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+is paper proposed an adaptive vector nonsingular terminal sliding mode control (NTSMC) algorithm for the finite-time
tracking control of a class of n-order nonlinear dynamical systems with uncertainty. +e adaptive vector NTSMC incorporates a
vector design idea and novel adaptive updating laws based on the commonly used NTSMC, which consider the common existence
of the degree-of-freedom (DOF) directional differences and eliminate the chattering problem. +e closed-loop stability of the
n-order nonlinear dynamical systems under the adaptive vector NTSMC is demonstrated using Lyapunov direct method.
Simulations performed on a two-degree-of-freedom (DOF) manipulator are provided to illustrate the effectiveness and ad-
vantages of the proposed adaptive vector NTSMC by comparing with the common NTSMC.

1. Introduction

Sliding mode control (SMC), which provides invariance to
uncertainty, is one of the effective and efficient nonlinear
robust control schemes [1, 2]. It has been successfully
implemented in many systems, such as induction motor [3],
Stewart platform [4], car-like mobile robots [5], and PMSM
speed regulation system [6, 7]. Essentially, two basic com-
ponents cause the characteristics of the SMC: a driving effort
that forces the system states to reach and stay on a stable
hyperplane, and a sliding surface achieves the desired error
dynamics [8]. Commonly, the linear sliding hyperplane
assures asymptotic stability of the system in the sliding mode
but cannot make the system state errors converge to zero at a
finite time.

To achieve the finite-time convergence of the system
state errors, terminal SMC (TSMC) has been derived by
introducing a nonlinear sliding mode to provide faster
convergence than the linear hyperplane-based sliding mode
[8, 9]. However, TSMC has a singularity problem [10];
accordingly, nonsingular TSMC (NTSMC) has been suc-
cessfully developed to avoid the singularity [10, 11]. +us,
owing to its advantages of insensitive to uncertainty, finite-

time convergence, TSMC, and NTSMC, as variant schemes
of SMC, have attracted great attention [12–14] and have also
been widely adopted in both linear and nonlinear uncertain
systems [15–19].

In the past decade, the appropriate selection of the
uncertainty upper bound of the TSMC/NTSMC has been a
hot topic, which may cause serious chattering problem as a
large one or existence of tracking errors as a low one. To
tackle the problem of upper bound design, the adaptive
algorithms have been widely investigated in recent years
[20–29]. Since the fuzzy logic and neural networks are
universal function approximators, the adaptive TSMC/
NTSMC schemes which integrated the unknown dynamic-
learning algorithms using the function approximators have
developed quickly [20–23]. Moreover, other adaptive
updating laws have also been proposed to improve the
control performances and have been adopted in the
multiple motion axis systems [24], DC-DC buck converters
[25], uncertain nonlinear SISO systems [26], nonlinear
differential inclusion systems [27], and the electrome-
chanical actuator [28], and so on. However, the uncertainty
upper bound of the previous adaptive schemes without the
function approximators is designed as a constant, which
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cannot analyze the common existence of the DOF direc-
tional different characteristics. Fortunately, few available
control schemes without the finite-convergence perfor-
mance, whose upper bounds of the uncertainty are
designed as vector numbers, have been proposed for
spacecraft formation flying [29], a class of MIMO nonlinear
systems [30].

Motivated by the above discussion, this paper considers
the finite-time stabilization for a class of n-order nonlinear
dynamical systems with unknown uncertainty upper bound.
+e main contributions of this work can be summarized as
follows: (i) the upper bound of the uncertainty is designed as
a vector, which can analyze the DOF directional different
characteristics; (ii) novel adaptive updating laws for the
vector upper bound of the uncertainty are derived to im-
prove the performance of usually NTSMC; and (iii) the
closed-loop stability of the n-order nonlinear dynamical
systems under the proposed adaptive vector NTSMC is
demonstrated using Lyapunov direct method.

