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*e multipulse homoclinic orbits and chaotic dynamics of a reinforced composite plate with the carbon nanotubes (CNTs) under
combined in-plane and transverse excitations are studied in the case of 1 :1 internal resonance. *e method of multiple scales is
adopted to derive the averaged equations. From the averaged equations, the normal form theory is applied to reduce the equations
to a simpler normal form associated with a double zero and a pair of pure imaginary eigenvalues. *e energy-phase method
proposed by Haller and Wiggins is utilized to examine the global bifurcations and chaotic dynamics of the CNT-reinforced
composite plate.*e analytical results demonstrate that themultipulse Shilnikov-type homoclinic orbits and chaotic motions exist
in the system. Homoclinic trees are constructed to illustrate the repeated bifurcations of multipulse solutions. In order to verify the
theoretical results, numerical simulations are given to show the multipulse Shilnikov-type chaotic motions in the CNT-reinforced
composite plate. *e results obtained here imply that the motion is chaotic in the sense of the Smale horseshoes for the CNT-
reinforced composite plate.

1. Introduction

Carbon nanotubes (CNTs), as a new type of advanced
materials, have attracted a lot of attention of researchers.
*is is because CNTs possess high strength and stiffness with
high aspect ratio and low density. Due to these properties of
CNTs, a number of studies on the nonlinear vibrations and
dynamic responses of CNT-reinforced composite plates
have been carried out by many researchers in recent years.
By employing an equivalent continuum model, Formica
et al. [1] investigated the vibration behaviors of CNT-
reinforced composite plates. Zhu et al. [2] presented the
bending and free vibration analysis of CNT-reinforced
composite plates using the finite element method based on
the first-order shear deformation plate theory. In their work,
the authors showed the effects of the volume fractions of
CNTs and the edge-to-thickness ratios on the bending

responses, natural frequencies, and mode shapes of the
plates. In addition, Wang and Shen [3] examined the
nonlinear dynamic response of CNT-reinforced composite
plates resting on elastic foundations in thermal environ-
ments. *e motion equations were derived based on a
higher-order shear deformation theory with a von Kármán-
type of kinematic nonlinearity. In [4], a mixed Navier-
layerwise differential quadrature method was employed by
Malekzadeh and Heydarpour for the free vibration and
static response analysis of functionally graded carbon
nanotube- (FG-CNT-) reinforced composite laminated
plates. Based on the conventional Ritz method accompa-
nied with the Lagrangian multiplier technique, Kiani [5]
analyzed the free vibration characteristics of FG-CNT-
reinforced composite plates located on point supports.
Rafiee et al. [6] applied Galerkin’s method to deal with the
nonlinear dynamic stability of initially imperfect
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piezoelectric FG-CNT-reinforced composite plates under
combined thermal and electrical loadings. Using the
Fourier series expansion and state-space technique, Ali-
beigloo and Liew [7] investigated the bending behavior of
FG-CNT-reinforced composite plates with simply sup-
ported edges subjected to thermomechanical loads. Sub-
sequently, this work was extended by Alibeigloo and
Emtehani [8] for various boundary conditions by
employing the differential quadrature method. Recently,
Zhang et al. [9] carried out the analysis of geometrically
nonlinear large deformation of triangular FG-CNT-rein-
forced composite plates using the element-free improved
moving least-squares Ritz (IMLS-Ritz) method.

In addition, with the increasing applications of func-
tionally graded materials (FGM) in modern technology, the
buckling and vibration analysis of FGM structures began to
attract a widespread attention. *us, many studies on the
buckling and vibration analysis of FGM shells have been
published in the literature. Zhang and Li [10] discussed the
dynamic buckling of FGM truncated conical shells subjected
to normal impact loads. Bagherizadeh et al. [11] investigated
the mechanical buckling of simply-supported FGM cylin-
drical shells using third-order shear deformation shell
theory. *ey found that system parameters have great in-
fluence on the buckling characteristics of FGM shells.
Buckling behavior analysis based on Reddy’s high-order
shear deformation theory has also been performed by Sun
et al. [12] for FGM cylindrical shells subjected to an axial
compression in the thermal environment. In recent years,
there have been some numerical methods for analyzing the
plates and shells. *e multiquadric radial basis function
(MQ) method was developed and applied by Ferreira [13] to
discuss the effects of system parameters on the laminated
composite plates. *e method of discrete singular convo-
lution (DSC) gives a fast and accurate solution of the
mathematical physics and engineering problems. *en,
Civalek and his coworkers made a number of remarkable
studies using the DSC method; such investigations involved
the analysis of composite conical shells and panels [14–16],
plates on elastic foundations [17, 18], and so on.

However, in the course of our study, we found that
there are only few studies on the global bifurcations and
multipulse chaotic dynamics for the CNT-reinforced
composite plate. In order to eliminate or suppress large
nonlinear vibrations and chaotic motions of the CNT-
reinforced composite plate, we should deepen and com-
plete the theoretical analysis on the CNT-reinforced
composite plate model, discuss the complex dynamic be-
haviors, explore the existence conditions of the multipulse
Shilnikov-type orbits, and analyze the impact of parameters
on the system, so as to ensure the stability and control-
lability of the CNT-reinforced composite plate. *e present
work is therefore motivated to examine the global bifur-
cations and multipulse chaotic dynamics of the CNT-
reinforced composite plate considered by Guo and Zhang
[19]. *e energy-phase method developed by Haller and
Wiggins [20] is applied to study the multipulse homoclinic
bifurcations and chaotic dynamics for the CNT-reinforced

composite plate. In recent decades, two theories that are
usually employed to detect the global bifurcations and
multipulse Shilnikov-type chaotic dynamics in high-di-
mensional systems are the energy-phase method [20] and
the extended Melnikov method [21]. Also, some re-
searchers have utilized the developed theories to engi-
neering applications, see, for example, [22–29].

