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Short-term wind speed forecasting is crucial to the utilization of wind energy, and it has been employed widely in turbine
regulation, electricity market clearing, and preload sharing. However, the wind speed has inherent fluctuation, and accurate wind
speed prediction is challenging. -is paper aims to propose a hybrid forecasting approach of short-term wind speed based on a
novel signal processing algorithm, a wrapper-based feature selection method, the state-of-art optimization algorithm, ensemble
learning, and an efficient artificial neural network. Variational mode decomposition (VMD) is employed to decompose the
original wind time-series into sublayer modes. -e binary bat algorithm (BBA) is used to complete the feature selection. Bayesian
optimization (BO) fine-tuned online sequential extreme learning machine (OSELM) is proposed to forecast the low-frequency
sublayers of VMD. Bagging-based ensemble OSELM is proposed to forecast high-frequency sublayers of VMD. Two experiments
were conducted on 10min datasets from the National Renewable Energy Laboratory (NREL). -e performances of the proposed
model were compared with various representative models. -e experimental results indicate that the proposed model has better
accuracy than the comparison models. Among the thirteen models, the proposed VMD-BBA-EnsOSELM model can obtain the
best prediction accuracy, and the mean absolute percent error (MAPE) is always less than 0.09.

1. Introduction

Wind energy has grown substantially for two decades [1]. It
has become one of the primary renewable energy sources.
However, wind energy is highly variable, which affects the
stable operation of the grid. Wind speed prediction can
enhance wind farm operations and reduce the influence of
wind energy on the grid. As the installed capacity of wind
energy increases year by year [2], the industry needs more
accurate wind speed prediction, making this subject an
essential topic in energy research. Over the past decade,
scholars have proposed many wind speed prediction
methods. -ese methods are divided into four categories,
i.e., (1) physical methods, (2) statistical methods, (3) artificial
intelligence methods, and (4) hybrid methods.

-e physical methods are based on fluid dynamics
principles to establish numeric weather prediction (NWP)

models. -ese methods need vast calculations and are not
suitable for short-term wind speed prediction [3]. Statistical
methods can analyze the patterns in historical data and
establish linear prediction models. Representative methods
include autoregressive (AR) [4], autoregressive moving
average (ARMA) [5], autoregressive integrated moving
average (ARIMA) [6], and pattern sequence similarity (PSF)
[7]. -ese methods are not capable of characterizing non-
linear relationships in the wind data to produce high-pre-
cision prediction results.

Artificial intelligence methods are good at modeling
nonlinear relationships. Among the AI models, the most
widely used ones are artificial neural networks (ANNs) [8]
and support vector machines (SVMs) [9]. However, the
ANNs have multilayer structures that contain many pa-
rameters to adjust. -e SVM is sensitive to parameters and
needs massive calculation on large data sets. Extreme
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learning machine (ELM) is a simple neural network [10].
Compared to the ANNs, ELM has a single hidden layer and
therefore has fewer network parameters. Compared to SVM,
ELM is more efficient. Consequently, ELM is an excellent
predictor [11]. For instance, Liu et al. [12] used the ELM to
complete the forecasting for the high-frequency sublayers
obtained by the VMD-SSA. Fu et al. [13] proposed a hybrid
approach based on dominant ingredient chaotic analysis and
the ELM. However, in these papers, ELM is in the offline
mechanism, and they cannot support real-time learning. To
address this issue, an online sequential extreme learning
machine (OSELM) was introduced. Zhang et al. [14] pro-
posed an online sequential outlier robust extreme learning
machine (OSORELM) for short-termwind speed prediction.
Tian et al. [15] proposed an adaptive OSELM to improve
ELM’s prediction ability further.

Ensemble learning, such as Bagging [16] and Boosting
[17], can combine multiple weak predictors to complete the
forecasting. Bagging can reduce the prediction variance and
improve the stability of the fundamental predictors. Zontul
et al. [18] proposed a Bagging-based decision tree algorithm
for wind speed prediction. Emeksiz and Demir [19] used the
Bagging algorithm to estimate wind speed. Boosting can
effectively enhance the performance of a weak predictor.
Peng et al. [17] used the AdaBoost neural network to solve
the lower accuracy defect. Liu et al. [20] proposed an
AdaBoost algorithm and the multilayer perceptron (MLP)
neural networks.

Besides ensemble learning, hybrid methods can im-
prove the prediction robustness and accuracy of a single
model. In a hybrid model, signal decomposition algorithms
are employed to reduce the prediction complexity. -e
representative algorithms are wavelet decomposition
(WD), wavelet packet decomposition (WPD), empirical
mode decomposition (EMD), and ensemble empirical
mode decomposition (EEMD). For instance, Fei and He
[21] proposed a hybrid prediction method that combined
WD and relevance vector machine. Liu et al. [22] presented
a novel approach based on WPD and convolutional long
short-term memory (ConvLSTM) networks. Zhang et al.
[23] developed a model combining EMD, ANN, and SVM.
Tian et al. [24] proposed a prediction approach using
EEMD and extreme learning machine (ELM). However, the
above decomposition methods have shortcomings. For
instance, the wavelet-based approaches do not support
adaptive processing; EMD cannot avoid mode mixing, and
EEMD can add extra white noise into the wind data. A
novel signal processing method, variational mode de-
composition (VMD), was proposed to overcome the above
obstacles. It can break down the original wind speed time-
series into a set of band-limited sublayer modes named
intrinsic mode functions (IMFs). -ese IMFs are stationary
to predict. For instance, Zhang et al. [25] presented a
hybrid model of the ANN, VMD, and Lorenz disturbance.
-e results proved the stable prediction performance of the
proposed model. Gendeel et al. [26] presented an ANN
prediction model with VMD. -e comparison results in-
dicated that the proposed model obtained significant im-
provements in forecasting accuracy.