2. Preliminaries

+e kinematic and dynamic equations of a class of n-order
nonlinear dynamical systems can be described as follows:

_x1 � f1 x1, x2( , (1)

_x2 � f2 x1, x2(  + G x1, x2( u, (2)

where x1 ∈ R
n and x2 ∈ R

n represent the system states; u ∈
Rn is the control vector; f1(x1, x2) ∈ R

n and f2(x1, x2) ∈ R
n

are smooth vector functions; andG(x1, x2) ∈ R
n×n denotes a

nonsingular matrix. +e class of n-order nonlinear dy-
namical systemmodel can be used to describe many physical
systems, such as robot manipulators, spacecraft [31], and
conventional mechanical systems.

Considering the uncertainty, such as unmodeled dy-
namics, parameter variation, and external disturbances, the
dynamics of the n-order uncertain nonlinear dynamical
system can be rewritten as

_x2 � f2,0 + Δf2 + G0 + Δg u, (3)

where f2,0 and G0 denote the estimated terms and Δf2 and
ΔG are the uncertain terms.

(3) can be further rearranged as

_x2 � f2,0 + G0u + δtotal,n, (4)

δtotal,n � Δf2 + Δgu. (5)

By recalling that the n-order uncertain nonlinear dy-
namical system is considered (described by (1), (4), and (5)),
the following properties can be obtained.

Assumption 1. δtotal,n denotes the uncertainties and dis-
turbances satisfying

δtotal,n
����

����≤ b1,n + b2,n x1
����

���� + b3,n x2
����

����
2
, (6)

where b1,n, b2,n, and b3,n are the positive numbers and
‖ ‖denotes the norm operation.

Remark 1. +e mathematics model to describe the physical
systems is simplified, which is hard to employ the accuracy
parameters to consider the uncertainties such as the
unmodeled dynamics, parameter variation, and external
disturbances. Generally, the boundary of the total uncer-
tainty is assumed to be a constant [12, 14], which is usually
enlarged to satisfy the assumption. In practice, the uncer-
tainty is related to the state of the physical systems, such as
the motion command of the robots. +erefore, Assumption
1 proposed a more feasible uncertainty boundary consid-
ering the influence of the system states, which includes the
general constant total uncertainty boundary assumption.

Remark 2. In practice, it is probably the existence of the
following conditions: (i) there are serious discrepancies
between the dynamical characteristics of the different DOF
directions; (ii) some DOF directions have special tracking
performance demands. Besides, the system state elements
(x1,i and x2,i) commonly represent special physical mean-
ings, such as the DOF directional values and control
command directional values, which can be directly or in-
directly transformed as the DOF directional values. For
instance, the DOF directional dynamical performances of
the typical Stewart platform are different, especially for the
heave direction. +erefore, it is an urgent work to propose a
vector NTSMC scheme to consider different design de-
mands or dynamical characteristics corresponding to the
special DOF directions.

In this paper, we aim to design a control scheme to
obtain the satisfactory tracking performances of the n-order
uncertain nonlinear dynamical systems with uncertainty
(described by (1), (4), and (5)) andmake the tracking error of
the nonlinear systems converge to zero in finite time.

3. Control Development

In this section, two trajectory tracking controllers are
proposed for the n-order uncertain nonlinear dynamical
systems with uncertainty (described by (1), (4), and (5)),
which can achieve the finite-time convergence of the system
state errors.

3.1. NTSMC for Nonlinear Systems. +e commonly utilized
NTSMC algorithm proposed by Feng et al. has been suc-
cessfully employed in the rigid manipulators and also been
extended to the n-order nonlinear dynamical systems [11].
However, in [11], the stability analysis of the NTSMC for the
n-order nonlinear dynamical systems has not been men-
tioned, and the controller is available for the trajectory
stabilization of the n-order nonlinear dynamical systems. To
overcome this problem, the corresponding NTSMC scheme
for the tracking control of the n-order nonlinear dynamical
systems is introduced in this section.
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To aid the subsequent control development, we define
the vector Vvec(·) ∈ Rn×1 and matrix Ddiag(·) ∈ Rn×n as
follows:

Vvec zi(  � z1, . . . , zn 
T
, (7)

