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Mostly, all conventional DEA models assume that input-output data are precise and nonnegative, but in real-life application, this
condition is mostly not applicable. .rough progressive development in the methodology of DEA, some models separately deal
with imprecise and negative data. In this study, the IMSBMmodel is proposed to evaluate the performance of a set of homogenous
DMUs with imprecise and negative input-output data..e IMSBMmodel is far superior to models with similar capability because
it considers the inefficiency caused by both radial and nonradial slacks. .e lower and upper bounds of interval efficiency
calculated by the IMSBMmodel reflect the performance of observed DMU in most unfavourable and most favourable situations.
Further, it is proved that the IMSBM model is units invariant, monotone, and translation invariant. Moreover, we elaborate both
bounds of the interval efficiency are in the range of [0,1]. .e degree of preference approach is introduced to rank the DMUs. In
addition, we compare the interval efficiency scores calculated by the IMSBMmodel and the interval SORMmodel and explain the
reason for the difference between the scores. By adjusting the weights of inputs and outputs, it is found that only inefficiency scores
fluctuate with slack weights.

1. Introduction

Due to limited production resources, efficiency is a key
factor for both public and private sector organisations..ere
are numerous techniques to measure the efficiency of
a particular decision making unit (DMU), and one of the
popular mathematical tools is known as data envelopment
analysis (DEA). DEA is widely used to compare the per-
formances of a set of homogenous DMUs by calculating the
relative efficiency. With multiple-inputs and multiple-out-
puts, DEA can measure the relative efficiency of DMUs by
using a ratio of the weighted sum of outputs to the weighted
sum of inputs, and an efficient DMU always uses less inputs
to produce a specific amount of outputs or produce more
outputs using equal amount of inputs, as compared to other
observed DMUs. However, two priori assumptions limit the
application of conventional DEA models: (1) precise input-
output data and (2) nonnegative input-output data.

.e conventional DEAmodels assume that input-output
data should be precise. However, in real-life situations, it is
not always possible. So, we often see bounded (interval),
ordinal, and ratio bounded data in applications [1, 2].
.erefore, the assumption of precise data limits the appli-
cation of conventional DEA models. To deal with this
concern, Cooper et al. [3] firstly introduced imprecise DEA
(IDEA) to cope with imprecise data, and there were several
papers presented on the theoretical development of this
method. Despotis and Smirlis [4] transformed classical CCR
(Charnes et al. [5]) model into the case of interval data
straightforwardly, and the proposed model gave the natural
outcome of lower and upper bounds of efficiency scores.
However, the transformation was applied only to variables.
Wang et al. [6] developed a pair of interval models, and it
was addressed in this work that ordinal preference in-
formation and fuzzy data could be converted into interval
data through scale transformation and α-level sets,
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respectively. Jahanshahloo et al. [7] suggested the interval
generalised DEA (IGDEA) model which treated the basic
DEA models, specifically CCR model, BCC model (Banker
et al. [8]), and free disposal hull (FDH) model [9], with
interval data in a unified way. Aghayi et al. [10] presented
a robust DEA model with a common set of weights (CSWs)
under varying degrees of conservatism, and the interval data
were used to represent data uncertainty. Azizi and Amir-
teimoori [11] and Toloo et al. [12] proposed DEA models to
measure the relative efficiency of DMUs with flexible
measures (also called dual-role factors) using interval input-
output data. Shabani et al. [13] also proposed a common set
of weights imprecise DEA (CSW-IDEA) to handle imprecise
data. .e models mentioned above were not slacks-based,
indicating they could only measure the radial efficiency, but
nonradial slacks were not accounted for. Tone [14] proposed
a slacks-based measure (SBM) of efficiency. One of the
advantages of the SBM model was that it put aside the
assumption of proportionate changes in inputs and outputs
and dealt with slacks directly. Lotfi et al. [15] developed an
interval DEA model based upon the SBM model, and the
DMUs were classified into three subsets according to the
lower and upper bounds of the interval efficiency. Azizi et al.
[16] generalised the SBM model into imprecise data to
measure the performance of the DMUs, and the same
constraint sets were used for maintaining the comparability.

Apart from the assumption of precise data, conventional
DEA models assume that all inputs and outputs of DMUs
are nonnegative. However, in real-life problems, this is not
possible all the time, for example, when net profit acts as an
output variable while loss happens. Traditionally, negative
values are transformed into positive through data trans-
formation [17], but somehow, such transformation impacts
the solution of the objective function. Pastor and Ruiz [18]
pointed out that the translation invariance property allowed
a DEA model to deal with negative data. Cheng et al. [19]
developed a variant of radial measure (VRM) to deal with
variables that could be negative or nonnegative for different
DMUs. Although the VRM input-orientedmodel was output
translation invariant and the output-oriented model was
input translation invariant, there were still some limitations
while measuring the relative efficiency. .e efficiencies given
by the input-oriented VRM model might be negative [20]
and the efficiencies given by the output-oriented VRM
model could be in the range of [0.5,1] [21]. To avoid these
drawbacks, Tung et al. [21] further defined two efficiency
measures for input-oriented and output-oriented VRM
models. Although themodels mentioned above can deal with
negative data and some of them are translation invariant,
they are not slacks-based models and ignore the inefficiency
caused by nonradial slacks. Sharp et al. [22] introduced the
idea of the range of possible improvement [23] into the SBM
model. .ey developed a modified slacks-based measure
(MSBM) model to evaluate DMUs with negative data. .e
MSBMmodel took into account input and output slacks and
possessed the property of translation invariant.

Most existing works addressed only imprecise data or
only negative data, and hardly any models considered these
two characters simultaneously. Hatami-Marbini et al. [24]

developed the interval semioriented radial measure (interval
SORM) model to evaluate efficiency in the presence of in-
terval data without sign restrictions. Although the interval
SORM model was able to evaluate the efficiency with neg-
ative data, it only revealed the radial efficiency and failed in
considering the inefficiency caused by nonradial slacks.