Based on the research by Guo and Zhang [19], the av-
eraged equations are obtained for the case of 1 :1 internal
resonance, principal parametric resonance, and 1/2 sub-
harmonic resonance of the CNT-reinforced composite plate.
From the averaged equations, the explicit expressions of the
3-order normal form are derived employing the normal
form theory. *e energy-phase method is utilized to detect
the existence of the multipulse Shilnikov-type homoclinic
orbits in the CNT-reinforced composite plate. Homoclinic
trees are constructed to illustrate the repeated bifurcations of
multipulse solutions. In addition, numerical simulations are
given to verify the analytical predictions.

*e organization of this paper is as follows. In Section 2,
we derive the averaged equations and normal form for the
CNT-reinforced composite plate. According to the normal
form derived in Section 2, the dynamics of the unperturbed
system is discussed in Section 3. In Section 4, a detailed
dynamic analysis of the perturbed system is presented, and
the existence of multipulse homoclinic orbits is confirmed.
Numerical simulations are given in Section 5 to show that
the chaotic motions can occur in the CNT-reinforced
composite plate. A short conclusion is reported in Section 6.

2. Formulation of the Problem

2.1. Equations of Motion and Perturbation Analysis. *is
paper focuses on studies of the multipulse homoclinic orbits
and chaotic dynamics of a four-edge simply-supported
CNT-reinforced composite rectangular plate subjected to
the in-plane and transverse excitations. *e model is shown
in Figure 1 [19].*e edge length and width of the plate in the
x and y directions are, respectively, a and b, and the
thickness is 􏽥h. A Cartesian coordinate system is located in
the middle surface of the CNT-reinforced composite rect-
angular plate.*e displacements of an arbitrary point within
the plate are u, v, and w in the x, y, and z directions, re-
spectively. *e in-plane excitation along the y direction at
x � a is given by P � 􏽥P0 − 􏽥P1 cosΩ2t. *e transverse exci-
tation subjecting to the CNT-reinforced composite rect-
angular plate is of the form F � F0 − F1 cosΩ1t.

According to the research by Guo and Zhang [19], the
axial and transverse displacement fields at any point for the
CNT-reinforced composite plate are given as

u(x, y, t) � u0(x, y, t) + zφx(x, y, t) − z
3 4

3􏽥h
2 φx +

zw0

zx
􏼠 􏼡,

(1a)

v(x, y, t) � v0(x, y, t) + zφy(x, y, t) − z
3 4

3􏽥h
2 φy +

zw0

zy
􏼠 􏼡,

(1b)
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w(x, y, t) � w0(x, y, t), (1c)

where u0, v0, and w0 represent the displacements at the
midplane of the plate in the x, y, and z directions. φx and φy

denote the rotations of the transverse normal at the mid-
plane about the x and y axes. Employing the von Kármán-
type plate theory and in terms of the displacements, the
strains εi(i � xx, yy) and the curvatures ci(i � xy, yz, zx)

in the midplane can be expressed as

εxx �
zu
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+
1
2

zw
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2
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2

zu
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+

zw
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(2)

*e force and moment resultants associated with the
strains and curvatures of the plate constitutive equations are
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where the coupling matrix Bij and Eij is equal to zero in the
stiffness matrix. *en, the nonlinear governing equations of
motion for the CNT-reinforced composite plate are obtained as
follows [19]:
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4
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2
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4
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2
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, (4a)
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2
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F = F0 – F1 cosΩ1t

P = P~0 – P~1 cosΩ2t
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y

Figure 1: *e model of a CNT-reinforced composite rectangular
plate.
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Substituting the stress resultants of equations (1a)–(1c),
(2), and (3a)–(3e) into equations (4a)–(4e), the governing
equations of motion for the CNT-reinforced composite plate

in terms of generalized displacements are derived as follows
[19]:
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zx zy
+ − A55 + 2c2D55 − c

2
2F55􏼐 􏼑φx

+ − A45 + 2c2D45 − c
2
2F45􏼐 􏼑φy + c

2
1H11 − c1F11􏼐 􏼑

z3w0

zx3 + c
2
1H26 − c1F26􏼐 􏼑

z3w0

zy3 − c
2
1H16 + c1F16􏼐 􏼑

z2w0

zx2zy

+ 4c
2
1H66 − c

2
1H12 − 2c1F66 − c1F12􏼐 􏼑

z3w0

zx zy2 + − A55 + 2c2D55 − c
2
2F55􏼐 􏼑

zw0

zx
+ − A45 + 2c2D45 − c

2
2F45􏼐 􏼑

zw0

zy

� 􏽥I2 −
4

3􏽥h
2
􏽥I4􏼠 􏼡€u0 −

4

3􏽥h
2

􏽥I5 −
4

3􏽥h
2
􏽥I7􏼠 􏼡

z €w0

zx
+ 􏽥I3 −

8

3􏽥h
2
􏽥I5 +

16

9􏽥h
4
􏽥I7􏼠 􏼡€φx,

(5d)

D16 − 2c1F16 + c
2
1H16􏼐 􏼑

z2φx

zx2 + D26 − 2c1F26 + c
2
1H26􏼐 􏼑

z2φx

zy2 + D66 − 2c1F66 + c
2
1H66􏼐 􏼑

z2φy

zx2 + D22 − 2c1F22 + c
2
1H22􏼐 􏼑

z2φy

zy2

+ D22 + D26 − 4c1F16 + 2c
2
1H12􏼐 􏼑

z2φy

zx zy
+ D21 + D66 − 2c1F21 − 2c1F66 + c

2
1H21 + c

2
1H66􏼐 􏼑

z2φx

zx zy

− A45 − 2c2D45 + c
2
2F45􏼐 􏼑φx − A55 − 2c2D55 + c

2
2F55􏼐 􏼑φy + c

2
1H16 − c1F16􏼐 􏼑

z3w0

zx3 + c
2
1H22 − c1F22􏼐 􏼑

z3w0

zy3

+ 2c
2
1H66 − c

2
1H21 − c1F66 − c1F21􏼐 􏼑

z3w0

zx2zy
− c

2
1H26 + c1F26􏼐 􏼑

z3w0

zx zy2 − A45 − c2D45 +
16
􏽥h
4F45􏼠 􏼡

zw0

zx

− A55 −
8
􏽥h
2D55 +

16
􏽥h
4F55􏼠 􏼡

zw0

zy
� 􏽥I2 − c1

􏽥I4( 􏼁€v0 − c1
􏽥I5 − c1

􏽥I7( 􏼁
z €w0

zy
+ 􏽥I3 − 2c1

􏽥I5 + c
2
1
􏽥I7􏼐 􏼑€φy,

(5e)