Feature selectionmethods can improve the computational
efficiency of the hybrid models. -e typical filter-based ap-
proaches are partial autocorrelation function (PACF) and
information theory methods. Sun et al. [27] applied PACF to
identify the correlation between the decomposed components
of EEMD. Memarzadeh and Keynia [28] used mutual in-
formation (MI) for feature selection. Huang et al. [29] used
conditional mutual information (CMI) to analyze the cor-
relation between the input features. Compared with the filter
methods, the metaheuristic optimization-based wrapper ap-
proach can produce better accuracy. Sun et al. [27] used the
binary-value gravitation search algorithm (BGSA) to improve
the regression performance. Liu et al. [30] used the binary-
coded genetic algorithm (BGA) for feature selection. Recently,
the binary bat algorithm (BBA) has been proposed for feature
selection. Compared with other metaheuristic algorithms,
BBA has fewer parameters to adjust and can obtain better
accuracy. Naik et al. [31] used the BBA to identify the relevant
subset of features for the machine-learning tasks. Xie et al.
[32] applied BBA to realize test-cost-sensitive attribute re-
ductions. Liu et al. [33] used BBA to remove redundant
features for image steganalysis effectively. Since BBA is su-
perior to PACF, it is employed for feature selection in this
paper.

Besides the feature selection, the metaheuristic optimi-
zation algorithms can be used to seek the optimal parameters
of the prediction models to promote the predictors’ per-
formance on the datasets [34]. Among the metaheuristic
algorithms, the genetic algorithm (GA) [35] and particle
swarm optimization (PSO) [36] have been widely used in
wind speed prediction. Although they are suitable for op-
timizing the model parameters, they need massive calcu-
lations and are vulnerable to improper parameter
initialization. In the past few years, Bayesian optimization
(BO) has emerged as a powerful tool for fine-tuning
hyperparameters. Specifically, BO is capable of optimizing
expensive black-box objective functions. Compared with the
evolutionary computation methods, BO can achieve desir-
able results with fewer iterations. For instance, Cho et al. [37]
used BO to fine-tune deep neural networks. -e experi-
mental results indicated that BO is a robust solution
compared to the existing solutions. Muhuri and Biswas [38]
used BO to optimize task scheduling. -eir approach ob-
tained optimal schedules without violation of the con-
straints. -e experimental results indicated that BO is
sample-efficient and can significantly outperform existing
optimizers.

-is paper proposes a novel approach for short-term
wind speed prediction based on the above issues. -e
proposed model combines VMD, BBA, OSELM, BO, and
Bagging. -e contributions of the paper are as follows:

(1) VMD is utilized to preprocess the original wind
time-series into more stationary sublayers for pre-
diction. Compared to EMD and its variants, the
proposed approach is more robust to data noise

(2) BBA is employed to complete the feature selection.
Compared to PACF, BBA can achieve better pre-
diction accuracy
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(3) BO-optimized OSELM, referred to as BO-OSELM, is
used to forecast the low-frequency sublayers of
VMD. Compared to ELM, OSELM can provide the
capability of online learning. Besides, BO is used to
optimize the structure of OSLEM

(4) Bagging-based ensemble OSELM, referred to as
Bagging-OSELM, is employed to forecast high-fre-
quency sublayers of VMD. -e Bagging-OSELM
reveals better stability and accuracy than OSELM
and AdaBoost-OSELM

-e remaining part of the paper proceeds as follows:
Section 2 introduces the proposed hybrid model, Section 3
presents the experimental results and discussion, and Sec-
tion 4 draws the conclusions.

2. The Proposed Hybrid Model

In this section, the proposed hybrid model, referred to as
VMD-BBA-EnsOSELM, is presented. -is approach com-
bines VMD, BBA, BO, Bagging, and OSELM. -e archi-
tecture of the proposed model is demonstrated in Figure 1.
-e process of the proposedmethod is introduced as follows:

(1) VMD is utilized to decompose the denoised original
data set into stationary sublayers.

(2) -e feature selection method of BBA is applied to
reserve critical features from the sublayers produced
by VMD. -e past twenty data points of the wind
speed are chosen as the candidate feature sets. BBA
determines the most relevant features of the can-
didate features.

(3) OSELM is adopted to complete the forecasting for
the low-frequency sublayers obtained by VMD. BO
optimizes the parameters of OSELM.

(4) Bagging-OSELM is adopted to complete the fore-
casting for the high-frequency sublayers obtained by
VMD.

(5) All the forecasting results of the BO-OSELM and
Bagging-OSELM are aggregated to produce the final
prediction results.

(6) -e proposed model is evaluated and compared with
twelve comparison models, including the GPR
model, the LSSVR model, the LSTM model, the
OSELM model, the AdaBoost-OSELM model, the
Bagging-OSELM model, the BBA-OSELM model,
the BO-OSELM model, the PSO-OSELM model, the
EMD-BBA-OSELM model, the EEMD-BBA-
OSELM model, and the VMD-BBA-OSELM model.