.is study extended the MSBM model into an imprecise
framework to evaluate the efficiency of particular DMUs
with interval data. Compared with existing interval DEA
models, the interval modified slacks-based measure
(IMSBM) model considers both radial and nonradial effi-
ciency from the perspective of slacks and is translation
invariant to cope with the existence of negative data. .ere
are existing studies that illustrate that ordinal preference and
fuzzy data can be converted into interval data [6, 25, 26].
.erefore, the IMSBMmodel focuses on interval data in this
paper.

.e rest of this paper is organised as follows. In Section 2,
the IMSBM model is presented and proved to possess basic
properties as an efficiency measurement. Section 3 classifies
DMUs into three subsets, and the degree of preference
approach is introduced to rank interval efficiencies. A nu-
merical illustration is exemplified in Section 4. Moreover, in
the last section, the findings of our study are concluded.

2. IMSBM Model

As Färe et al. [27] pointed out that there was an assumption
of the constant returns to scale (CRS) that any DMU could
be radially expanded or contracted to form other feasible
ones, which caused inconsistency when negative data exist.
However, it is not the case under variable returns to scale
(VRS). .erefore, the models mentioned below are assigned
under the VRS.

2.1.MSBMModel with Precise Data. Firstly, we illustrate the
MSBM model constructed by Sharp et al. [22].

Consider a set of n homogenous units under analysis,
and each of them consumes varying amounts of m different
inputs to produce varying amounts of s different outputs.
Specifically, DMUj(j � 1, 2, . . . , n) consumes xij (i � 1,

2, . . . , m) of each input to produce yrj (r � 1, 2, . . . , s) of each
output.

Generalising the SBM model to the case of nonpositive
input-output data is not straightforward. Firstly, the
translation invariant is not consistent when zero exists.
Secondly, the optimal value can become negative with the
existence of negative data [22]. Introducing the ideal point
into the SBMmodel is fruitful in overcoming the drawbacks.
For a given dataset, the ideal point is considered as I �

(minjxij(i � 1, 2, . . . , m),maxjyrj(r � 1, 2, . . . , s)). .ere-
fore, for DMUk, the range of possible improvement is de-
fined as

R
−
ik � xik − min

j
xij􏽮 􏽯, i � 1, 2, . . . , m,

R
+
rk � max

j
yrj􏽮 􏽯 − yrk, r � 1, 2, . . . , s.

(1)
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Obviously, R−
ik ≥ 0 and R+

rk ≥ 0 measure the distance from
DMUk to the ideal point. Replacing corresponding terms in
the SBM model by R−

ik and R+
rk, the MSBM model is

min ρk �
1 − 􏽐

m
i�1 wis

−
ik( 􏼁/R−

ik

1 + 􏽐
s
r�1 vrs

+
rk􏼐 􏼑/R+

rk

subject to

xik � 􏽘
n

j�1
xijλj + s

−
ik, i � 1, 2, . . . , m,

yrk � 􏽘
n

j�1
yrjλj − s

+
rk, r � 1, 2, . . . , s,

􏽘

n

j�1
λj � 1, j � 1, 2, . . . , n,

s−
ik, s+

rk, λj ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where s−
ik and s+

rk are slacks in the ith input and rth output of
DMUk, respectively. .e weights of each input wi and of

each output vr are determined subjectively by decision
makers and subject to 􏽐

m
i�1wi � 1, 􏽐

s
r�1vr � 1, wi ≥ 0, and

vr ≥ 0.
Note that when R−

ik � 0 or R+
rk � 0, it is assumed that the

corresponding (wis
−
ik)/R−

ik or (vrs
+
rk)/R+

rk is dropped from the
numerator or denominator.

2.2. MSBM Model with Interval Data. Due to the lack of
sufficient information in some complex systems, imprecise
mathematics seems more appropriate to reality. .e inputs
and outputs are assumed to be interval variables denoted as
xij ∈ [xij, xij] and yrj ∈ [y

rj
, yrj], where xij is the lower

bound of xij, xij is the upper bound of xij, y
rj
is the lower

bound of yrj, and yrj is the upper bound of yrj. In this case,
the ideal point in IMSBM model is considered as
I � (minjx ij(i � 1, 2, . . . , m),maxjyrj(r � 1, 2, . . . , s)).
Consequently, for DMUk, the range of possible improve-
ment is defined as

R
−
ik, R

−

ik􏼂 􏼃 � xik − min
j

xij􏽮 􏽯, xik − min
j

xij􏽮 􏽯􏼢 􏼣, i � 1, 2, . . . , m,

R
+
rk, R

+

rk􏽨 􏽩 � max
j

yrj􏽮 􏽯 − yrk,max
j

yrj􏽮 􏽯 − y
rk

􏼢 􏼣, r � 1, 2, . . . , s.

(3)

Obviously, R−
ik, R

−

ik, R+
rk, R

+

rk ≥ 0. .erefore, the MSBM model for evaluating DMUk with
interval data is

min ρk �
1 − 􏽐

m
i�1wi s−

ik, s−
ik􏼂 􏼃/ R−

ik, R
−

ik􏼂 􏼃

1 + 􏽐
s
r�1vr s+

rk, s+
rk􏽨 􏽩/ R+

rk, R
+

rk􏽨 􏽩
, (4)

subject to

xik, xik􏼂 􏼃 � 􏽘
n

j�1
xij, xij􏽨 􏽩λj + s

−
ik, s

−
ik􏼂 􏼃, i � 1, 2, . . . , m,

y
rk

, yrk􏽨 􏽩 � 􏽘
n

j�1
y

rj
, yrj􏼔 􏼕λj − s

+
rk, s

+
rk􏼂 􏼃, r � 1, 2, . . . , s,

􏽘

n

j�1
λj � 1, j � 1, 2, . . . , n,

s−
ik, s−

ik, s+
rk, s+

rk, λj ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where ρk is interval data denoted as [ρ
k
, ρk]. Similarly, when

R−
ik (R−

ik) or R+
rk (R+

rk) is zero, the corresponding term is
assumed to be dropped from the numerator or denominator.