where μ is the damping coefficient, and all the other coef-
ficients can be found in [19]. *e associated boundary
conditions for the simply-supported CNT composite plate
can be written as

v � w � 0,

φy � 0,

Mxx � Nxy � 0,

x � 0, a,

(6a)

v � w � 0,

φx � 0,

Myy � Nxy � 0,

y � 0, b,

(6b)

􏽚
􏽥h

0
Nxx|x�0dz � − 􏽚

􏽥h

0
F0 − F1 cosΩ1t( 􏼁dz. (6c)

Also, the following nondimensional parameters are
introduced:
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u0 �
u0

a
,

v0 �
v0

b
,

w0 �
w0
􏽥h

,

φx � φx,

φy � φy,

x �
x

a
,

y �
y

b
,

Ii �
1

Li+1ρ
􏽥Ii,

F �
(ab)(7/2)

E􏽥h
7 F,

P �
b2

El3
P,

μ �
1
���
ρE

􏽰
a2b2

π2􏽥h
4 μ,

T �
1
L

��
E

ρ

􏽳

T,

Aij􏽨 􏽩 �
(ab)(1/2)

E􏽥h
2 Aij􏽨 􏽩,

Dij􏽨 􏽩 �
(ab)(11/2)

E􏽥h
4 Dij􏽨 􏽩,

Fij􏽨 􏽩 �
(ab)(1/2)

E􏽥h
4 Dij􏽨 􏽩,

Hij􏽨 􏽩 �
(ab)(1/2)

E􏽥h
4 Hij􏽨 􏽩,

(i � 1, 2, 3, 4, 5, 6; j � 1, 2, 3, 4, 5, 6).

(7)

In this paper, our research is focused on the multipulse
global bifurcations and chaotic dynamics of the CNT
composite plate in its first two modes. Hence, we express w

in the following form:

w0 � w1 sin
3πx

a
sin

πy

b
+ w2 sin

πx

a
sin

3πy

b
, (8)

where w1 and w2 are the amplitudes of twomodes.*e other
variables and transverse excitation are given as

u0 � u1 sin
3πx

a
cos

πy

b
+ u2 sin

πx

a
cos

3πy

b
, (9a)

v0 � v1 cos
3πx

a
sin

πy

b
+ v2 cos

πx

a
sin

3πy

b
, (9b)

φx � φ1 cos
3πx

a
sin

πy

b
+ φ2 cos

πx

a
sin

3πy

b
, (9c)

φy � φ3 sin
3πx

a
cos

πy

b
+ φ4 sin

πx

a
cos

3πy

b
, (9d)

F � F1 sin
3πx

a
sin

πy

b
+ F2 sin

πx

a
sin

3πy

b
. (9e)

*en, substituting these expressions into equations
(5a)–(5e) and applying the Galerkin integration procedure,
we can obtain the displacements u0, v0, φx, and φy with
respect to w0. Consequently, the nonlinear ordinary dif-
ferential equations of this system in terms of transverse
displacements are derived. According to the results of
convergence studies given by Hao et al. [30], the dimen-
sionless equations of motion for the CNT-reinforced
composite plate in the first two modes are derived as [19]

€w1 + μ _w1 + ω2
1w1 + a1w1 cosΩ2t + a2w

3
1 + a3w

3
2 + a4w

2
1w2

+ a5w1w
2
2 + a6w1w2 + a7w

2
1 + a8w

2
2 � f1 cosΩ1t,

(10a)

€w2 + μ _w2 + ω2
2w2 + b1w2 cosΩ2t + b2w

3
1 + b3w

3
2 + b4w

2
1w2

+ b5w1w
2
2 + b6w1w2 + b7w

2
1 + b8w

2
2 � f2 cosΩ1t,

(10b)

where all the coefficients can be found in [19]. We consider
the case of 1 :1 internal resonance, principal parametric
resonance, and 1/2 subharmonic resonance of the CNT-
reinforced composite plate, for which the resonant relations
are listed as follows:

ω1 �
1
2
Ω1 + 􏽥εσ1,

ω2 �
1
2
Ω2 + 􏽥εσ2,

Ω1 � Ω2 � Ω,

(11)

where σ1 and σ2 are two detuning parameters. For conve-
nience, we let Ω � 2 in the following analysis. *e uniform
solutions of equations (10a) and (10b) take the following
form:

wn(t, 􏽥ε) � xn0 T0, T1( 􏼁 + 􏽥εxn1 T0, T1( 􏼁 + · · · , n � 1, 2,

(12)

where T0 � t and T1 � 􏽥εt. We employ the method of
multiple scales to equations (10a) and (10b) and obtain the
averaged equations as follows:
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_x1 � −
1
2
μx1 − σ1 −

1
4
α1􏼒 􏼓x2 −

3
2
α2x2 x

2
1 + x

2
2􏼐 􏼑 −

3
2
α3x4 x

2
3 + x

2
4􏼐 􏼑 +

1
2
α4x4 x

2
1 − x

2
2􏼐 􏼑 − α4x4 x

2
1 + x

2
2􏼐 􏼑

+
1
2
α5x2 x

2
3 − x

2
4􏼐 􏼑 − α5x2 x

2
3 + x

2
4􏼐 􏼑 − α4x1x2x3 − α5x1x3x4,

(13a)