Ddiag zi(  � diag z1, . . . , zn( , (8)

where diag(·) represents the diagonal matrix function.
Based on the definition of (7) and (8), the sliding surface

considered different DOF directional design demands which
can be formulated as

s � ε1 + ΛVvec _εpi/qi

1,i , (9)

ε1 � x1 − x1,d, (10)

Λ � Ddiag λi( , (11)

where x1,d is the desired system state; (·)i means the ith
element of (·); pi, qi, and λi (i � 1, . . . , n) are positive
numbers; and the condition (1<pi/qi < 2) must be satisfied
to achieve the nonsingularity of the NTSMC control [11].

+e proposed NTSMC scheme can be formulated as

uantsmc,n � −
zf1
zx2

G0 

+

Ψ‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

 

+
zf1
zx1

f1 +
zf1
zx2

f2,0 + Υ− 1Λ− 1Vvec _ε2−pi/qi

1,i  − €x1, d,

(12)

where

Υ � Ddiag
pi

qi

 , (13)

Ψ � Vvec
si _ε

pi/qi−1
1,i 

T

si _ε
pi/qi−1
1,i




2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (14)

Now, we are in a position to state the NTSMC control
scheme for n-order nonlinear dynamical systems.

Theorem 1. Given the n-order uncertain nonlinear dy-
namical systems of (1) and (4), the system tracking error ε1
will converge to zero in finite time under the NTSMC scheme
(designed as (9) and (14)) if Assumption 1 holds.

Proof of 6eorem 1. +e proof proceeding is divided into
two parts: firstly, the finite-time convergence of the sliding
surface of NTSMC (9) is proved based on Lyapunov

method; secondly, the convergence time of the tracking
error is calculated.

Step 1. To this end, the following Lyapunov-like function
candidate is adopted:

Vntsmc,n,i �
1
2
s
T
i si. (15)

Differentiating Vntsmc,n,i with respect to time and
substituting (9) and (10), we have

_Vntsmc,n,i � s
T
i _si � s

T
i _ε1 + ΥΛDdiag _ε

pi/qi−1
1,i ε1 

i

� s
T
i _ε1 + ΥΛDdiag _ε

pi/qi−1
1,i  x1 − €x1,d  

i
.

(16)

According to system models (1) and (4), (16) can be
further formulated as

_Vntsmc,n,i � s
T
i _ε1 + ΥΛDdiag _ε

pi/qi−1
1,i 

zf1
zx1

f1 +
zf1
zx2

f2,0 + G0u + δtotal,n  − x1,d  
i

. (17)
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Replacing the control command u by uantsmc,n (12), (17)
can be rearranged as

_Vntsmc,n,i

� s
T
i _ε1 + ΥΛDdiag _ε

pi/qi−1
1,i 

zf1
zx1

f1 − €x1,d +
zf1
zx2

f2,0 + δtotal,n + G0 −
zf1
zx2

G0 

+

Ψ‖s‖ Ddiag _ε
pi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

 

+
zf1
zx1

f1 +
zf1
zx2

f2,0 + Υ− 1Λ− 1Vvec _ε
2−pi/qi

1,i  − x1,d
i

� s
T
i _ε1 + ΥΛDdiag _ε

pi/qi−1
1,i 

zf1
zx2

δtotal,n − Ψ‖s‖ Ddiag _ε
pi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

  − Υ− 1Λ− 1Vvec _ε
2−pi/qi

1,i   
i

.