.e lower bound of the interval efficiency ρ
k
is the ef-

ficiency under the most unfavourable situation for DMUk.
In this manner, DMUk consumes xik to produce y

rk
while

the DMUj consumes xij to produce yrj (j≠ k). Symmet-
rically, the upper bound of the efficiency ρk is the most
favourable situation for DMUk. In this manner, DMUk

consumes xik to produce yrk while DMUj consumes xij to
produce y

rj
(j≠ k). .erefore, model (5) can be replaced by

a pair of precise models as follows:
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min ρ
k

�
1 − 􏽐

m
i�1 wis

−
ik( 􏼁/R−

ik

1 + 􏽐
s
r�1 vrs

+
rk( 􏼁/R+

rk

, (6)

subject to

xik � 􏽘
n

j�1,j≠k
xijλj + xikλk + s

−
ik, i � 1, 2, . . . , m,

y
rk

� 􏽘
n

j�1,j≠k
yrjλj + y

rk
λk − s

+
rk, r � 1, 2, . . . , s,

􏽘

n

j�1
λj � 1, j � 1, 2, . . . , n,

s−
ik, s+

rk, λj ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

min ρk �
1 − 􏽐

m
i�1 wis

−
ik( 􏼁/R−

ik

1 + 􏽐
s
r�1 vrs

+
rk􏼐 􏼑/R+

rk

, (8)

subject to

xik � 􏽘
n

j�1,j≠k
xijλj + xikλk + s

−
ik, i � 1, 2, . . . , m,

yrk � 􏽘
n

j�1,j≠k
y

rj
λj + yrkλk − s

+
rk, r � 1, 2, . . . , s,

􏽘

n

j�1
λj � 1, j � 1, 2, . . . , n,

s−
ik, s+

rk, λj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

.e IMSBM model can be transformed into a linear
programming form by Charnes-Cooper transformation
[28]. Considering multiplying a scalar variable t(t> 0) to
both the numerator and the denominator of the objective
function of (8), it does not impact ρ

k
. Adjust t and equal the

denominator to 1; then, the denominator can be regarded as
a constraint and the objective function is minimizing the
corresponding numerator. .e lower bound of the IMSBM
model is

min τk � t − 􏽘
m

i�1

wits
−
ik

R
−

ik

, (10)

subject to

1 � t + 􏽘
s

r�1

vrts
+
rk

R
+

rk

,

txik � 􏽘

n

j�1,j≠k
xijtλj + xiktλk + ts

−
ik, i � 1, 2, . . . , m,

ty
rk

� 􏽘
n

j�1,j≠k
yrjtλj + y

rk
tλk − ts

+
rk, r � 1, 2, . . . , s,

􏽘

n

j�1
tλj � t, j � 1, 2, . . . , n,

s−
ik, s+

rk, λj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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(11) is a nonlinear programming problem due to the
nonlinear terms, and some definitions are needed to
transform it into a linear programming problem. Assume

S
−

ik � ts
−
ik,

S
+

rk � ts
+
rk,

Λj � tλj.

(12)

Obviously, S
−

ik, S
+

rk,Λj ≥ 0 and the transformed problem is

min τk � t − 􏽘
m

i�1

wiS
−

ik

R
−

ik

, (13)

subject to

1 � t + 􏽘

s

r�1

vrS
+

rk

R
+

rk

,

txik � 􏽘

n

j�1,j≠k
xijΛj + xikΛk + S

−

ik, i � 1, 2, . . . , m,

ty
rk

� 􏽘
n

j�1,j≠k
yrjΛj + y

rk
Λk − S

+

rk, r � 1, 2, . . . , s,

􏽘

n

j�1
Λj � t, j � 1, 2, . . . , n,

S
−

ik, S
+

rk,Λj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Assuming the optimal solution of (14) is
(τ∗k , t∗,Λ∗, S

− ∗
ik , S

+∗
rk ), then the optimal solution of (8) is

ρ∗
k

� τ∗k ,

λ∗ �
Λ∗

t∗
,

s
− ∗
ik �

S
− ∗
ik

t∗
,

s
+∗
rk �

S
+∗
rk

t∗
.

(15)

Symmetrically, the transformed problem of (10) is

min τk � t − 􏽘
m

i�1

wiS
−
ik

R−
ik

, (16)

subject to

txik � 􏽘
n

j�1,j≠k
xijΛj + xikΛk + S

−
ik, i � 1, 2, . . . , m,

tyrk � 􏽘

n

j�1,j≠k
y

rj
Λj + yrkΛk − S

+
rk, r � 1, 2, . . . , s,

􏽘

n

j�1
Λj � t, j � 1, 2, . . . , n,

S−
ik, S+

rk,Λj ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Assuming the optimal solution of (17) is (τ∗k , t∗,Λ∗,
S− ∗

ik , S+∗
rk ), then the optimal solution of (10) is

ρ∗k � τ∗k ,

λ∗ �
Λ∗

t∗
,

s
− ∗
ik �

S− ∗
ik

t∗
,

s
+∗
rk �

S+∗
rk

t∗
.

(18)

If the lower bound of DMUk is inefficient, it can be
improved to be efficient by

xik⟵xik − s
− ∗
ik , i � 1, 2, . . . , m,

y
rk
⟵y

rk
+ s

+∗
rk, r � 1, 2, . . . , s.

(19)

Symmetrically, if the upper bound of DMUk is in-
efficient, it can be improved to be efficient by

xik⟵xik − s
− ∗
ik , i � 1, 2, . . . , m,

yrk⟵yrk + s
+∗
rk, r � 1, 2, . . . , s.

(20)

2.3. Properties of IMSBM. .e following properties are
considered as basic in designing an efficiency measure:

P1: Units Invariant. It is considered to be an important
property in DEA, and the term in general mathematical
properties is known as dimensionless.
P2: Monotone. .emeasure is monotone decreasing with
the increasing of inputs or the decreasing of outputs.
P3: Translation Invariant. It is critical, especially when
input-output data contain zero or negative values.