_x2 � −
1
2
μx2 + σ1 +

1
4
α1􏼒 􏼓x1 +

3
2
α2x1 x

2
1 + x

2
2􏼐 􏼑 +

3
2
α3x3 x

2
3 + x

2
4􏼐 􏼑 +

1
2
α4x3 x

2
1 − x

2
2􏼐 􏼑 + α4x3 x

2
1 + x

2
2􏼐 􏼑

+
1
2
α5x1 x

2
3 − x

2
4􏼐 􏼑 + α5x1 x

2
3 + x

2
4􏼐 􏼑 + α4x1x2x4 + α5x2x3x4,

(13b)

_x3 � −
1
2
μx3 − σ2 − f0( 􏼁x4 −

3
2
β2x2 x

2
1 + x

2
2􏼐 􏼑 −

3
2
β3x4 x

2
3 + x

2
4􏼐 􏼑 +

1
2
β4x4 x

2
1 − x

2
2􏼐 􏼑 − β4x4 x

2
1 + x

2
2􏼐 􏼑

+
1
2
β5x2 x

2
3 − x

2
4􏼐 􏼑 − β5x2 x

2
3 + x

2
4􏼐 􏼑 − β4x1x2x3 − β5x1x3x4,

(13c)

_x4 � −
1
2
μx4 + σ2 + f0( 􏼁x3 +

3
2
β2x1 x

2
1 + x

2
2􏼐 􏼑 +

3
2
β3x3 x

2
3 + x

2
4􏼐 􏼑 +

1
2
β4x3 x

2
1 − x

2
2􏼐 􏼑 + β4x3 x

2
1 + x

2
2􏼐 􏼑

+
1
2
β5x1 x

2
3 − x

2
4􏼐 􏼑 + β5x1 x

2
3 + x

2
4􏼐 􏼑 + β4x1x2x4 + β5x2x3x4,

(13d)

where f0 � (1/4)β1.

2.2. Computation of Normal Form. In order to study the
multipulse chaotic dynamics of the CNT-reinforced com-
posite plate, the first is to reduce equations (13a)–(13d) to a
simpler normal form. It is clear that equations (13a)–(13d)
possess a trivial zero solution (x1, x2, x3, x4) � (0, 0, 0, 0) at
which the Jacobian matrix can be written as

J �

−
1
2

􏼒 􏼓μ − σ1 +
1
4
α1 0 0

σ1 +
1
4
α1 −

1
2

􏼒 􏼓μ 0 0

0 0 −
1
2

􏼒 􏼓μ − σ2 − f0( 􏼁

0 0 σ2 + f0( 􏼁 −
1
2

􏼒 􏼓μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

*e characteristic polynomial of Jacobian matrix (14) is

|λI − J| � λ2 + μλ +
1
4
μ2 + σ21 −

1
16
α21􏼔 􏼕 λ2 + μλ +

1
4
μ2 + σ22 − f

2
0􏼔 􏼕.

(15)

It is easy to see that when μ � 0, α1 � − 4σ1, and σ22 −

f2
0 > 0 are satisfied simultaneously, systems (13a)–(13d) have

a pair of pure imaginary eigenvalues and one non-semi-
simple double zero:

λ1,2 � 0,

λ3,4 � ± i
������

σ22 − f2
0

􏽱

.
(16)

Setting α1 � 2 and σ � σ1 + (1/4)α1 and considering μ, σ,
and f0 as the perturbation parameters, then equations
(13a)–(13d) without the perturbation parameters become

_x1 � x2 −
3
2
α2x2 x

2
1 + x

2
2􏼐 􏼑 −

3
2
α3x4 x

2
3 + x

2
4􏼐 􏼑 +

1
2
α4x4 x

2
1 − x

2
2􏼐 􏼑 − α4x4 x

2
1 + x

2
2􏼐 􏼑 +

1
2
α5x2 x

2
3 − x

2
4􏼐 􏼑

− α5x2 x
2
3 + x

2
4􏼐 􏼑 − α4x1x2x3 − α5x1x3x4,

(17a)

_x2 �
3
2
α2x1 x

2
1 + x

2
2􏼐 􏼑 +

3
2
α3x3 x

2
3 + x

2
4􏼐 􏼑 +

1
2
α4x3 x

2
1 − x

2
2􏼐 􏼑 + α4x3 x

2
1 + x

2
2􏼐 􏼑 +

1
2
α5x1 x

2
3 − x

2
4􏼐 􏼑

+ α5x1 x
2
3 + x

2
4􏼐 􏼑 + α4x1x2x4 + α5x2x3x4,

(17b)
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_x3 � − σ2x4 −
3
2
β2x2 x

2
1 + x

2
2􏼐 􏼑 −

3
2
β3x4 x

2
3 + x

2
4􏼐 􏼑 +

1
2
β4x4 x

2
1 − x

2
2􏼐 􏼑 − β4x4 x

2
1 + x

2
2􏼐 􏼑 +

1
2
β5x2 x

2
3 − x

2
4􏼐 􏼑

− β5x2 x
2
3 + x

2
4􏼐 􏼑 − β4x1x2x3 − β5x1x3x4,

(17c)

_x4 � σ2x3 +
3
2
β2x1 x

2
1 + x

2
2􏼐 􏼑 +

3
2
β3x3 x

2
3 + x

2
4􏼐 􏼑 +

1
2
β4x3 x

2
1 − x

2
2􏼐 􏼑 + β4x3 x

2
1 + x

2
2􏼐 􏼑 +

1
2
β5x1 x

2
3 − x

2
4􏼐 􏼑

+ β5x1 x
2
3 + x

2
4􏼐 􏼑 + β4x1x2x4 + β5x2x3x4.