(18)

Consider the fact that

ΥΛDdiag _εpi/qi−1
1,i Υ− 1Λ− 1Vvec _ε2−pi/qi

1,i  � _ε1. (19)

So, (18) can be given as follows by substituting (11), (13),
and (19):

� s
T
i ΥΛDdiag _εpi/qi−1

1,i 
zf1
zx2

δtotal,n − Ψ‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

   
i

� s
T
i Ddiag

pi

qi

 Ddiag λi( Ddiag _εpi/qi−1
1,i 

zf1
zx2

δtotal,n 
i

− s
T
i Ddiag

pi

qi

 Ddiag λi( Ddiag _εpi/qi−1
1,i Ψ‖s‖ Ddiag _εpi/qi−1

1,i 
zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

  
i

� s
T
i

pi

qi

λi Ddiag _εpi/qi−1
1,i 

zf1
zx2

δtotal,n 
i

− s
T
i Ddiag

pi

qi

 Ddiag λi( Ddiag _εpi/qi−1
1,i Ψ‖s‖ Ddiag _εpi/qi−1

1,i 
zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

  
i

<
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������
δtotal,n

����
���� −

pi

qi

λis
T
i Ddiag _εpi/qi−1

1,i Ψ‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
���� + b3,n x2

����
����
2

  
i

.

(20)

Substituting (14) into (20) yields

_Vntsmc,n,i < −
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������

· b1,n + b2,n x1
����

���� + b3,n x2
����

����
2

− δtotal,n
����

���� .

(21)

From (21), if Assumption 1 holds, we can conclude that
_Vntsmc,n,i < 0. By LaSalle’s invariant principle [9], we have

si(t)⟶ 0 for any initial state (x1,0, x2,0).

Step 2. According to (15) and (21), we have
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1
2
d
dt

s
T
i si < −

pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������

· b1,n + b2,n x1
����

���� + b3,n x2
����

����
2

− δtotal,n
����

���� .

(22)

+en, we define the following equation when si ≠ 0:

min
pi

qi

λi Ddiag _εpi/qi−1
1,i 

zf1
zx2

��������

��������
b1,n + b2,n x1

����
����

+ b3,n x2
����

����
2

− δtotal,n
����

���� � η1,i > 0,

(23)

where η1,i is a positive number and min(·) is the minimum
of (·).

Based on (23), (22) can be rewritten as
1
2
d
dt

s
T
i si < −η1,i‖s‖< −η1,i si


. (24)

So, if si ≠ 0, the system states will reach the sliding mode
si � 0 within the finite time tr,i, which satisfies

tr,i ≤−
si(0)




η1,i

. (25)

When the sliding mode si � 0 is achieved, the conver-
gence time ts,i that is taken to travel from ε1,i(tr,i)≠ 0 to
ε1,i(tr,i + ts,i) � 0 is calculated by

ts,i � −λqi/pi

i 
0

ε1,i tr,i( )
ε−qi/pi

1,i dε1,i � λqi/pi

i

pi

pi − qi

  ε1−qi/pi

1,i tr,i 


.

(26)

+erefore, the total finite time tf,i of the system states can
be formulated by

tf,i � tr,i + ts,i. (27)

Moreover, the total finite time tf for all of the system
state elements can be given by

tf � max tf,i  � max tr,i + ts,i . (28)

Hence, the asymptotic stability in finite time of the
nonlinear dynamical systems under NTSMC has been
proved.

Remark 3. +e improved NTSMC in the previous section
solves the following problems: (i) available for the trajectory
tracking and trajectory stabilization; (ii) the asymptotic
stability in finite time of the nonlinear dynamical systems
under NTSMC has been proved. However, there are still
some conservatisms of the proposed NTSMC: (i) the upper
bound of the uncertainty is chosen as a constant value, but
the actual uncertain upper boundary is unknown; (ii) the
discrepancies between the dynamical characteristics of
different DOF directions cannot be considered owing to the
constant number designing of the upper bound.

+us, an adaptive vector NTSMC algorithm for the
n-order nonlinear dynamical systems is derived in the
following section.

3.2. Adaptive Vector NTSMC for Nonlinear Systems

Assumption 2. To further consider the influences of different
dynamical characteristics corresponding to the DOF di-
rections, the total uncertainty is assumed to be bounded as
(29), where b1,n,i, b2,n,i, and b3,n,i are positive numbers, and
| · | means the absolute operation.

zf1
zx2

��������

��������
b1,n,i + b2,n,i x1

����
���� + b3,n,i x2

����
����
2

 >
zf1
zx2

δtotal,n 
i




.