IMSBM model is demonstrated to possess these prop-
erties in the following.

Theorem 1. IMSBM model is units invariant.

Proof. Considering the gth input and hth output in the model
(8), rescale both bounds of the gth input by multiplying it
a scalar α> 0 and rescale both bounds of the hth output by
multiplying it a scalar β> 0. .e ideal point is Iα,β �

(minjxij(i � 1, 2, . . . , m, i≠g), minj(αxgj), maxjyrj(r � 1,

2, . . . , s, r≠ h),maxj(βyhj)). It can be proved that
R

−

ik,α � R
−

ik(i≠g), R
−

gk,α � αR
−

gk, R
+

rk,β � R
+

rk(r≠ h), and
R

+

hk,β � βR
+

hk. From the constraints, we have s−
ik,α � s−

ik(i≠g),
s−

gk,α � αs−
gk, s+

rk,β � s+
rk(r≠ h), and s+

hk,β � βs+
hk. .e rescaling

does not impact ρ
k
. .us, model (8) is units invariant.

Model (10) can be proved likewise. .erefore, the
IMSBMmodel is units invariant..is proof is complete. □

Theorem 2. IMSBM model is monotone.

Proof. Both bounds of the ith input of DMUk are increased
by Δxik, i.e., xik⟶ xik + Δxik and xik⟶ xik + Δxik, and
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both bounds of the rth output of DMUk are decreased by
Δyrk, i.e., y

rk
⟶ y

rk
− Δyrk and yrk⟶ yrk − Δyrk. .en,

R
−

ik
′ � xik + Δxik − min xij(j≠ k), xik + Δxik􏽮 􏽯 and R

+

rk
′ �

max yrj(j≠ k), yrk − Δyrk􏽮 􏽯 − (y
rk

− Δyrk). .e slacks of
inputs and outputs change into s−

ik
′ � xik + Δxik −

􏽐
n
j�1,j≠kλjxij − λk(xik + Δxik) and s+

rk
′ � 􏽐

n
j�1,j≠kλjyrj +

λk(y
rk

− Δyrk) − (y
rk

− Δyrk). Proving ρ
k
is monotone can

be converted into two problems: (1) the numerator of the
objective function is a decreasing function of Δxik and (2)
the denominator of the objective function is an increasing
function of Δyrk.

Firstly, we prove that the numerator of the objective
function is a decreasing function of Δxik. .ere are two cases
for R

−

ik
′:

(1) If ∀j≠ k such that xij ≥xik + Δxik, then R
−

ik
′ � xik +

Δxik − (xik + Δxik) � xik − xik. It can be proved that
((d(1 − 􏽐

m
i�1wis

−
ik
′/R−

ik
′))/(d(Δxik)))≤ 0. .erefore, in

this case, the numerator is a decreasing function of
Δxik;

(2) If ∃j≠ k such that xij ≤xik + Δxik, then R
−

ik
′ �

xik + Δxik − minj≠k xij􏽮 􏽯. It can be proved that
((d(1 − 􏽐

m
i�1(wis

−
ik
′)/(R

−

ik
′)))/(d(Δxik)))≤ 0. .ere-

fore, in this case, the numerator is a decreasing
function of Δxik;

In conclusion, the numerator of the objective function is
a decreasing function of Δxik.

.en, we prove that the denominator of the objective
function is an increasing function of Δyrk. .ere are two
cases for R

+

rk
′:

(1) If ∀j≠ k such that yrj ≤yrk − Δyrk, then R
+′

rk � yrk −

Δyrk − (y
rk

− Δyrk) � yrk − y
rk
. It can be proved

that ((d(1 + 􏽐
s
r�1(vrs

+
rk
′)/(R

+

rk
′)))/(d(Δyrk)))≥ 0.

.erefore, in this case, the denominator is an in-
creasing function of Δyrk.

(2) If ∃j≠ k such that yrj ≥yrk − Δyrk, then R
+

rk
′ �

maxj≠k yrj􏽮 􏽯 − (y
rk

− Δyrk). It can be proved that
((d(1 + 􏽐

s
r�1(vrsrk
′ )/R+

rk
′))/(d(Δyrk)))≥ 0..erefore,

in this case, the denominator is an increasing
function of Δyrk.

In conclusion, the denominator of the objective function
is an increasing function of Δyrk.

In conclusion, model (8) is monotone decreasing with
the increasing of inputs or the decreasing of outputs.

Likewise, model (10) can also be verified to be monotone
decreasing with the increasing of inputs or the decreasing of
outputs. .erefore, the IMSBM model is monotone. .is
proof is complete. □

Theorem 3. IMSBM model is translation invariant.

Proof. A measure is translation invariant if and only if the
model is equivalent before and after the translation [29].

Transform the input data xij and xij(i � 1, 2, . . . , m) by
the real number zi(i � 1, 2, . . . , m) and transform the output

data y
rj
and yrj(r � 1, 2, . . . , s) by the real number tr(r � 1,

2, . . . , s), where zi subjects to xij + zi ≥ 0 (∀j � 1, 2, . . . , n)

and tr subjects to y
rj

+ tr ≥ 0 (∀j � 1, 2, . . . , n) (without loss
of generality, zi and tr are assumed to be nonnegative). .e
model of translated data is

min ρ
k
′ �

1 − 􏽐
m
i�1 wis

−
ik
′( 􏼁/R−

ik
′

1 + 􏽐
s
r�1 vrs

+
rk
′( 􏼁/R+

rk
′

, (21)

subject to

xik
′ � 􏽐

n

j�1,j≠k
xij
′λj + xik

′λk + s−
ik
′, i � 1, 2, . . . , m,

y
rk
′ � 􏽐

n

j�1,j≠k
yrj
′ λj + y

rk
′ λk − 􏽥s+

rk, r � 1, 2, . . . , s,

􏽐
n

j�1
λj � 1, j � 1, 2, . . . , n,

􏽐
m

i�1
wi � 1, 􏽐

s

r�1
vr � 1,

wi, vr,􏽥s
− ′
ik ,􏽥s+′

rk, λj ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where xij
′ � xij + zi, xik

′ � xik + zi, y
rj
′ � y

rj
+ tr, and yrj

′ �

yrj + tr. It can be verified that R
−

ik
′ � R

−

ik and R
+

rk
′ � R

+

rk. Since
􏽐

n
j�1λj � 1, the constraints of (22) implicate s−

ik
′ � s−

ik and
s+

rk
′ � s+

rk. .us, model (8) and model (22) are equivalent
problems. .erefore, model (8) is translation invariant.