2.1. Variational Mode Decomposition. -e VMD algorithm
is developed to overcome the limitations of EMD [39]. It can
decompose an original signal x(t) into IMFs. In the liter-
ature, it presented significant advantages in time-series
forecasting [40] and fault diagnosis [41]. -e core principle
of VMD is to realize the IMFs by resolving the constrained
optimization problem as follows:

min
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where uk􏼈 􏼉 � u1, u2, . . . , uK􏼈 􏼉 denotes the IMFs;
ωk􏼈 􏼉 � ω1,ω2, . . . ,ωK􏼈 􏼉 is a central frequency of each IMF in
the Fourier frequency domain; and δ(t) represents a Dirac
function.-e constraint conditions are (1) the original signal
equals the sum of all the IMFs; and (2) the sum of the modal
bandwidths is the least. Moreover, a Lagrange multiplier is
introduced as
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where α denotes a penalty factor, guaranteeing the de-
composition precision, and λ is a Lagrangian multiplier to
assure the rigidity of the constraint conditions. -e optimal
solution to the above optimization problem is achieved as
follows:
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where uk(t) is an IMF, 􏽢un+1
k (ω) is the Fourier transform of

uk(t), and n denotes the number of iterations to resolve the
problem.

2.2. Binary Bat Algorithm. Inspired by bats, a novel meta-
heuristic algorithm, named the bat algorithm [42], is de-
veloped. In this algorithm, each bat can use echolocation to
detect prey. In each iteration, a bat bi actively adjusts the
loudness Ai and the rate of pulse emission ri according to the
prey’s distance. Firstly, each bat bi is initialized with the
position xi, the velocity vi, and the frequency fi. -en, for
each iteration t, the bat bi can be updated according to the
following equations:

fi � fmin + fmax − fmin( 􏼁β, (5)

v
j
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j
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j
− x

j
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Ai(t + 1) � αAi(t), (8)

ri(t + 1) � ri(0) + 1 − e
−ct
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where β denotes a randomly generated number; x
j
i (t)

denotes the value of decision variable j for bat i at time step
t; �xj represents the current global best solution for decision
variable j; and α and c are user-specified constants (Al-
gorithm 1).

In case of feature selection, a binary version of the bat
algorithm is proposed restricting the new bat’s position x

j
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2.3. Online Sequential Extreme Learning Machine. ELM is a
novel feedforward network with a single hidden layer. -e
mathematical expression of ELM is illustrated as follows:

f(x) � G(x)β, (11)

where β is the output weight vector between the single
hidden layer and the output layer, and G(x) is the hidden
layer output matrix. -e optimal solution of β can be ob-
tained by

β∗ � G
†
T, (12)

where G† is the Moore–Penrose inverse of G, and T is the
training-target matrix.

OSELM is a novel online learning algorithm [43]. -e
algorithm can be divided into two phases: the initialization
phase and the online learning phase. In the initialization
phase, given a training dataset T, the hidden layer output
matrix G0 and the output weight vector β∗0 can be calculated
as follows:

N0 � G
T
0 G0􏼐 􏼑

−1
,

β∗0 � N0G
T
0 T.

(13)

Variational mode
decomposition

Bayesian optimization fine-
tuned online sequential Extreme

learning Machine

Bagging online sequential
extreme learning machine

Original wind speed data

Mode 1

Low-frequency sublayer High-frequency sublayer

Aggregation

Wind speed forecasting
results

Mode N

Binary bat algorithm Binary bat algorithm

…

…

…

…

Figure 1: -e process of the VMD-BBA-EnsOSELM model.
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-en, the online learning process starts, and the algo-
rithm learns the data block by block. In the kth iteration, a
batch of new observed training-target matrix T0was given.
-e output weight vector β∗k can be calculated as follows:

Nk � Nk−1 −
Nk−1GkG

T
k Nk−1

1 + G
T
k Nk−1Gk

,

β∗k � β∗k−1 + NkGk T0 − G
T
kβ
∗
k−1􏼐 􏼑.

(14)

2.4. Bayesian Optimization. Given a global optimization
problem of an objective function f,

x∗ � argmaxf(x), (15)

where f is an expensive black-box function, and X is the
design space of f(x). Besides, f can be evaluated arbitrarily
in X. -en, a sequential exploration process is proposed,
which, at iteration n, location xn+1 is examined at which to
evaluate f and observe yn+1. After N evaluations, the ex-
ploration process terminates, and a final optimal location x∗
is obtained, which is the best optimization result. In the
problem of wind speed forecasting, the black-box function f

is a wind speed prediction model with hyperparameters x
with a prediction error y � f(x) on a validation dataset.
Such f is nonconvex and expensive to evaluate. Bayesian
optimization [44] takes advantage of all the optimization
function observations to make the sequential exploration
process efficient. Bayesian optimization can be described as a
sequential model-based optimization method that solves the
objective problem. Initially, a probabilistic surrogate model
is specified to represent the prior belief on the objective
function, and then the posterior belief is calculated as f is
evaluated sequentially. -e posterior belief represents the
belief of f on the observations of the objective function. -e
typical probabilistic surrogate models include Gaussian
process regression, sparse pseudo-input Gaussian process,
sparse spectrum Gaussian process, random forest, and
gradient boosting decision tree. An acquisition function
αn: X↦R is used to explore the design space X, incorpo-
rating the posterior belief model. It performs exploration
and exploitation for the next evaluation of f. As a utility
function, it measures how optimal a sequence of evaluations
is. -e acquisition function returns the utility estimate of
candidate points for the next evaluation of f and selects xn+1,
which produces the maximum utility. -e main acquisition
functions are the PI (probability of improvement), EI (ex-
pected improvement), and UBC (upper confidence bounds).
Currently, Bayesian optimization has been demonstrated as
a powerful tool for optimal design problems, such as in-
dustrial control [45], robotics [46], and chemical experi-
ments [47]. In this paper, a novel Bayesian optimization
algorithm, named DART-EI Bayesian optimization is pro-
posed for the wind speed forecasting models. -e process of
the algorithm is described in Algorithm 2. In the process, the
probabilistic surrogate model is dropouts meet multiple
additive regression trees (DART) [48], and the acquisition
function is the EI. In each iteration of the Bayesian

optimization process, the next query point is calculated as
follows:

αEI(x) � E yoptimal − m(x)􏼐 􏼑
+

􏽨 􏽩,

xn+1 � argmax
x∈X

αEIn xn( 􏼁,
(16)

where yoptimal denotes the best current value, m(x) repre-
sents the DART’s prediction mean, and αEIn(xn) denotes the
EI.

Since the performance of the OSELM model can be
impacted by the number of hidden neurons, in this paper,
BO is utilized to achieve the optimal performance of
OSELM. -e objective function of BO is defined as the
prediction result of 4-fold cross-validation for OSELM. -e
input variable of the objective function is the number of
hidden neurons, which is a hyperparameter of OSELM. -e
output variable of the objective function is themean absolute
percent error of 4-fold cross-validation. -e objective
function is defined as follows:

fobj � log 1 + CV4( 􏼁, (17)

where CV4 denotes the 4-fold cross-validation loss on the
training data set. Besides, the acquisition function is critical,
for that it can determine the exploration and exploitation of
BO. In this paper, EI is employed as the acquisition function.

2.5. Bagging. Bagging is an efficient ensemble learning al-
gorithm [49]. It can significantly improve the performance
of the primary learner. In this paper, Bagging-OSELM is
introduced to complete the prediction of high-frequency
sublayers of VMD. Initially, the bootstrap sampling method
is used to draw two hundred sample data sets
D1, D2, . . . , D200 from the given training data set D. -en, an
OSELM Ri is constructed per each data set Di, and the final
ensemble model R is built on averaging the prediction values
from R1, R2, . . . , R200. -e detailed Bagging-OSELM algo-
rithm is described as follows (Algorithm 3):

2.6. 8e Performance Evaluation Metrics. In this paper, the
performance of the involved models can be evaluated by the
mean absolute error (MAE), the mean absolute percent error
(MAPE), and the root mean square error (RMSE). -e
smaller the evaluation metrics, the better the model per-
formed. -e MAE, MAPE, and RMSE are defined as

MAE �
1
N
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(18)
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where 􏽢yi and yi denote the predicted and observed value at
the time i, respectively, and N represents the number of data
points.

Besides, improved percentage indices PMAE, PMAPE, and
PRMSE are used to compare the performance of two models.
-e PMAE, PMAPE, and PRMSE are defined as

PMAE �
MAE1 − MAE2

MAE1
􏼒 􏼓 × 100,

PMAPE �
MAPE1 − MAPE2

MAPE1
􏼒 􏼓 × 100,

PRMSE �
RMSE1 − RMSE2

RMSE1
􏼒 􏼓 × 100.

(19)

2.7. Pearson’s Test. Pearson’s test can evaluate the prediction
capability of the involved models. In Pearson’s test, the
correlation coefficient is calculated to describe the degree of
association between the observed data and the predicted
data. If the correlation coefficient is 0, then the observed and
the predicted values are not correlated. If the coefficient is 1,
the observed and the predicted values are 100% correlated.
-e larger the Pearson correlation coefficient is, the better
the model is. Pearson’s correlation coefficient can be de-
scribed as follows:

P �
􏽐

N
i�1 Yi − Yi( 􏼁 􏽢Yi − 􏽢Ym􏼐 􏼑

�����������������������������
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N
i�1 Yi − Ym( 􏼁

2
× 􏽐

N
i�1

􏽢Yi − 􏽢Ym􏼐 􏼑
2

􏽱 , (20)

where Yi is the actual data, 􏽢Yi is the forecasting data, Ym and
􏽢Ym are the means of the actual data and the forecasting data,
respectively, and N denotes the number of data points.

3. Case Study

3.1. Wind Speed Data Description. In this paper, two wind
speed time-series are used to evaluate the proposed model.
-ese data were collected from the 135-m research towers of
the NREL (National Renewable Energy Laboratory) from
January 2012 to August 2012. -e descriptive statistics of the
data are given in Table 1. Each data set contains 1800 points
with 10min interval. Each original data set is divided into a
training data set and a test data set. -e training data set
includes 1–1700 points, and the test data set contains
1701–1800 points. -e wind time-series is depicted in
Figures 2 and 3, respectively.

3.2. Parameter Settings. In this paper, two kinds of wind
speed prediction models are implemented: the single models
and the hybrid models. -e single models are the GPR
model, the LSSVR model, the LSTM model, the OSELM

Bat Algorithm (f)
Input: Target function f(x), x � (x1, . . . , xn)

Initialize the bat population xi with the velocity vi, the pulse frequency fi,
the pulse rates ri and the loudness Ai, i � 1, 2, . . . , m.
For each bat bi, do
Employ equations (5)–(7) to produce new solutions.
If rand> ri, then
Choose one candidate solution from the optimal solutions.

If rand>Ai and f(xi)<f(�x), then
Accept the newly proposed solutions.
Update ri and Ai by equations (8) and (9).

Return the current best �x.

ALGORITHM 1: -e bat algorithm.