(29)

Remark 4. Assumption 1 considers the influence of the
system states to induce the uncertainty boundary, which is
beneficial to reduce the chattering of the SMC controller. For
MIMO systems, the uncertainty boundary can be further
reduced by considering different dynamical characteristics
corresponding to the DOF directions, which is verified in the
literature [4] to propose a novel sliding mode controller for
the Stewart platform.

+en, the adaptive vector NTSMC can be formulated by

uavntsmc,n � −
zf1
zx2

G0 

+

κ‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
Γadaptive,n

+
zf1
zx1

f1 +
zf1
zx2

f2,0 + Υ− 1Λ− 1Vvec _ε2−pi/qi

1,i  − €x1, d,

(30)

κ � Ddiag
si _ε

pi/qi−1
1,i 

T

si _ε
pi/qi−1
1,i




2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (31)

where Γadaptive,n ∈ R
n×1 represents the estimated upper

bound, which is designed as a time-varying vector.
Moreover, the updating laws are chosen as

Γadaptive,n,i � b1,n,i + b2,n,i x1
����

���� + b3,n,i x2
����

����
2
, (32)

_b1,n,i � d1,n,i

pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
, (33)

_b2,n,i � d2,n,i

pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
x1

����
����, (34)

_b3,n,i � d3,n,i

pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
x2

����
����
2
. (35)

+erefore, the adaptive vector NTSMC scheme for the
n-order nonlinear dynamical systems can be summarized as
follows.

Theorem 2. Given the n-order uncertain nonlinear dy-
namical systems of (1) and (4), the system tracking error ε1
will converge to zero in finite time under the adaptive vector
NTSMC scheme (designed as (9) and (30)–(35)) if Assump-
tion 2 holds.
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Proof of 6eorem 2. +e proof proceeding is divided into
two parts: firstly, the finite-time convergence of the sliding
surface of adaptive vector NTSMC (30) is proved based on
Lyapunov method; secondly, the convergence time of the
tracking error is calculated.

Step 1. Consider the following Lyapunov function:

Vavntsmc,n,i �
1
2

s
T
i si +

1
d1,n,i

b
T
1,n,i

b1,n,i

+
1

d2,n,i

b
T
2,n,i

b2,n,i +
1

d3,n,i

b
T
3,n,i

b3,n,i,

(36)

and the mismatch between the actual and estimated value of
b1,n,i, b2,n,i, and b3,n,i can be given by

b1,n,i � b1,n,i − b1,n,i, (37)

b2,n,i � b2,n,i − b2,n,i, (38)

b3,n,i � b3,n,i − b3,n,i. (39)

Taking the time derivative of (36) and substituting
(37)–(39), we can obtain

_Vavntsmc,n,i � s
T
i _si −

1
d1,n,i

b
T
1,n,i

_b1,n,i −
1

d2,n,i

b
T
2,n,i

_b2,n,i −
1

d3,n,i

b
T
3,n,i

_b3,n,i.

(40)

Similar to the proof process of +eorem 1, (40) can be
further rearranged by substituting (9), (11), (13), (19), and
(30):

_Vavntsmc,n,i

� s
T
i _ε1 + ΥΛDdiag _εpi/qi−1

1,i 
zf1
zx1

f1 +
zf1
zx2

f2,0 + G0uavntsmc,n + δtotal,n  − €x1,d  
i

−
1

d1,n,i

b
T
1,n,i

_b1,n,i −
1

d2,n,i

b
T
2,n,i

_b2,n,i −
1

d3,n,i

b
T
3,n,i

_b3,n,i

�
pi

qi

λis
T
i Ddiag _εpi/qi−1

1,i 
zf1
zx2

δtotal,n 
i

−
pi

qi

λis
T
i Ddiag _εpi/qi−1

1,i κ‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
Γadaptive,n 

i

−
1

d1,n,i

b
T
1,n,i

_b1,n,i −
1

d2,n,i

b
T
2,n,i

_b2,n,i −
1

d3,n,i

b
T
3,n,i

_b3,n,i.