(17d)

For the trivial zero solution (x1, x2, x3, x4) � (0, 0, 0, 0),
the Jacobian matrix of equations (17a)–(17d) is evaluated as

A �

0 1 0 0

0 0 0 0

0 0 0 − σ2
0 0 σ2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Executing the Maple program designed by Zhang et al.
[31] leads to the following 3-order normal form of equations
(17a)–(17d):

_y1 � y2, (19a)

_y2 �
3
2
α2y

3
1 + α5y1 y

2
3 + y

2
4􏼐 􏼑, (19b)

_y3 � − σ2y4 − β4y
2
1y4 −

3
2
β3y4 y

2
3 + y

2
4􏼐 􏼑, (19c)

_y4 � σ2y3 + β4y
2
1y3 +

3
2
β3y3 y

2
3 + y

2
4􏼐 􏼑. (19d)

Accordingly, the normal form of equations (13a)–(13d)
with the perturbation parameters is obtained as

_y1 � −
1
2
μy1 +(1 − σ)y2, (20a)

_y2 � σy1 −
1
2
μy2 +

3
2
α2y

3
1 + α5y1 y

2
3 + y

2
4􏼐 􏼑, (20b)

_y3 � −
1
2
μy3 − σ2 − f0( 􏼁y4 − β4y

2
1y4 −

3
2
β3y4 y

2
3 + y

2
4􏼐 􏼑,

(20c)

_y4 � σ2 + f0( 􏼁y3 −
1
2
μy4 + β4y

2
1y3 +

3
2
β3y3 y

2
3 + y

2
4􏼐 􏼑.

(20d)

Letting

y3 � I cos ϕ,

y4 � I sinϕ,
(21)

we have

_y1 � −
1
2
μy1 +(1 − σ)y2, (22a)

_y2 � σy1 −
1
2
μy2 +

3
2
α2y

3
1 + α5y1I

2
, (22b)

_I � −
1
2
μI + f0I sin 2ϕ, (22c)

I _ϕ � σ2I + β4y
2
1I +

3
2
β3I

3
+ f0I cos 2ϕ. (22d)

We then construct the following transformation to find
the unfolding of equations (22a)–(22d):

y1

y2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

���
α5

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

���
β4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

1 − σ 0

1
2
μ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1

z2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (23)

Substituting equation (23) into equations (22a)–(22d)
and canceling the nonlinear terms including parameter σ,
the unfolding of equations (22a)–(22d) can be derived as

_z1 � z2, (24a)

_z2 � − μz1 − μu2 + ηz
3
1 + α5z1I

2
, (24b)

_I � −
1
2
μI + f0I sin 2ϕ, (24c)

I _ϕ � σ2I + α5z
2
1I +

3
2
β3I

3
+ f0I cos 2ϕ, (24d)

where μ � (1/4)μ2 − σ(1 − σ) and η � (3α2α5/2β4). Intro-
duce the scale transformations

μ⟶ εμ,

f0⟶ εf0.
(25)

*en, equation (24a)–(24d) can be expressed as the
Hamilton form with perturbations:

_z1 �
zH

zz2
+ εgz1 � z2,

(26a)

_z2 � −
zH

zz1
+ εgz2 � − μz1 + ηz

3
1 + α5z1I

2
− εμz2, (26b)

_I �
zH

zϕ
+ εgI

+ εf0I sin 2ϕ � −
1
2
εμI + εf0I sin 2ϕ, (26c)

I _ϕ � −
zH

zI
+ εgϕ

+ εf0I cos 2ϕ

� σ2I + α5z
2
1I +

3
2
β3I

3
+ εf0I cos 2ϕ.

(26d)
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*e Hamiltonian function H takes the form

H �
1
2
z
2
2 +

1
2
μz

2
1 −

1
4
ηz

4
1 −

1
2
α5z

2
1I

2
−
1
2
σ2I

2
−
3
8
β3I

4
,

g
z1 � 0,

g
z2 � − μz2,

g
I

� −
1
2
μI,

g
ϕ

� 0.

(27)

3. Dynamics of the Unperturbed System

Setting ε � 0 in equations (26a)–(26d) results in the com-
pletely integrable equations defined as the unperturbed
system. Hence, we will now study the nonlinear dynamics of
the following unperturbed system:

_z1 � z2, (28a)

_z2 � − μz1 + ηz
3
1 + α5z1I

2
, (28b)

_I � 0, (28c)

I _ϕ � σ2I + α5z
2
1I +

3
2
β3I

3
. (28d)

Consider the first two equations of systems (28a)–(28d):
_z1 � z2, (29a)

_z2 � − μz1 + ηz
3
1 + α5z1I

2
. (29b)

Note that homoclinic bifurcations occur in systems (29a)
and (29b) for η< 0. Also, when μ − α5I2 > 0, we can obtain
that systems (29a) and (29b) have only the trivial zero so-
lution (z1, z2) � (0, 0) being a center. On a curve expressed
by μ � α5I2, that is,

I1 �
(1/4)μ2 − σ(1 − σ)

α5
􏼢 􏼣

(1/2)

, (30)

three solutions bifurcate from the trivial zero solution
through a pitchfork bifurcation denoted by q0(I) � (0, 0)

and q±(I) � (B, 0), respectively, where

B � ±
(1/4)μ2 − σ(1 − σ) − α5I2

η
􏼢 􏼣

(1/2)

. (31)

For all I ∈ [I1, +∞), systems (29a) and (29b) possess one
hyperbolic saddle point q0(I) connected to itself by a pair of
homoclinic orbits, zh

±(T1, I), that is, limT1⟶ ±∞zh
±

(T1, I) � q0(I). *erefore, the set defined by

M � (z, I, ϕ) z � q0(I)
􏼌􏼌􏼌􏼌 , I> I1, 0≤ϕ≤ 2π􏽮 􏽯, (32)

is a two-dimensional invariant manifold in the full four-
dimensional phase space. Based on the analysis given by

Haller and Wiggins [20], we know that the two-dimensional
invariant manifold M is normally hyperbolic and contains
three-dimensional stable and unstable manifolds. Let
Ws(M) and Wu(M), respectively, denote the stable and
unstable manifolds. *e existence of the homoclinic orbit in
systems (29a) and (29b) to q0(I) � (0, 0) means that Ws(M)

and Wu(M) intersect nontransversally along a three-di-
mensional homoclinic manifold Γ described as follows:

Γ � (z, I, ϕ) z � z
h
± T1, I( 􏼁

􏼌􏼌􏼌􏼌􏼌 , I> I1,ϕ �
1
I

􏽚
T1

0
DIH􏼨

· z
h
±(s, I), I􏼐 􏼑ds + ϕ0􏽯,

(33)

where DIH(z, I) � − (zH/zI). Letting ξ1 � − μ + α5I2,
δ1 � − η, systems (29a) and (29b) can be rewritten as

_z1 � z2, (34a)

_z2 � ξ1z1 − δ1z
3
1. (34b)

*e Hamiltonian for Hamilton systems (34a) and (34b)
is

H z1, z2( 􏼁 �
1
2
z
2
2 −

1
2
ξ1z

2
1 +

1
4
δ1z

4
1. (35)

When H � 0, there is a homoclinic loop Γ0 formed by
one saddle point q0(I) and a pair of homoclinic orbits
z±(T)1. Using equations (34a) and (34b) and (35), the
analytical expressions for the homoclinic orbits of (34a) and
(34b) are then obtained as

z1 T1( 􏼁 � ±

���
2ξ1
δ1

􏽳

sech
��

ξ1
􏽱

T1􏼒 􏼓, (36a)

z2 T1( 􏼁 � ∓
�
2

√
ξ1��
δ1

􏽰 tanh
��

ξ1
􏽱

T1􏼒 􏼓sech
��

ξ1
􏽱

T1􏼒 􏼓. (36b)

We now consider the dynamics of the unperturbed
system of (26a) and (26d) restricted to M given by

_I � 0, (37a)

I _ϕ � σ2I + α5Iq
2
0(I) +

3
2
β3I

3
� DIH q0(I), I( 􏼁, I> I1.

(37b)

If the condition DIH(q0(I), I)≠ 0 holds, I � constant is
a periodic orbit, and if DIH(q0(I), I) � 0, I � constant is a
circle of fixed points. A value of I ∈ [I1, +∞) for which
DIH(q0(I), I) � 0 is referred to as a resonant value I, and
these fixed points are identified as resonant fixed points. A
resonant value is denoted by Ir such that

DIH q0(I), I( 􏼁 � σ2I +
3
2
β3I

3
� 0. (38)

*us, the resonant value Ir is derived as

Ir �

����

−
2σ2
3β3

􏽳

. (39)

For I � Ir, the phase shift Δϕ can be defined as
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Δϕ � ϕ +∞, Ir( 􏼁 − ϕ − ∞, Ir( 􏼁, (40)

which will be used in subsequent studies to determine the
condition under which the multipulse Shilnikov-type
homoclinic orbits may exist. Substituting the first equations
of (36a) and (36b) into the fourth equations of (28a)–(28d)
leads to

_ϕ � σ2 +
3
2
β3I

2
+
2α5ξ1
δ1

sech2
��

ξ1
􏽱

T1􏼒 􏼓. (41)

After integration, we obtain

ϕ T1( 􏼁 � σ2 +
3
2
β3I

2
􏼒 􏼓T1 +

2α5
��
ξ1

􏽰

δ1
tanh

��

ξ1
􏽱

T1􏼒 􏼓 + ϕ0.

(42)

Accordingly, the phase shift is also obtained as

△ϕ �
4α5

��
ξ1

􏽰

δ1
􏼢 􏼣

I�Ir

� −
4α5
η

�������������������

−
1
4
μ2 + σ(1 − σ) + α5I

2
r

􏽲

.

(43)

4. Dynamics of the Perturbed System

After obtaining the detailed properties of the subspace
(z1, z2) for systems (28a)–(28d), the next step is to examine
the effects of small perturbation terms (0< ε≪ 1) on systems
(28a)–(28d). *e energy-phase method developed by Haller
and Wiggins [20] is utilized to determine the existence of
multipulse orbits and chaotic dynamics in the CNT-rein-
forced composite rectangular plate.

4.1. Ae Case of Dissipative Perturbations. We start by
considering the influence of such small perturbations on
manifold M. Based on the research by Haller and Wiggins
[20], we know that the manifold M is invariant for small
nonzero ε. *erefore, the perturbed annulus Mε is taken to
be the same as M. *at is,

Mε � (z, I, ϕ) z � q0(I),
􏼌􏼌􏼌􏼌 I> I1, 0≤ϕ≤ 2π􏽮 􏽯. (44)

In order to study the dynamic behaviors of the perturbed
vector field restricted to Mε near the resonance I � Ir, we
now introduce the following scale transformations:

I � Ir +
�
ε

√
h,

τ �
�
ε

√
T1.

(45)

*e last two equations of (26a)–(26d) then become

h′ � −
1
2
μIr + f0Ir sin 2ϕ +

�
ε

√
−
1
2
μh + f0h sin 2ϕ􏼒 􏼓,

(46a)

ϕ′ � 3β3Irh +
�
ε

√ 3
2
β3h

2
+ f0 cos 2ϕ􏼒 􏼓, (46b)

where the prime represents the differentiation with respect
to τ. When ε � 0, systems (46a) and (46b) become

h′ � −
1
2
μIr + f0Ir sin 2ϕ, (47a)

ϕ′ � 3β3Irh. (47b)

Systems (47a) and (47b) are a Hamiltonian system with
the Hamiltonian

􏽢HD � −
1
2
μIrϕ −

1
2
f0Ir cos 2ϕ −

3
2
β3Irh

2
. (48)

A simple calculation indicates that systems (47a) and
(47b) have two singular points expressed by

P0 � 0,ϕc( 􏼁 � 0,
1
2
arcsin

μ
2f0

􏼠 􏼡, (49a)

Q0 � 0,ϕs( 􏼁 � 0,
1
2
π −

1
2
arcsin

μ
2f0

􏼠 􏼡. (49b)

It is known that if 6β3f0I
2
r cos 2ϕc < 0, the singular

point P0 is a center point. And if 6β3f0I
2
r cos 2ϕs > 0, the

singular point Q0 is a saddle connected to itself by a
homoclinic orbit. Figure 2(a) shows the phase portrait of
systems (47a) and (47b). It is observed that, for sufficiently
small parameter ε, the singular point Q0 still remains a
hyperbolic saddle point Qε, while for small perturbations,
the singular point P0 changes to a hyperbolic sink Pε, see
Figure 2(b) for the phase portrait of perturbed systems
(46a) and (46b).

