 0 0

0 − 1 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D20 �

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D11 �

0 0 0.25 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D12 �

0 0 0 − 0.5

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D21 �

− 0.25 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D22 �

0 0.5 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(113)

and τ1 � 2s and τ2 � 3s.
(ii) Most matrices of the adopted time delays bilinear

system (112) are affected by additional uncertainties
satisfying assumptions (5) and (6), with

c1 � 0,

c2 � 0,

η1 � 0.1,

η2 � 0.1,

η1 � 0.1,

η2 � 0.1.

(114)
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(iii) 'e output vector is given by

y(t) �
y1(t)

y2(t)
  �

H2

2N2
 

�
0 1 0 0

0 0 0 2
 x(t) � Cx(t).

(115)

(iv) 'e actuator vector ui(t) for each i ∈ 1, 2{ } should
satisfy the constraint conditions (8), with

− 1≤ u1(t)≤ 1,

− 1≤ u2(t)≤ 1.
(116)

5.2. Control Specifications and Considered Reference Model.
'e main objective is to synthesize a memory state feedback
control with feedforward gain (7) in order to keep the
outputs of the controlled system to the value of 1. For this
purpose, let us consider the following matrices system of the
reference model (13):

E �

− 0.5 − 0.4 0 − 0.2

0.4 − 0.45 0 0

0 0 − 1 − 0.2

0.1 − 0.1 0.42 − 0.42

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F �

0.95 0.1

0 0

− 0.12 0.7

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G � C.

(117)

5.3. SimulationResultsandDiscussion. With respect to a unit
step input yc1(t) � yc2(t) � 1, the analytical solution of the
linear reference can be easily found. In order to provide the
suitable choice of the number of block-pulse functions, we
compare the exact solution xr(t) with approximate solution,
given by

xr(t) � XrNSN(t). (118)

For N � 26 (number of BPFs) and T � 16s, it can be
observed from Figure 2 that we have an excellent approx-
imation of the exact solution xr(t).

'e implementation of the proposed tracking control
approach leads to the following control gains:

N �
0.250 0.347

0.485 − 0.320
 ,

K �
− 0.360 0.100 0.186 0.150

− 0.750 0.210 − 0.186 0
 ,

K1 �
0 − 0.5025 0.0385 − 0.0231

0 0.5025 0.0792 − 0.0476
 ,

K2 �
− 0.0385 0.0231 0 0.5025

− 0.0792 0.0476 0 − 0.5025
 .

(119)

In Figure 3, the step responses of the reference model
and the controlled nominal bilinear system with multiple
time-delayed states under bounded input control are plot-
ted. 'e figure shows that both level and consistency of the
stock in headbox increase quickly to their final nonzero
values at settling time of 15 s and without overshoot. During
the transient state, the errors between the reference model
outputs and the controlled system outputs are due to the
large values of time delays, which are taken into account in
modeling step of the paper-making machine.

It can be seen that the memory state feedback controllers
with compensator gain, applied to the considered system,
permit achieving the purpose. In fact, the closed-loop
performance of the system is judged to be very satisfactory
with respect to the effectiveness trackability of the reference
input vector.'is is confirmed by a zero steady-state error in
level and consistency of the stock in headbox.

From what has been stated above, it can be deduced that
the dynamic of the controlled system through the proposed
control law is essentially characterized by a satisfactory
speed convergence time, acceptable damping behavior, and
excellent tracking performance.

Figure 4 illustrates the variation of the control signals
u1(t) and u2(t). It can be observed from the simulation
results that the proposed memory state feedback controller
can cope well with the hard input constraints (116).

By taking into account the fact that the actuator limi-
tations have been incorporated into control design, the
potential ability of the designed closed-loop system to
withstand these constraints can be seen from simulation
results.

'e step responses of the reference model and the
closed-loop bilinear system with both time delays and un-
certainty are depicted in Figure 5. 'e obtained results show
the applicability of the robust tracking controller designed
and its ability to cope with model uncertainties. 'us, it
appears that the proposed robust tracking controller design
approach can achieve an admissible tracking performance
with an acceptable settling time and a little overshoot
transient response. Hence, this can be evaluated as a second
advantage of the investigated approach in this paper.
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Figure 3: Step responses of the reference model, − ; the controlled nominal bilinear systemwith multiple time-delayed states under bounded
input control,− − .
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Figure 2: State variables of the reference model: − , exact solutions; ∗ , BPFs approximations.
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5.4. Practical Stability Test. Now, we can verify that all ei-
genvalues of matrix M0 have a strictly negative real part, and

e
M0t

����
����≤ 1.05e

− 0.4t
, ∀t≥ 0, (120)

which corresponds to inequality (70) with λ � 1.05 and ω �

− 0.4 and satisfying condition (68) with Q1 � 0.3797; then,
from 'eorem 1, we can conclude that the closed-loop
system is practically stable for each initial state satisfying
‖x(0)‖< 0.0002.

6. Conclusion

In this paper, we have developed a new algebraic approach to
design memory tracking controllers with compensator gain

for bilinear time delays systems with unstructured norm
bounded uncertainties and under bounded input control.
Due to the elegant operational properties of block-pulse
functions as a basis, the proposed approach of control design
has been formulated as a constrained and unstructured
linear system of algebraic equations, depending on the
parameters of the feedback regulator, which has been treated
as an optimization problem. Sufficient conditions for the
practical stability of the controlled system have been derived.
Lastly, a paper-makingmachine as an example has been used
to illustrate our results.

Note that this algebraic technique based on the pro-
jection of the systemmodel on an orthogonal functions basis
has the ability to be investigated as a promising method for
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Figure 5: Step responses of the reference model, − ; the controlled uncertain time delays bilinear system,− − .
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Figure 4: Variation of the control signals u1(t) and u2(t).
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the saturated tracking control of more complex dynamic
systems.