(41)

+en, (41) can be rewritten as

_Vavntsmc,n,i

<
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

δtotal,n 
i




−

pi

qi

λis
T
i Ddiag _εpi/qi−1

1,i κ‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
Γadaptive,n 

i

−
1

d1,n,i

b
T
1,n,i

_b1,n,i −
1

d2,n,i

b
T
2,n,i

_b2,n,i −
1

d3,n,i

b
T
3,n,i

_b3,n,i.

(42)

Substituting (31) into (42) gives

_Vavntsmc,n,i < −
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
Γadaptive,n,i −

zf1
zx2

δtotal,n 
i




 

−
1

d1,n,i

b
T
1,n,i

_b1,n,i −
1

d2,n,i

b
T
2,n,i

_b2,n,i −
1

d3,n,i

b
T
3,n,i

_b3,n,i.

(43)
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Substituting (32)–(35) and (37)–(39) into (43) yields

_Vavntsmc,n,i

� −
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
b1,n,i + b2,n,i x1

����
���� + b3,n,i x2

����
����
2

  −
zf1
zx2

δtotal,n 
i




 

−
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
b
T
1,n,i + b

T
2,n,i x1

����
���� + b

T
3,n,i x2

����
����
2

 

� −
pi

qi

λi‖s‖ Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
b1,n,i + b2,n,i x1

����
���� + b3,n,i x2

����
����
2

  −
zf1
zx2

δtotal,n 
i




 .

(44)

Based on (44) and LaSalle’s invariant principle [9], we
have si(t)⟶ 0 for any initial state (x1,0, x2,0) if Assumption
2 holds.

Step 2. We define the following equation when si ≠ 0:

min
pi

qi

λi Ddiag _εpi/qi−1
1,i 

�����

�����
zf1
zx2

��������

��������
b1,n,i + b2,n,i x1

����
����

+ b3,n,i x2
����

����
2
 −

zf1
zx2

δtotal,n 
i




 � η2,i > 0,

(45)

where η2,i is a positive number.
+erefore, the finite time for the ith system state element

tf,i and total system states tf under the adaptive vector
NTSMC can be calculated by

ts,i � −λqi/pi

i 
0

ε1,i tr,i( )
ε−qi/pi

1,i dε1,i

� λqi/pi

i

pi

pi − qi

  ε1−qi/pi

1,i tr,i 


,

tr,i ≤−
si(0)




η2,i

,

tf,i � tr,i + ts,i,

tf � max tf,i  � max tr,i + ts,i .

(46)

Hence, the asymptotic stability in finite time of the
nonlinear dynamical systems under adaptive vector NTSMC
has been proved.

Remark 5. +e advantages of the proposed adaptive vector
NTSMC can be summarized as follows: (i) the vector design
idea of the uncertain upper bound can analyze the DOF
directional different characteristics; (ii) novel adaptive
updating laws can online adjust the upper bound of the
uncertainty, which can extensively eliminate the chattering
problem of the SMC schemes.

Remark 6. To eliminate the chattering problem of the SMC,
the following equations are adopted to replace Ψ (14) and κ
(31) in +eorem 1 and +eorem 2:

Ψ � Vvec
si _ε

pi/qi−1
1,i 

T

si _ε
pi/qi−1
1,i



 + ςi 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

κ � Ddiag
si _ε

pi/qi−1
1,i 

T

si _ε
pi/qi−1
1,i



 + ςi 
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(47)

where ςi is a positive number.

4. Application to the 2-DOF Manipulator

+is section presents a comparison study of performance
between the adaptive vector NTSMC and the NTSMC with
the application to a 2-DOF robot manipulator.