On the basis of equation (48), at h � 0, the basin of the
attractor for ϕmin can be estimated as follows:

−
1
2
μIrϕmin −

1
2
f0Ir cos 2ϕmin � −

1
2
μIrϕs −

1
2
f0Ir cos 2ϕs.

(50)

Substituting ϕs in (49a) and (49b) into (50) yields

ϕmin +
f0

μ
cos 2ϕmin �

1
2
π −

1
2
arcsin

μ
2f0

−

�������
4f2

0 − μ2
􏽱

2μ
.

(51)

*e neighborhood of Ir is defined as

Aε � (z, I,ϕ) z � 0, I − Ir

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 <
�
ε

√
C, 0≤ϕ≤ 2π􏽮 􏽯, (52)

where the constant C is sufficiently large so that the un-
perturbed homoclinic orbit is enclosed within the annulus.

4.2.Ae Existence of Multipulse Homoclinic Orbits. Based on
the results obtained by Haller and Wiggins [20], the dissi-
pative energy-difference function is of the form

Δn 􏽢HD(ϕ) � 􏽢HD(h,ϕ + n△ϕ) − 􏽢HD(h, ϕ)

− 􏽘
n

i�1
􏽚

+∞

− ∞
〈DH, g〉 z1 T1( ),z2 T1( )( )| dT1,

(53)
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where
􏽢HD(h, ϕ + nΔϕ) − 􏽢HD(h, ϕ)

� −
1
2
μIrnΔϕ −

1
2
f0Ir[cos(2ϕ + 2nΔϕ) − cos 2ϕ],

(54)

and A represents the region contained between a pair of
homoclinic orbits in the (z1, z2) plane, zAl is the boundary
of A, and Δϕ denotes the phase difference given in (43). *e
third term in (53) can be calculated as follows:

􏽘

n

i�1
􏽚

+∞

− ∞
〈DH, g〉 z1 T1( ),z2 T1( )( )| dT1 � −

2nμξ1
3α5
Δϕ −

1
2
μI

2
rnΔϕ.

(55)

*us, the dissipative energy-difference function becomes

Δn 􏽢HD(ϕ) � −
1
2
f0Ir[cos(2ϕ + 2nΔϕ) − cos 2ϕ] +

2nμξ1
3α5
Δϕ

+
1
2

nμIr Ir − 1( 􏼁Δϕ

� f0Ir sin(2ϕ + nΔϕ)sin(nΔϕ) +
2nμ 􏽥ξ1
3α5
Δϕ,

(56)

where 􏽥ξ1 � ξ1 + (3/4)α5Ir(Ir − 1). A dissipation factor is
defined as d � (μ/f0). Equation (56) can then be rewritten in
the following form:

Δn 􏽢HD(ϕ) � f0 Ir sin(2ϕ + nΔϕ)sin(nΔϕ) +
2n 􏽥ξ1d
3α5
Δϕ􏼢 􏼣.

(57)

*e zeros of Δn 􏽢HD(ϕ) can be achieved by solving the
following equation:

sin(2ϕ + nΔϕ) � −
2n 􏽥ξ1dΔϕ

3α5Ir sin(nΔϕ)
. (58)

*e upper bound of the dissipation factor d is derived
from equation (58):

d< dmax �
3α5Ir

2n 􏽥ξ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

sin(n△ϕ)

Δϕ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (59)

According to (59), it is found that, for small dissipative
effects d< 1, the following upper bound on the pulse
numbers is obtained:

n< nmax �
3α5Ir

2d 􏽥ξ1Δϕ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (60)

which means that the homoclinic tree is finite even for
arbitrarily small dissipation. *e result in equation (60)
also indicates that the upper bound nmax is inversely
proportional to the dissipation factor d. We now identify
zeros of the energy-difference function Δn 􏽢HD(ϕ) in the
interval [− (π/2), (π/2)]. From (57), we find that, for any n

satisfying

nΔϕ≠ lπ,

l ∈ Z,
(61)

the zeros of Δn 􏽢HD(ϕ) in [− (π/2), (π/2)] are

ϕn
− ,1 �

π
2

−
1
2

nΔϕ + φ􏼔 􏼕mod π, (62a)

ϕn
− ,2 �

π
2

−
1
2
π +

1
2

nΔϕ − φ􏼔 􏼕mod π, (62b)

where φ � − (1/2)arcsin(2n 􏽥ξ1dΔϕ/3α5Ir sin(nΔϕ)). Define a
set that contains all transverse zeros of Δn 􏽢HD(ϕ) as

ϕ

h

P0 Q0

ϕmin ϕc ϕs

(a)

ϕ

h

Pε Qε

(b)

Figure 2: Dynamics on the normally hyperbolic manifold: (a) the unperturbed case; (b) the perturbed case.
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Z
n
− � (h,ϕ) Δn 􏽢HD(ϕ)

􏼌􏼌􏼌􏼌 � 0, DϕΔ
n 􏽢HD(ϕ)≠ 0􏽮 􏽯. (63)

It is easy to know that both zeros are transverse under
condition (61).We now need to introduce the two additional
angles

ϕn
+,1 � ϕn

− ,1 + nΔϕ􏽨 􏽩mod 2π, (64a)

ϕn
+,2 � ϕn

− ,2 + nΔϕ􏽨 􏽩mod 2π, (64b)

and utilize them to construct the two sets of transverse zeros
of Δn 􏽢HD(ϕ) as

Z
n
− � (h, ϕ) ϕ ∈ ϕn

− ,1, ϕ
n
− ,2􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, n≥ 1, (65a)