Model (10) can be proved to be translation invariant
likewise. .erefore, the IMSBM model is translation in-
variant. .is proof is complete.

In the following part, let us demonstrate that the effi-
ciency score of the IMSBM model is in the range of [0, 1].

Note, since 􏽐
n
j�1λj � 1,

0≤ s
−
ik � xik − 􏽘

n

j�1,j≠k
xijλj − xikλk ≤ xik − min

j
xij􏽮 􏽯 � R

−

ik,

0≤ s
+
rk � 􏽘

n

j�1,j≠k
yrjλj + y

rk
λj − y

rk
≤ max

j
yrj􏽮 􏽯 − y

rk
� R

+

rk,

0≤ s
−
ik � xik − 􏽘

n

j�1,j≠k
xijλj − xikλk ≤ xik − min

j
xij􏽮 􏽯 � R

−
ik,

0≤ s
+
rk � 􏽘

n

j�1,j≠k
y

rj
λj + yrkλj − yrk ≤ max

j
yrj􏽮 􏽯 − yrk � R

+
rk.

(23)

With 􏽐
m
i�1wi ≤ 1 and 􏽐

s
r�1vr ≤ 1 (it is not greater than 1

because the corresponding terms are dropped when R−
ik

(R−

ik) and R+
rk (R+

rk) are zero), the lower bound and upper
bound of the efficiency score can be verified to be
0≤ ρ

k
≤ 1 and 0≤ ρk ≤ 1 (even if the input-output data are

negative).
Since ρ

k
is obtained in themost unfavourable situation of

DMUk and ρk is obtained in the most favourable situation,
the interval efficiency score satisfies 0≤ ρ

k
≤ ρk ≤ 1. □
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2.4. Advantages and Benefits of IMSBM. To demonstrate the
advantages over the existing models, we compared the
IMSBMmodel with the IGDEA model [7], the interval SBM
model [16] (Azizi et al. [16] did not specifically name their
proposed model; for our convenience, we mentioned it as
the interval SBMmodel in the comparison), the VRMmodel
and its variants [19, 21] (for our convenience, we mentioned
them as the VRMs in the comparison), the MSBM model
[22], and the interval SORM model [24].

Table 1 shows that the IMSBM model, as an interval
model, can easily tackle the imprecise data without losing the
information besides the situation complexity. Further, it has
the advantage of handling the negative values in the data
without any data transformation. At last, due to the slacks-
based characteristics, the IMSBM model has the ability to
reveal the inefficiency caused by both radial and nonradial
slacks.

Applicability of DEA models on imprecise data extends
its effectiveness for real-life situations. As imprecise data
contain more information, IMSBM could be applied directly
to measure the relative efficiency. .e interval efficiency
calculated by the IMSBM model reflects the performance of
the observed DMU in the most unfavourable and most
favourable situations. .e lower bound of the interval ef-
ficiency indicates the most unfavourable situation when the
observed DMU consumes the upper bound of inputs to
produce the lower bound of outputs while other DMUs
consume the lower bound of inputs to produce the upper
bound of outputs, and the upper bound of the interval ef-
ficiency indicates the most favourable situation when the
observed DMU consumes the lower bound of inputs to
produce the upper bound of the outputs while the others
consume the upper bound of inputs to produce the lower
bound of outputs.

It is important to mention that the IMSBM model is
constructed without any prior assumption of nonnegative
data. As an efficiency measure, the IMSBM model is units
invariant, monotone, and translation invariant. With the
translation invariance property, the IMSBM model can
evaluate the efficiency of a particular DMU containing
negative or zero value in the input-output data without any
prior data transformation. .is property ensures the effec-
tiveness of the IMSBM model application in the existence of
negative data.

.e IMSBM model puts aside the assumption of
proportionate changes in inputs and outputs and deals
with slacks directly. Although interval SBM models have
the same ability, in the existing interval SBM models,
translation invariant is not always consistent, and
sometimes efficiency scores may be negative when neg-
ative inputs or outputs are employed in the evaluation
process. However, efficiency measured by the IMSBM
model always ranges from 0 to 1, even with the existence of
negative data.

3. Classification and the Ranking of the DMUs

Since the efficiency score measured by the IMSBM model is
calculated in an interval form, a simple and practical

approach is needed for comparing and ranking the per-
formance of the DMUs.

Firstly, the DMUs are classified into three subsets
according to the interval efficiency (see [4, 15, 24]):

(1) .e strictly efficient subset is E++ � 􏼈DMUj,

j � 1, 2, . . . , n | ρ
j

� 1, ρk � 1􏼉: both the lower and
upper bounds of the interval efficiency score are
equal to 1, indicating the observed DMU performs
efficiently no matter in the most unfavourable or
most favourable situation.

(2) .e weakly efficient subset is E+ � 􏼈DMUj, j � 1,

2, . . . , n | ρ
j
< 1, ρk � 1􏼉: the lower bound of the

interval efficiency score is less than 1 and the upper
bound of the interval efficiency is equal to 1, in-
dicating the observed DMU performs efficiently only
in the most favourable situation.

(3) .e inefficient subset is E− � 􏼈DMUj, j � 1,

2, . . . , n | ρ
j
< 1, ρk < 1􏼉: both the lower and upper

bounds of the interval efficiency score are less than 1,
indicating the observed DMU performs inefficiently
in the most unfavourable and most favourable
situation.