+e dynamics of a 2-DOF robot manipulator can be
formulated using the Euler–Lagrange equations as follows
[32, 33]:

M(q)€q + C(q, _q) _q + D _q + g(q) � τ,

M(q) �
k1 + 2k2 cos qrob,2  k3 + k2 cos qrob,2 

k3 + k2 cos qrob,2  k3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

C(q, _q) �
−k2sin qrob,2  _qrob,2 −k2sin qrob,2  _qrob,2

k2sin qrob,2  _qrob,1 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

D � Ddiag(0, . . . , 0),

g(q) �
k4sin qrob,1  + k5sin qrob,1 + qrob,2 

k5sin qrob,1 + qrob,2 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

(48)

where k1, k2, k3, k4, and k5 (SI units) are 8.77, 0.51, 0.76,
74.48, and 6.174, respectively.

Based on the previous description, the NTSMC and
adaptive vector NTSMC available for the two-DOF robot
manipulator can be formulated as follows:
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Sliding surface:

srob � εrob + Ddiag λi( Vvec _εpi/qi

rob,i . (49)

NTSMC:

τntsmc,rob � −M0

Vvec
srob,i _ε

pi/qi−1
rob,i 

T

srob,i _ε
pi/qi−1
rob,i




2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ srob
����

���� Ddiag _εpi/qi−1
rob,i 

�����

����� b1,rob + b2,rob‖q‖ + b3,rob‖ _q‖2  + M−1
0 −C0(q, _q) _qd − D0 _qd − g0(q)( 

+ D−1
diag

pi

qi

 D−1
diag λi( Vvec _ε2−pi/qi

rob,i  − €qd

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(50)

Adaptive vector NTSMC:

τavntsmc,rob � −M0

Ddiag
srob,i _ε

pi/qi−1
rob,i 

T

srob,i _ε
pi/qi−1
rob,i




2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ srob
����

���� Ddiag _εpi/qi−1
rob,i 

�����

�����Γadaptive,rob + M−1
0 −C0(q, _q) _qd − D0 _qd − g0(q)( 

+ D−1
diag

pi

qi

 D−1
diag λi( Vvec _ε2−pi/qi

rob,i  − €qd

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Γadaptive,rob,i � b1,rob,i + b2,rob,i‖q‖ + b3,rob,i‖ _q‖
2
,

_b1,rob,i � d1,rob,i

pi

qi

λi srob
����

���� Ddiag _εpi/qi−1
rob,i 

�����

�����,

_b2,rob,i � d2,rob,i

pi

qi

λi srob
����

���� Ddiag _εpi/qi−1
rob,i 

�����

�����‖q‖,

_b3,rob,i � d3,rob,i

pi

qi

λi srob
����

���� Ddiag _εpi/qi−1
rob,i 

�����

�����‖ _q‖
2
.

(51)

+e desired and the initial position trajectories (qd, q0,
and _q0) for links 1 and 2 are selected as

qd � [sin(πt), sin(πt)]
T
,

q0 � [0.5, 0.5]
T
,

_q0 � [2.2, 0]
T
.

(52)

Considering the influences of the uncertainty and dis-
turbance, the estimated parameters k1,0, k2,0, k3,0, k4,0, and
k5,0 of k1, k2, k3, k4, and k5 are assumed to be 8.77, 0.51, 0.76,
97, and 6.174. Besides, the sampling period is set as 0.5ms,
and the saturation value of torque is set as 80Nm. For fair
comparison, the control parameters (except the uncertainty
upper bound designing) of NTSMC and adaptive vector
NTSMC are chosen as the same: λ1 � λ2 � 1, p1 � p2 � 9,
q1 � q2 � 5, and ς1 � ς2 � 0.001. Moreover, to illustrate the

effectiveness and advantages of the proposed adaptive vector
NTSMC, three NTSMC with different upper bounds are
given as follows:

NTSMC1:

0.8 + 1.8‖q‖ + 0.09‖ _q‖
2
. (53)

NTSMC2:

2.4 + 5.4‖q‖ + 0.27‖ _q‖
2
. (54)

NTSMC3:

7.2 + 16.2‖q‖ + 0.8‖ _q‖
2
. (55)