In the future work, we intend to extend the actual study to
the synthesis of the saturated tracking controller for contin-
uous-time nonlinear polynomial systems affected with both
unstructured uncertainties and time delays in states.

Appendix

A. Block-Pulse Functions and Their Properties

N-set of block-pulse functions (BPF) over the interval [0, T]

is defined in [30] as follows:

φi( t ) �

1,
iT

N
≤ t≤

( i + 1 )T

N
, for i � 0, . . . , N − 1,

0, elsewhere,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(A.1)

with a positive integer value for N. Also, φi(t) denotes the
i-th block-pulse functions. 'ere are some properties for
BPFs, and the most important properties are disjointness,
orthogonality, and completeness.

So, a vector function x(t) of n-dimensional components
which are square-integrable in [0, T] can be represented
approximately by a finite block-pulse series:

x(t) � 
N− 1

i�0
xiφi(t) � XNSN(t), (A.2)

with

XN � x0 . . . xN− 1 ,

SN(t) � φ0(t) . . . φN− 1(t) 
T
,

(A.3)

and xi are the block-pulse coefficients of x(t), as ob-
tained from the orthogonality of the block-pulse functions:

xi �
N

T


( ( (i+1)T/N ) )

( (iT/N) )
x(t)dt. (A.4)

Assuming that the vector x(t) has its initial as

x(t) � ζ(t), − τ ≤ t≤ 0, (A.5)

with 0< τ <T, the time delay vector x(t − τ) is expressed for
t ∈ [0, T] as follows:

x( t − τ ) �
ζ( t − τ ), for 0≤ t≤ τ,

x( t − τ ), for τ < t≤T.
 (A.6)

'e block-pulse series approximation of time delay
vector x(t − τ) is given in [31] by

x(t − τ) � 
N− 1

i�0
x
∗
i (τ)φi(t) � X

∗
N(τ)SN(t), (A.7)

with

X
∗
N(τ) � x

∗
0(τ) . . . x

∗
N− 1(τ) , (A.8)

where

x
∗
i ( τ ) �

N

T


(( i+1 )T/N)

(iT/N)
x( t − τ )dt �

ζ∗i ( τ ), for i≤ μ,

xi− μ, for i> μ,

⎧⎪⎨

⎪⎩

(A.9)

with μ being the number of BPFs considered over 0≤ t≤ τ,
and

ζ∗i (τ) �
N

T


((i+1)T/N)

(iT/N)
ζ(t − τ)dt. (A.10)

Operational Matrix of Integration

'e integration matrix of the BPFs is given in [30] by


t

0
SN(t)dt � PNSN(t), (A.11)

PN �
T

2N

1 2 . . . 2
0 1 . . . 2
⋮ ⋱ ⋱ 2
0 . . . 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.12)

Operational Matrix of Product

We denote by e
p
i p-dimensional unit vector which has

1 in the ith element and zero elsewhere. 'e ele-
mentary matrix is defined by

E
p×q
i,j � e

p
i ⊗ e

qT

j , (A.13)

where ⊗ is the symbol of the Kronecker product.

Based on the disjointness property of BPFs, we have [33]

SN(t)⊗ SN(t) �

E
N×N
1,1

⋮

E
N×N
N,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
SN(t) � MNSN(t) . (A.14)

B. vec Operator and Kronecker
Product Properties

An important vector valued function of matrix denoted as
vec( ) was defined in [35] as follows:

H � h1 h2 . . . hq , (B.1)

where, for all i ∈ 1, . . . , q , hi ∈ Rp are the columns of H:

vec(H) � h
T
1 h

T
2 . . . h

T
q  ∈ Rpq

. (B.2)

Property 1. For any matrices X, Y, and Z having appropriate
dimensions, the following property of the Kronecker
product is given in [35] by
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vec(XYZ) � Z
T ⊗X vec(Y). (B.3)

Property 2. Let the matrices A � [aij] ∈ Rm×n and B ∈ Rp×q;
we have [34]

vec(A⊗B) � vec 
m

i�1


n

j�1
aijE

m×n
i,j

⎛⎝ ⎞⎠⊗B⎛⎝ ⎞⎠

� 
m

i�1


n

j�1
aijvec E

m×n
i,j ⊗B  � Πm,n(B)vec(A),

(B.4)

where

Πm,n(B) �

vec E
m×n
11 ⊗B( ⋮ . . .⋮vec E

m×n
m1 ⊗B( ⋮

vec E
m×n
22 ⊗B( ⋮ . . .⋮vec E

m×n
m2 ⊗B( ⋮ . . .⋮

vec E
m×n
1n ⊗B( ⋮ . . .⋮vec E

m×n
mn ⊗B( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(B.5)

C. Two Useful Lemmas

Lemma 1. Given A ∈ Rm×n with m> n, B ∈ Rm, and positive
real numbers (δA, δB), the following optimization problem,

minθ∈Rnmax‖ΔA‖≤δA,‖ΔB‖≤ δB
‖(A + ΔA)θ − (B + ΔB)‖ ,

(C.1)

is equivalent to the following minimization problem [36]:

minθ∈Rn ‖Aθ − B‖ + δA‖θ‖ + δB , (C.2)

Lemma 2. Let σ(t), ξ(t) and v(t) be real-valued continuous
functions defined on interval [0,∞). If v(t) is differentiable in
the interval [0,∞) and satisfies the differential inequality:

dv(t)

dt
≺σ(t)v(t) + ξ(t), (C.3)

and then v(t) is bounded by

v(t)≺e


t

0
σ(τ)dτ

v(0) + 
t

0
ξ(τ)e

− 
τ

0
σ(μ)dμ

dτ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (C.4)
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