Obviously, in complex systems, each subset contains
more than one DMU. In addition to the classification,
a ranking approach is needed in the last two subsets. Wang
et al. [30] proposed the degree of preference approach to
rank interval data by a matrix.

Suppose there are two interval efficiency denoted as ρk1
�

[ρ
k1

, ρk1
] and ρk2

� [ρ
k2

, ρk2
], then the degree of preference of

ρk1
over ρk2

(ρk1
> ρk2

) can be defined as

P ρk1
> ρk2

􏼐 􏼑 �
max 0, ρk1

− ρ
k2

􏼒 􏼓 − max 0, ρ
k1

− ρk2
􏼒 􏼓

ρk1
− ρ

k1
􏼒 􏼓 + ρk2

− ρ
k2

􏼒 􏼓

.

(24)

Symmetrically, the degree of preference of ρk2
over ρk1

(ρk2
> ρk1

) can be defined as

P ρk2
> ρk1

􏼐 􏼑 �

max 0, ρk2
− ρ

k1
􏼠 􏼡 − max 0, ρ

k2
− ρk1

􏼒 􏼓

ρk1
− ρ

k1
􏼒 􏼓 + ρk2

− ρ
k2

􏼒 􏼓

.

(25)
It is easy to prove P(ρk1

> ρk2
) + P(ρk2

> ρk1
) � 1 and

P(ρk1
> ρk2

) � P(ρk2
> ρk1

) � 0.5 when ρk1
� ρk2

.

Table 1: Comparing IMSBM model with other DEA models.

IGDEA Interval
SBM VRMs MSBM Interval

SORM IMSBM

Interval
data √ √ ✕ ✕ √ √

Negative
data ✕ ✕ √ √ √ √

Slacks-
based ✕ √ ✕ √ ✕ √
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If P(ρk1
> ρk2

)>P(ρk2
> ρk1

), then ρk1
is superior to ρk2

,
denoted as ρk1

≻ ρk2
; if P(ρk1

> ρk2
) � P(ρk2

> ρk1
) � 0.5, then

ρk1
is indifferent with ρk2

, denoted as ρk1
∼ ρk2

; if P(ρk1
>

ρk2
)<P(ρk2

> ρk1
), then ρk1

is inferior to ρk2
, denoted as

ρk1
≺ ρk2

.
It can be verified if P(ρk2

> ρk1
)≥ 0.5 and P(ρk3

>
ρk2

)≥ 0.5, then P(ρk3
> ρk1

)≥ 0.5, indicating the degree of
preference satisfies transitivity.

.e ranking progress is outlined as follows:

Step 1: calculate a n × n matrix of the degree of pref-
erence to reflect the interrelationship among DMUs:

Mp �

− p12 . . . p1n

p21 − . . . p2n

⋮ ⋮ ⋮ ⋮

pn1 pn2 . . . −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where

pk1k2
� P ρk1

> ρk2
􏼐 􏼑, k1, k2 � 1, 2, . . . , n, k1 ≠ k2. (27)

Step 2: find out a row in which all of the elements except
the diagonal one are not less than 0.5. .e corre-
sponding DMUk is regarded as the strongest per-
forming one within the remaining DMUs.
Step 3: remove the kth row and kth column from the
matrix.
Step 4: repeat step 2 and step 3 in the reduced matrix
until only one DMU remains.

Property 1. .ere is a row in the matrix of the degree of
preference in which all of the elements except the diagonal
one are not less than 0.5.

Proof. or a 2 × 2 matrix, since p12 + p21 � 1, the property is
possessed.

Suppose that for a (n − 1) × (n − 1) (n≥ 3) matrix, the
property is possessed. Without loss of generality, we assume
in the first row, all of the elements except p11 are not less
than 0.5, i.e., p1j ≥ 0.5, j � 2, . . . , (n − 1). Now, based on the
(n − 1) × (n − 1) matrix, a n × n matrix is constructed by
attaching pnj, j � 1, 2, . . . , (n − 1) to the last row and
pjn, j � 1, 2, . . . , (n − 1) to the last column.

If p1n ≥ 0.5, then p1j ≥ 0.5, j � 2, . . . , n. .us, in the 1st

row of the n × nmatrix, all of the elements except p11 are not
less than 0.5.

Otherwise, if p1n < 0.5, since p1n + pn1 � 1, then
pn1 > 0.5. On the other hand, with the assumption of
p1j ≥ 0.5, j � 2, . . . , (n − 1), we have pnj ≥ 0.5, j � 2, . . . ,

(n − 1) due to the transitivity. .us, pnj ≥ 0.5, j � 1,

2, . . . , (n − 1). .erefore, in the nth row of the n × n matrix,
all of the elements except pnn are not less than 0.5.

.is proof is complete. □

4. Numerical Illustration

To demonstrate the proposed IMSBM model, we use
banking DMUs with positive and negative interval data. For
performance evaluation, we used 20 commercial banks
operating in the Gulf Cooperation Council (GCC) countries
[24]. Table 2 illustrates three input ((1) total assets (ASST),
(2) capital (EQTY), and (3) deposits (DEPO)) and two
output ((1) loans (LOAN) and (2) profit (PROF)) data of 20
commercial banks.

Table 2 shows the input-output data. According to the
available data, some banks have negative profit at both lower
and upper bounds (e.g., DMU9, DMU11, DMU18, DMU19,
and DMU20), some banks have negative profit at their lower
bound but positive profit at upper bound (e.g., DMU1 and
DMU12), and the rest have positive profit at both bounds.
Now, the IMSBM model is applied to evaluate the interval
efficiency scores of these banks. To simplify the problem, as it
is presented in Table 3, the inputs and outputs are weighted
equally, respectively.

.e interval efficiency scores and the classification of the
20 banks are shown in Table 4. As a comparison, the interval
efficiency scores evaluated by the interval SORM model and
the corresponding classification are shown in the last two
columns.