Adaptive vector NTSMC:
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Figure 1: Position tracking errors and input torque of the n-order nonlinear dynamical systems under NTSMC1.
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Figure 2: Position tracking errors and input torque of n-order nonlinear dynamical systems under NTSMC2.
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Figure 3: Position tracking errors and input torque of n-order nonlinear dynamical systems under NTSMC3.
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d1,rob,1 � 10,

d1,rob,2 � 1.8,

d2,rob,1 � 17,

d2,rob,2 � 2,

d3,rob,1 � 0.001,

d3,rob,2 � 0.001,

b1,rob,1,0 � 1,

b1,rob,2,0 � 0.1,

b2,rob,1,0 � 1,

b2,rob,2,0 � 0.1,

b3,rob,1,0 � 0.1,

b3,rob,2,0 � 0.1,

(56)

where b1,rob,1,0, b1,rob,2,0, b2,rob,1,0, b2,rob,2,0, b3,rob,1,0, and
b3,rob,2,0 are the initial values of b1,rob,1, b1,rob,2, b2,rob,1, b2,rob,2,
b3,rob,1, and b3,rob,2.

Figures 1–4 illustrate the tracking errors and input
torque under the NTSMC1, NTSMC2, NTSMC3, and
adaptive vector NTSMC, where “eqij” and “torqueij” mean
the tracking error and input torque of the ith link under the
jth control scheme, respectively. NTSMC1, NTSMC2,
NTSMC3, and adaptive vector NTSMC represent the 1st,
2nd, 3rd, and 4th control schemes.

It can be seen that the tracking errors of the nonlinear
system under the NTSMC2, NTSMC3, and the adaptive
vector NTSMC can be converged to the acceptable level in
finite time (about 1.5 s), but the tracking error of the second
link under NTSMC1 is obvious even in the stabilization
period (about 0.07 rad after 1.5 s). Besides, the tracking
errors of the first link have amplitude overshoot (0.22 rad for
NTSMC2 and 0.26 rad for NTSMC3) under NTSMC2 and
NTSMC3 in the initial 1.5 s. From the comparison, it can be
clearly seen that the proposed adaptive vector NTSMC can

obtain a much faster transient and better tracking perfor-
mance in comparison with the NTSMC. Moreover, con-
sidering the input torque of the controllers, the chattering
problems under NTSMC2 and NTSMC3 are serious, and the
input commands of NTSMC1 and adaptive vector NTSMC
are smooth. As a result, from the simulations, we can
conclude that the proposed adaptive vector NTSMC can
solve the problem of finite-time tracking without chattering
phenomenon.

To clearly show the effectiveness and advantages of the
proposed adaptive vector NTSMC, we simply explain the
results illustrated in Figures 1–4. Firstly, the vector upper
bound analyzes different dynamical characteristics of the
two-DOF manipulator (the peak torque of the first link and
the second link is about 36Nm and 12Nm, respectively).
Secondly, the initial position errors of the dynamical system
usually cause serious chattering in the initial time for the
SMC schemes, which also was resolved by introducing of
novel adaptive updating laws for the upper bound.

5. Conclusions

In this paper, we considered the finite-time tracking problem
of n-link nonlinear dynamical systems with uncertainty. +e
well-known NTSMC for the robot manipulator was ex-
tended to the general n-link nonlinear dynamical systems,
and the corresponding rigorous stability analysis of the
NTSMC for the nonlinear systems was also established based
on the Lyapunov method. Moreover, a novel adaptive vector
NTSMC is further proposed by replacing the constant upper
bound with an adaptive vector bound, and its asymptotic
stability has also been analyzed. Furthermore, the conver-
gence times of the NTSMC and adaptive vector NTSMC are
calculated for the nonlinear system. Finally, simulations
performed on a two-DOF manipulator demonstrate the
effectiveness and advantages of the proposed adaptive vector
NTSMC in comparison with the NTSMC. +e developed
controller offers an alternative approach to a large class of
nonlinear systems, which considers different dynamical
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Figure 4: Position tracking errors and input torque of n-order nonlinear dynamical systems under NTSMC4.
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characteristics and special design demands and eliminates
the chattering problem existing in the common SMC
schemes.
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