Bayesian Optimization (f , Θ, M, N)
Input: Target function f; hyperparameter space Θ; the number of initiation points M; the number of iteration N;
Result: Optimal hyperparameter θ∗
Sample θi􏼈 􏼉

M

i�1 from the hyperparameter space Θ
for i⟵ 1 to M do yi ⟵ f(θi)

for j⟵ 1 to N do
Fit a surrogate model S on the data set θi, yi􏼈 􏼉

M+j−1
i�1 , where S denotes a DART model

Select θ′ ∈ argmaxθ∈Θα(θ, S), where α represents the acquisition function EI
Update yj⟵f(θ′)

Return θ∗ ∈ argminθ∈ θi{ }
N

i�1
yj

ALGORITHM 2: -e DART-EI Bayesian optimization.
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model, the AdaBoost-OSELM model, the Bagging-OSELM
model, the BBA-OSELMmodel, the BO-OSELMmodel, and
the PSO-OSELM. -e hybrid models include the EEMD-
BBA-OSELM model, the EMD-BBA-OSELM model, the
VMD-BBA-EnsOSELMmodel, and the VMD-BBA-OSELM
model. All the models are developed in the anaconda
environment.

In the GPR model, the kernel function is rational
quadratic. In LSSVR model, the kernel function is RBF, and
gamma is 0.01. In the LSTM model, the number of neurons
is 40. In the OSELM models, the number of hidden neurons
is 10. In the BBA-based models, the maximum time lag is 20
for selecting relevant input features. In the EMD-BBA-

OSELMmodel, the number of EMD trials is adopted as 100.
In the EEMD-BBA-OSELM model, the number of EEMD
trials is adopted as 100, and the standard deviation of
Gaussian noise is 0.05 for EEMD. In the VMD-based models
(VMD-BBA-OSELM and VMD-BBA-EnsOSELM), the
number of modes for VMD decomposition is 10. In the
PSO-OSELMmodel and the VMD-BBA-EnsOSELMmodel,
the number of hidden neurons of OSELM is selected using
PSO and BO. -e search range is as [10, 200].

3.3. Experimental Results. In this section, the forecasting
results for wind speed series 1 and 2 are depicted in Figures 4
and 5.-e estimation prediction results for wind speed series
1 and 2 are presented in Tables 2 and 3. -e improving
percentages of the comparison models by the proposed
model for wind speed series 1 and 2 are shown in Tables 4
and 5. -e results of Pearson’s test for wind speed series 1
and 2 are given in Tables 6 and 7.

3.4.8e Comparisons and Analysis. From the above section,
it can be seen that the prediction results for all the wind
speed series have similar laws. -e comparison and dis-
cussion of the prediction results are as follows:

(1) Among the single models, the OSELM model is the
most efficient, while the LSTM model is the least
efficient. For instance, in series 1, the calculation time
of the OSELM model and the LSTM model is 0.02 s
and 165.10 s, respectively. In series 2, the calculation
time of the OSELM model and the LSTM model is
0.01 s and 140.12 s, respectively.

(2) -e ensemble algorithms can improve the prediction
accuracy. In series 1, from the OSELM model to the
AdaBoost-OSELM model, the MAPE is reduced by
55.73%; from the OSELM model to the Bagging-
OSELM model, the MAPE is reduced by 57.80%. In
series 2, from the OSELM model to the Bagging-
OSELM model, the MAPE is reduced by 64.36%.
Besides, Bagging is superior to AdaBoost. For in-
stance, in series 1, from the AdaBoost-OSELM to the
Bagging-OSELM model, the MAPE is reduced by
4.67%. In series 2, from the AdaBoost-OSELM to the

Bagging-OSELM Algorithm
For i� 1 to 200
Draw train data set Di from D through the bootstrap method.
Build a basal OSELM Ri for Di

Return R(x) � 􏽐
200
i�1Ri(x)/200

ALGORITHM 3: -e Bagging-OSELM.
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Figure 2: Original wind speed series 1.

Table 1: Descriptive statistics of the wind speed datasets.

Wind series Min Max Mean Variance Skewness Kurtosis
1 0.0 21.03 4.78 13.52 1.74 3.48
2 0.0 20.50 5.00 10.99 1.10 1.04
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Figure 3: Original wind speed series 2.
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Bagging-OSELM model, the MAE is reduced by
23.44%, and the RMSE is reduced by 20.51%

(3) -e optimization algorithms can improve the ac-
curacy of the prediction. For instance, in series 1,
from the OSELM model to the PSO-OSELM model,
the MAPE is reduced by 53.01%, and the RMSE is
reduced by 13.01%; from the OSELM to the BO-
OSELM model, the MAE is reduced by 40.06%, and
the MAPE is reduced by 67.00%. In series 2, from the
OSELM model to the PSO-OSELM model, the
MAPE is reduced by 66.34%.

(4) -e feature selection algorithm of BBA can improve
prediction performance. For instance, in series 1,
from the OSELM model to the BBA-OSELM model,
the MAPE is reduced by 56.67%. In series 2, from the
OSELM model to the BBA-OSELM model, the
MAPE is reduced by 62.93%.

(5) BO is superior to BBA and PSO. For instance, in
series 1, from the BBA-OSELM model to the BO-
OSELM model, the MAE is reduced by 30.11%, the
MAPE is reduced by 23.83%, and the RMSE is re-
duced by 29.95%; from the PSO-OSELM model to
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Figure 4: -e forecasting results for wind speed series 1.
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Figure 5: -e forecasting results for wind speed series 2.
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the BO-OSELM model, the MAE is reduced by
32.90% and the RMSE is reduced by 30.70%. In series
2, from the BBA-OSELM model to the BO-OSELM
model, the MAPE is reduced by 40.95%; from the

PSO-OSELM model to the BO-OSELM model, the
MAE is reduced by 39.58%.