Table 4 shows the efficiency scores of all 20 DMUs
evaluated by the IMSBM model. DMU1, DMU3, DMU5,
DMU7, DMU9, and DMU20 are strictly efficient, DMU2,
DMU11, DMU14, DMU15, and DMU19 are weakly efficient,
and the rest of the DMUs are inefficient.

Comparing the efficiency scores calculated by the
IMSBM model with the efficiency scores calculated by
interval SORM model, it can be seen that strictly efficient
DMUs in the IMSBM model are still strictly efficient in
interval SORMmodel (e.g., DMU1, DMU3, DMU5, DMU7,
DMU9, and DMU20), but strictly efficient DMUs in in-
terval SORM model are not always strictly efficient in
IMSBM model (e.g., DMU15). .e reason behind these
results is that the interval SORM model just focuses on
radial efficiency while the nonradial inefficiency is ignored,
which fails to reflect the inefficiency caused by nonradial
slacks. However, the IMSBM model considers the in-
efficiency caused not only by radial slacks but also by
nonradial slacks. .erefore, the efficiency score evaluated
by the IMSBM model cannot be greater than the interval
SORM model.

In addition to the classification, the detail of the per-
formance ranking is needed. .e strictly efficient DMUs are
ranked top position and the remaining DMUs are assigned
the ranks according to the degree of preference. Table 5
shows the degree of preference among the weakly efficient
and inefficient DMUs.

From the degree of preference matrix, the relation-
ship among the weakly efficient and inefficient DMUs is
established as DMU14≻DMU15≻DMU2≻DMU19≻DMU11≻
DMU16 ≻ DMU10 ≻ DMU4 ≻ DMU17 ≻ DMU6 ≻ DMU13≻
DMU18≻DMU12≻DMU8. By putting the strictly efficient
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DMUs in the top position and remaining in the second position,
all the DMUs are ranked as shown in Table 6.

With the allowance to alter the input and output
weights, we adjust them to illustrate the effect of weights on
the efficiency scores. .e unequal weights are shown in
Table 7.

.e interval efficiency scores, classification, and the
ranks of the 20 banks with unequal weights are shown in
Table 8. .e comparison with the interval SORM model is
omitted just because it is not directly relevant at this stage.

Comparing Table 8 with Table 4, we find that adjusting
the weights has no impact on the classifications of the

Table 2: Input and output data for 20 banks.

DMU
Inputs Outputs

ASST EQTY DEPO LOAN PROF
DMU1 [285.5,299.3] [56.7,64.9] [29.5,31.2] [214.2,232.7] [− 1.4,2.8]
DMU2 [8522.7,9652.2] [1353.9,1450.5] [6678.6,7043.1] [5357.0,6228.8] [181.2,205.6]
DMU3 [2443.6,2494.0] [401.1,439.1] [1601.1,1615] [2187.2,2556.2] [23.0,26.3]
DMU4 [4953.0,5352.9] [639.9,648.7] [4219.3,4383.5] [2196.7,2276] [72.6,79.0]
DMU5 [669.5,706.1] [78.4,91.6] [579.1,584.2] [266.2,309.7] [19.7,22.8]
DMU6 [5806.6,6627.4] [939.1,1074.5] [4318.8,4852.2] [2451.5,2470.0] [67.2,75.9]
DMU7 [17844.5,20466.3] [2064.1,2281.1] [13733.7,14569.9] [14457.0,16633.9] [415.9,427.6]
DMU8 [1785.1,1988.5] [388.6,450.7] [1353.0,1376.4] [438.3,481.8] [9.0,10.3]
DMU9 [33141.3,34728.0] [1996.6,2234.4] [26183.6,28367] [17387.5,17945.4] [− 57.7,− 33.8]
DMU10 [13372.5,14523.3] [1071.1,1136.6] [11533.6,12718] [4834.7,4978.5] [173.2,186.8]
DMU11 [630.7,687.8] [115.1,118.7] [507.5,531.1] [495.5,529.3] [− 5.8,− 5.6]
DMU12 [654.5,680.7] [83.5,89.3] [554.8,598.9] [334.3,374.7] [− 15.5,0.8]
DMU13 [1718.3,1866.8] [226.7,237.1] [1464.3,1550.3] [714.9,783.0] [20.0,21.9]
DMU14 [1011.5,1113.7] [139.4,141.8] [835.5,867.7] [819.2,892.7] [23.9,26.8]
DMU15 [4535.5,5209.8] [450.9,467.8] [3788.3,4074.1] [3604.5,3777.3] [67.4,75.1]
DMU16 [3652.4,4066.2] [394.1,407.3] [2960.4,3244.5] [1614.4,1845.2] [58.0,61.7]
DMU17 [5356.4,6311.2] [575.2,609.4] [4688.2,4789.6] [2298.9,2589.8] [42.3,43.7]
DMU18 [684.0,731.2] [129.3,138.7] [547.9,607.8] [408.6,463.3] [− 17.7,− 17.2]
DMU19 [2702.5,3074.7] [281.7,289.6] [2268.7,2623.0] [2008.2,2362.5] [− 0.8,− 0.7]
DMU20 [1007.2,1070.6] [75.0,78.3] [848.3,975.0] [833.4,885.9] [− 15.3,− 13.4]

Table 3: .e equal weights of inputs and outputs.

Indicators w1 ASST w2 EQTY w3 DEPO v1 LOAN v2 PROF

Weights 0.333 0.333 0.333 0.5 0.5

Table 4: Results of the interval efficiency for 20 banks with equal weights.