(6) -e signal decomposition algorithms can improve
the prediction accuracy. For instance, in series 1,

Table 2: Estimation prediction result for wind speed series 1.

Model MAE (m/s) MAPE (%) RMSE (m/s) Time (s)
GPR 1.60 22.26 2.08 42.39
LSSVR 1.54 23.61 1.89 2.03
LSTM 1.61 23.34 1.99 165.10
OSELM 1.64 46.58 2.11 0.02
AdaBoost-OSELM 1.40 20.62 1.78 5.52
Bagging-OSELM 1.39 19.66 1.79 1.37
BBA-OSELM 1.41 20.18 1.82 31.02
BO-OSELM 0.98 15.37 1.27 102.95
PSO-OSELM 1.47 21.89 1.84 54.20
EMD-BBA-OSELM 1.25 19.97 1.60 275.54
EEMD-BBA-OSELM 0.68 10.60 0.86 219.95
VMD-BBA-OSELM 0.77 11.94 0.96 219.37
VMD-BBA-EnsOSELM 0.52 8.08 0.65 455.98

Table 3: Estimation prediction result for wind speed series 2.

Model MAE (m/s) MAPE (%) RMSE (m/s) Time (s)
GPR 0.50 25.49 0.63 46.87
LSSVR 0.48 22.40 0.63 2.28
LSTM 0.50 23.77 0.65 140.12
OSELM 0.54 64.95 0.70 0.01
AdaBoost-OSELM 0.64 33.50 0.78 2.56
Bagging-OSELM 0.49 23.15 0.62 1.37
BBA-OSELM 0.48 24.08 0.62 29.10
BO-OSELM 0.29 14.22 0.41 98.15
PSO-OSELM 0.48 21.86 0.64 56.09
EMD-BBA-OSELM 0.35 18.34 0.44 244.43
EEMD-BBA-OSELM 0.24 11.26 0.31 243.41
VMD-BBA-OSELM 0.16 7.32 0.20 336.10
VMD-BBA-EnsOSELM 0.14 6.74 0.17 536.68

Table 4: Improving percentages of the comparison models by the proposed model for wind speed series 1.

Model PMAE (%) PMAPE (%) PRMSE (%)
VMD-BBA-EnsOSELM vs. GPR 67.69 63.72 68.72
VMD-BBA-EnsOSELM vs. LSSVR 66.53 65.79 65.68
VMD-BBA-EnsOSELM vs. LSTM 67.93 65.40 67.37
VMD-BBA-EnsOSELM vs. OSELM 68.56 82.66 69.27
VMD-BBA-EnsOSELM vs. AdaBoost-OSELM 63.15 60.84 63.49
VMD-BBA-EnsOSELM vs. Bagging-OSELM 62.81 58.92 63.67
VMD-BBA-EnsOSELM vs. BBA-OSELM 63.34 59.99 64.29
VMD-BBA-EnsOSELM vs. BO-OSELM 47.55 47.47 49.02
VMD-BBA-EnsOSELM vs. PSO-OSELM 64.81 63.11 64.67
VMD-BBA-EnsOSELM vs. EMD-BBA-OSELM 58.87 59.57 59.44
VMD-BBA-EnsOSELM vs. EEMD-BBA-OSELM 23.86 23.84 24.77
VMD-BBA-EnsOSELM vs. VMD-BBA-OSELM 33.36 32.39 32.35
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from the BBA-OSELM model to the EMD-BBA-
OSELM model, the MAE is reduced by 10.88%, and
the RMSE is reduced by 11.96%. Meanwhile, both
EEMD and VMD are superior to EMD. For instance,
in series 1, from the EMD-BBA-OSELM model to
the EEMD-BBA-OSELMmodel, the MAE is reduced
by 51.86%; from the EMD-BBA-OSELM model to
the VMD-BBA-OSELM model, the MAE is reduced
by 45.00%, and the RMSE is reduced by 47.21%. In
series 2, from the BBA-OSELM model to the EMD-
BBA-OSELM model, the RMSE is reduced by
29.03%.

(7) -e proposed model performs best among all the
involved models. For instance, in series 1, from the
OSELM model to the VMD-BBA-EnsOSELM
model, the MAE is reduced by 68.56%, the MAPE is
reduced by 82.66%, and the RMSE is reduced by
69.27%; from the BBA-OSELM model to the VMD-
BBA-EnsOSELM model, the MAE is reduced by
63.34%, the MAPE is reduced by 59.99%, and the
RMSE is reduced by 64.29%; from the Bagging-
OSELM model to the VMD-BBA-EnsOSELM
model, the MAE is reduced by 62.81% and the RMSE
is reduced by 63.67%; from the BO-OSELMmodel to
the VMD-BBA-EnsOSELM model, the MAE is re-
duced by 47.55%, the MAPE is reduced by 47.47%,
and the RMSE is reduced by 49.02%; from the VMD-

BBA-OSELM model to the VMD-BBA-EnsOSELM
model, the MAE is reduced by 33.36%, and the
RMSE is reduced by 32.35%. In series 2, from the
OSELM model to the VMD-BBA-EnsOSELM
model, the MAE is reduced by 74.07%, and the
MAPE is reduced by 89.62%.

(8) Pearson’s coefficient of the proposed model is higher
than the comparison models in series 1 and series 2,
respectively.

3.5. 8e Sensitivity Analysis. -e proposed method involves
the number of decomposition modes of VMD, which has to
be preconfigured. In this section, several cases are conducted
to discuss the sensitivity of the number of modes. -e
proposed model has performed 1-step predictions for the
wind time-series 1 with the various numbers of modes. -e
forecasting results are shown in Table 8. From Table 8, it is
concluded that the prediction errors of the proposed model
can be reduced when the number of decomposition modes
increases. For instance, when the number of modes grows
from 4 to 5, the RMSE index is reduced by 6.62%; when the
number of modes grows from 5 to 6, the MAPE index is
reduced by 19.90%; when the number of modes grows from
6 to 7, the MAPE index is decreased by 9.19%; when the
number of modes grows from 7 to 8, the MAE index is
decreased by 19.23%.

Table 5: Improving percentages of the comparison models by the proposed model for wind speed series 2.

Model PMAE (%) PMAPE (%) PRMSE (%)
VMD-BBA-EnsOSELM vs. GPR 72.97 73.56 73.52
VMD-BBA-EnsOSELM vs. LSSVR 71.79 69.92 73.27
VMD-BBA-EnsOSELM vs. LSTM 72.80 71.65 74.06
VMD-BBA-EnsOSELM vs. OSELM 74.85 89.62 76.04
VMD-BBA-EnsOSELM vs. AdaBoost-OSELM 78.71 79.88 78.49
VMD-BBA-EnsOSELM vs. Bagging-OSELM 72.05 70.89 72.92
VMD-BBA-EnsOSELM vs. BBA-OSELM 71.87 72.01 72.82
VMD-BBA-EnsOSELM vs. BO-OSELM 53.72 52.60 59.35
VMD-BBA-EnsOSELM vs. PSO-OSELM 71.74 69.17 74.02
VMD-BBA-EnsOSELM vs. EMD-BBA-OSELM 61.16 63.25 61.85
VMD-BBA-EnsOSELM vs. EEMD-BBA-OSELM 42.90 40.14 46.86
VMD-BBA-EnsOSELM vs. VMD-BBA-OSELM 17.25 7.93 18.26

Table 6: -e results of Pearson’s test for wind speed series 1.

Model Pearson’s coefficient
GPR 0.6766
OSELM 0.6948
LSSVR 0.7223
LSTM 0.7464
AdaBoost-OSELM 0.7656
PSO-OSELM 0.7685
Bagging-OSELM 0.7741
BBA-OSELM 0.7806
EMD-BBA-OSELM 0.8144
BO-OSELM 0.8851
VMD-BBA-OSELM 0.9386
EEMD-BBA-OSELM 0.9540
VMD-BBA-EnsOSELM 0.9752
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4. Conclusion

Short-term wind speed forecasting is significant to wind
energy development, and it is widely applied to turbine
regulation, electricity market clearing, and preload
sharing. -is paper has presented a novel hybrid fore-
casting method based on VMD, BBA, BO, Bagging, and
OSELM. In the proposed VMD-BBA-EnsOSELM model,
VMD is used to decompose the original wind time-series
into stationary subseries. BBA is used to complete the
feature selection. BO-OSELM and Bagging-OSELM are
utilized to complete wind speed prediction. Two experi-
ments are conducted on the NREL datasets to verify the
superiority of the proposed method. Twelve involved
models are compared with the proposed method, in-
cluding the GPR model, the LSSVR model, the LSTM
model, the OSELM model, the AdaBoost-OSELM model,
the Bagging-OSELM model, the BBA-OSELM model, the
BO-OSELM model, the PSO-OSELM model, the EMD-
BBA-OSELMmodel, the EEMD-BBA-OSELMmodel, and
the VMD-BBA-OSELM. -e experimental results and
Pearson’s test indicate that (1) BBA is suitable for feature
selection; (2) Bagging can be better than AdaBoost for
enhancing the prediction capability of OSELM; (3) BO can
be superior to PSO for effectively improving the accuracy
of a hybrid wind prediction model; (4) the proposed
method can achieve the best prediction performance
among the involved models. In conclusion, the proposed
model fully utilizes the virtues of VMD, BBA, BO, Bag-
ging, and OSELM, and it is suitable for the forecasting of
short-term wind speed. Future research directions will
focus on enhancing the proposed model for multistep
wind speed prediction.
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F. Mart́ınez-Álvarez, “Pattern sequence similarity based
techniques for wind speed forecasting,” in Proceedings of the
International Work-Conference on Time Series (ITISE),
Granada, Spain, October 2017.

[8] G. Li and J. Shi, “On comparing three artificial neural net-
works for wind speed forecasting,” Applied Energy, vol. 87,
no. 7, pp. 2313–2320, 2010.

[9] M. A. Mohandes, T. O. Halawani, S. Rehman, and
A. A. Hussain, “Support vector machines for wind speed
prediction,” Renewable Energy, vol. 29, no. 6, pp. 939–947,
2004.

[10] S. Ding, X. Xu, and R. Nie, “Extreme learning machine and its
applications,” Neural Computing and Applications, vol. 25,
no. 3-4, pp. 549–556, 2014.

[11] Y. Zhang, T. Li, G. Na, G. Li, and Y. Li, “Optimized extreme
learning machine for power system transient stability pre-
diction using synchrophasors,” Mathematical Problems in
Engineering, vol. 2015, Article ID 529724, 8 pages, 2015.