DMU IMSBM Classification Interval SORM Classification
DMU1 [1,1] E++ [1,1] E++

DMU2 [0.679,1] E+ [0.813,1] E+

DMU3 [1,1] E++ [1,1] E++

DMU4 [0.480,0.657] E− [0.520,0.698] E−

DMU5 [1,1] E++ [1,1] E++

DMU6 [0.362,0.538] E− [0.427,0.614] E−

DMU7 [1,1] E++ [1,1] E++

DMU8 [0.116,0.225] E− [0.253,0.513] E−

DMU9 [1,1] E++ [1,1] E++

DMU10 [0.506,0.691] E− [0.718,0.901] E−

DMU11 [0.498,1] E+ [0.777,1] E+

DMU12 [0.195,0.613] E− [0.667,1] E+

DMU13 [0.349,0.521] E− [0.490,0.633] E−

DMU14 [0.852,1] E+ [0.929,1] E+

DMU15 [0.787,1] E+ [1,1] E++

DMU16 [0.526,0.756] E− [0.616,0.834] E−

DMU17 [0.389,0.609] E− [0.470,0.665] E−

DMU18 [0.287,0.572] E− [0.614,0.846] E−

DMU19 [0.667,1] E+ [0.866,1] E+

DMU20 [1,1] E++ [1,1] E++
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DMUs, but it fluctuates the inefficiency scores. In other
words, both bounds of strictly efficient DMUs and the upper
bound of weakly efficient DMUs maintain their effectiveness
under any weight.

5. Conclusion

Most commonly used conventional DEA models assume
that input-output data are precise and nonnegative, but in
complex situations, it is not always possible that this as-
sumption is satisfied. .e literature suggests that several
models are developed to handle the problem of imprecise
and negative data. However, till yet, there are seldommodels

developed to handle imprecise data and negative data si-
multaneously. In this study, the IMSBM model is proposed
to evaluate the relative efficiency of a set of DMUs with
imprecise and negative data. .e novelties of this model are
that it could handle the data with these two mentioned
characteristics simultaneously, and it puts aside the as-
sumption of proportionate changes in inputs and outputs
and deals with slacks directly, which ensures the efficiency
obtained considering both radial and nonradial slacks. After
restraining the limitation of conventional DEA models, the
IMSBM model is more superior in practice.

.is research proves that the IMSBM model is units
invariant, monotone, and translation invariant. Moreover,
the lower and upper bounds of the interval efficiency score
are in the range of [0,1], even with the existence of negative
data. A numerical example illustrates the application of the
IMSBM model, and the efficiency scores obtained are
compared with those evaluated by the interval SORMmodel.

Table 5: Degree of preference matrix for weakly efficient and inefficient banks with equal weights.

DMU 2 4 6 8 10 11 12 13 14 15 16 17 18 19
2 — 1 1 1 0.98 0.61 1 1 0.32 0.40 0.86 1 1 0.51
4 0 — 0.84 1 0.42 0.23 0.78 0.88 0 0 0.32 0.68 0.80 0
6 0 0.16 — 1 0.09 0.06 0.58 0.54 0 0 0.03 0.38 0.54 0
8 0 0 0 — 0 0 0.06 0 0 0 0 0 0 0
10 0.02 0.58 0.91 1 — 0.28 0.82 0.96 0 0 0.40 0.75 0.86 0.05
11 0.39 0.77 0.94 1 0.72 — 0.88 0.97 0.23 0.30 0.65 0.85 0.91 0.40
12 0 0.22 0.42 0.94 0.18 0.13 — 0.45 0 0 0.13 0.35 0.46 0
13 0 0.12 0.46 1 0.04 0.03 0.55 — 0 0 0 0.34 0.51 0
14 0.68 1 1 1 1 0.77 1 1 — 0.59 1 1 1 0.69
15 0.60 1 1 1 1 0.70 1 1 0.41 — 1 1 1 0.61
16 0.14 0.68 0.97 1 0.60 0.35 0.87 1 0 0 — 0.82 0.91 0.16
17 0 0.32 0.62 1 0.25 0.15 0.65 0.66 0 0 0.18 — 0.64 0
18 0 0.20 0.46 1 0.14 0.09 0.54 0.49 0 0 0.09 0.36 — 0
19 0.49 1 1 1 0.95 0.60 1 1 0.31 0.39 0.84 1 1 —

Table 6: Performance ranking of 20 banks with equal weights.

DMU Rank
DMU1 1
DMU2 4
DMU3 1
DMU4 9
DMU5 1
DMU6 11
DMU7 1
DMU8 15
DMU9 1
DMU10 8
DMU11 6
DMU12 14
DMU13 12
DMU14 2
DMU15 3
DMU16 7
DMU17 10
DMU18 13
DMU19 5
DMU20 1

Table 7: .e unequal weights of inputs and outputs.

Indicators w1 ASST w2 EQTY w3 DEPO v1 LOAN v2 PROF

Weights 0.25 0.35 0.4 0.3 0.7

Table 8: Interval efficiency, classification, and rank for 20 banks
with unequal weights.

DMU Efficiency Classification Rank
DMU1 [1,1] E++ 1
DMU2 [0.693,1] E+ 4
DMU3 [1,1] E++ 1
DMU4 [0.480,0.650] E− 9
DMU5 [1,1] E++ 1
DMU6 [0.363,0.535] E− 11
DMU7 [1,1] E++ 1
DMU8 [0.116,0.225] E− 15
DMU9 [1,1] E++ 1
DMU10 [0.518,0.702] E− 8
DMU11 [0.483,1] E+ 6
DMU12 [0.186,0.606] E− 14
DMU13 [0.352,0.520] E− 12
DMU14 [0.844,1] E+ 2
DMU15 [0.779,1] E+ 3
DMU16 [0.530,0.753] E− 7
DMU17 [0.387,0.600] E− 10
DMU18 [0.276,0.554] E− 13
DMU19 [0.660,1] E+ 5
DMU20 [1,1] E++ 1
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Further classifying the DMUs into three subsets, the degree
of preference approach is referenced as a simple and effective
tool to rank the weakly efficient and inefficient DMUs. With
the allowance to alter the input and output weights, we
adjust them and find out that only the inefficient scores
fluctuate with the weights.

Further work based on this paper is combining the
IMSBMmodel with other theoretical studies that possess the
abilities to weight slacks.
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