[12] H. Liu, X. Mi, and Y. Li, “Smart multi-step deep learning
model for wind speed forecasting based on variational mode
decomposition, singular spectrum analysis, LSTM network
and ELM,” Energy Conversion and Management, vol. 159,
pp. 54–64, 2018.

[13] W. Fu, K. Wang, C. Li, and J. Tan, “Multi-step short-term
wind speed forecasting approach based on multi-scale
dominant ingredient chaotic analysis, improved hybrid
GWO-SCA optimization and ELM,” Energy Conversion and
Management, vol. 187, pp. 356–377, 2019.

[14] D. Zhang, X. Peng, K. Pan, and Y. Liu, “A novel wind speed
forecasting based on hybrid decomposition and online se-
quential outlier robust extreme learning machine,” Energy
Conversion and Management, vol. 180, pp. 338–357, 2019.

[15] Z. Tian, G. Wang, Y. Ren, S. Li, and Y. Wang, “An adaptive
online sequential extreme learning machine for short-term
wind speed prediction based on improved artificial bee colony
algorithm,”Neural Network World, vol. 28, no. 3, pp. 191–212,
2018.

[16] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, p. 123, 1996.

[17] T. Peng, J. Zhou, C. Zhang, and Y. Zheng, “Multi-step ahead
wind speed forecasting using a hybrid model based on two-
stage decomposition technique and AdaBoost-extreme
learning machine,” Energy Conversion and Management,
vol. 153, pp. 589–602, 2017.

[18] M. Zontul, F. Aydin, G. Dogan, S. Sener, and O. Kaynar,
“Wind speed forecasting using REPTree and bagging methods
in Kirklareli-Turkey,” Journal of 8eoretical and Applied In-
formation Technology, vol. 56, no. 1, pp. 17–29, 2013.

[19] C. Emeksiz and G. Demir, “An investigation of the effect of
meteorological parameters on wind speed estimation using
bagging algorithm,” International Journal of Intelligent Sys-
tems and Applications in Engineering, vol. 6, no. 4, pp. 311–
321, 2018.

[20] H. Liu, H.-Q. Tian, Y.-F. Li, and L. Zhang, “Comparison of
four Adaboost algorithm based artificial neural networks in
wind speed predictions,” Energy Conversion and Manage-
ment, vol. 92, pp. 67–81, 2015.

[21] S.-w. Fei and Y. He, “Wind speed prediction using the hybrid
model of wavelet decomposition and artificial bee colony
algorithm-based relevance vector machine,” International

Journal of Electrical Power & Energy Systems, vol. 73,
pp. 625–631, 2015.

[22] H. Liu, X. Mi, and Y. Li, “Smart deep learning based wind
speed prediction model using wavelet packet decomposition,
convolutional neural network and convolutional long short
termmemory network,” Energy Conversion andManagement,
vol. 166, pp. 120–131, 2018.

[23] C. Zhang, H. Wei, J. Zhao, T. Liu, T. Zhu, and K. Zhang,
“Short-term wind speed forecasting using empirical mode
decomposition and feature selection,” Renewable Energy,
vol. 96, pp. 727–737, 2016.

[24] Z. Tian, S. Li, and Y. Wang, “A prediction approach using
ensemble empirical mode decomposition-permutation en-
tropy and regularized extreme learning machine for short-
term wind speed,” Wind Energy, vol. 23, no. 2, pp. 177–206,
2020.

[25] Y. Zhang, Y. Zhao, and S. Gao, “A novel hybrid model for
wind speed prediction based on VMD and neural network
considering atmospheric uncertainties,” IEEE Access, vol. 7,
pp. 60322–60332, 2019.

[26] M. Gendeel, Z. Yuxian, and H. Aoqi, “Performance com-
parison of ANNsmodel with VMD for short-term wind speed
forecasting,” IET Renewable Power Generation, vol. 12, no. 12,
pp. 1424–1430, 2018.

[27] S. Sun, J. Fu, F. Zhu, and N. Xiong, “A compound structure for
wind speed forecasting using MKLSSVM with feature se-
lection and parameter optimization,” Mathematical Problems
in Engineering, vol. 2018, Article ID 9287097, 21 pages, 2018.

[28] G. Memarzadeh and F. Keynia, “A new short-term wind speed
forecasting method based on fine-tuned LSTM neural net-
work and optimal input sets,” Energy Conversion and Man-
agement, vol. 213, 2020.

[29] N. Huang, E. Xing, G. Cai, Z. Yu, B. Qi, and L. Lin, “Short-
term wind speed forecasting based on low redundancy feature
selection,” Energies, vol. 11, no. 7, p. 1638, 2018.

[30] H. Liu, Z. Duan, H. Wu, Y. Li, and S. Dong, “Wind speed
forecasting models based on data decomposition, feature
selection and group method of data handling network,”
Measurement, vol. 148, Article ID 106971, 2019.

[31] A. K. Naik, V. Kuppili, and D. R. Edla, “Efficient feature
selection using one-pass generalized classifier neural network
and binary bat algorithm with a novel fitness function,” Soft
Computing, vol. 24, no. 6, pp. 4575–4587, 2020.

[32] X. Xie, X. Qin, Q. Zhou et al., “A novel test-cost-sensitive
attribute reduction approach using the binary bat algorithm,”
Knowledge-Based Systems, vol. 186, 2019.

[33] F. Liu, X. Yan, and Y. Lu, “Feature selection for image
steganalysis using binary bat algorithm,” IEEE Access, vol. 8,
pp. 4244–4249, 2020.
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