Z
n
+ � (h, ϕ) ϕ ∈ ϕn

+,1, ϕ
n
+,2􏽮 􏽯

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛, n≥ 1. (65b)

Consider a domain S0 ∈ Aε enclosed inside the homo-
clinic orbit of (47a) and (47b) located in the interval
ϕ ∈ [− (π/2), (π/2)]. *e periodic orbits in S0 are classified
according to their pulse numbers, see Figure 3. Note that,
under condition (61), all internal orbits outside S0 intersect
Z1

− transversally. *us, for any periodic or homoclinic orbit
c outside S0, the pulse number is N(c) � 1. Define the
energy sequence

h0 � 􏽢HD 0,ϕs( 􏼁 � −
1
2
μIr

π
2

−
1
2
arcsin

d

2
􏼠 􏼡 +

1
4
f0Ir

�����
4 − d2

√
,

(66a)

hn � min 􏽢HD 0,ϕn
− ,1􏼐 􏼑, 􏽢HD 0,ϕn

− ,2􏼐 􏼑􏽨 􏽩, (66b)

such that hn provides the energy level related to an orbit
closer to the center. Define the open set of internal orbits in
S0 as

A0 � ∅,

An � (h, ϕ) ∈ S0
􏽢HD(h,ϕ)

􏼌􏼌􏼌􏼌 > hn􏽮 􏽯, n≥ 1.
(67)

*e pulse sequence is then defined as

N1 � 1,

Nk � min n ∈ Z
+

n>Nk− 1
􏼌􏼌􏼌􏼌 , hn < hNk− 1

􏽮 􏽯, k≥ 2.
(68)

Since the energy of the periodic orbits in S0 decreases
monotonically with the orbits shrinking to the center, we
necessarily have

AN1
⊂ AN2
⊂ · · · ANk

⊂ · · · . (69)

*e layer sequence is defined as

LNk
� Int

ANk

ANk− 1

􏼠 􏼡, (70)

where Int(·) denotes the interior of a set. And the construction
of the layer sequence is shown in Figure 3. We can easily see
that all these sequences defined above are finite by (60). For any
periodic orbit c ∈ S0, the pulse number is N(c) � Nk. As
illustrated in Figure 3, the layer radii are defined as

rNk
� min ϕc − ϕNk

− ,1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ϕc − ϕNk

− ,2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼔 􏼕. (71)

A recursive algorithm for the calculation of the dis-
tribution of pulse numbers and the layer radii is imple-
mented on a computer. For different values of the
dissipation factor d, we obtain the corresponding pulse
diagrams and layer radius diagrams as a function of the
phase shift Δϕ for Nk < 20, illustrated in Figures 4 and 5.
As can be seen in Figure 4, the horizontal line segments at
each level Nk identify that an infinity of Nk-pulse orbits
exist for all values of the phase shift in the interval below
that line. Besides, the diagrams in Figure 5 exhibit a
gradual breakup of the homoclinic tree as d is increased.
*is observation means that the system parameters have a
vital effect on the distribution of the pulse numbers and
the layer radii.

We now detect the existence of the multipulse Shilnikov-
type orbits based on*eorem 4.5 in [20]. Note that the sinks
of (46a) and (46b) become the centers of (47a) and (47b).
*erefore, systems (47a) and (47b) have a nondegenerate
equilibrium

P0 ≡ hc, ϕc( 􏼁 � 0,ϕc( 􏼁 � 0,
1
2
arcsin

d

2
􏼠 􏼡. (72)

*e values of (d,Δϕ, N) for which the center P0 falls
in the zero set Zn

− given in (63) must be determined, that
is,

−
1
2
Ir cos arcsin

d

2
+ 2NΔϕ􏼠 􏼡 − cos arcsin

d

2
􏼠 􏼡􏼢 􏼣 +

2N 􏽥ξ1dΔϕ
3α5

� 0,

(73)

which yields

Z_Nk–1

Z_Nk

S0

Q0P0

LNkrNk

rNk–1

Figure 3: *e construction of the layer sequence for (47a) and
(47b).
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Figure 4: *e pulse sequence as a function of the phase shift (( 􏽥ξ1/α5Ir) � (2/15)). (a) d � 0. (b) d � 10− 5. (c) d � 0.01. (d) d � 0.05.
(e) d � 0.1. (f ) d � 0.4.
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Figure 5: *e layer radius sequence as a function of the phase shift (( 􏽥ξ1/α5Ir) � (2/15)). (a) d � 0. (b) d � 10− 5. (c) d � 0.01. (d) d � 0.05.
(e) d � 0.1. (f ) d � 0.4.
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�����
4 − d2

√
[cos(2NΔϕ) − 1] � d sin(2NΔϕ) +

8N 􏽥ξ1Δϕ
3α5Ir

􏼢 􏼣.

(74)

Solving (74), the dissipation factor d is obtained as

d �
2[1 − cos(2NΔϕ)]

��������������������������������������������

[1 − cos(2NΔϕ)]2 + sin(2NΔϕ) + 8N 􏽥ξ1Δϕ/3α5Ir􏼐 􏼑􏽨 􏽩
2

􏽱 .

(75)

*e result is only valid when

Δϕ≠
mπ
N

, m ∈ Z. (76)

It is also necessary to prove the nondegeneracy condition

Dd −
1
2
Ir cos arcsin

d

2
+ 2NΔϕ􏼠 􏼡􏼢􏼨 − cos arcsin

d

2
􏼠 􏼡􏼣 +

2N 􏽥ξ1dΔϕ
3α5

􏼩≠ 0, (77)

whenever (74) and (76) hold. Carrying out the differentiation
in expression (74), we find that (77) fails to be satisfied when

− d[cos(2NΔϕ) − 1] �
�����
4 − d2

√
sin(2NΔϕ) +

8N 􏽥ξ1Δϕ
3α5Ir

􏼢 􏼣.

(78)

It is easy to see that equations (74) and (78) cannot hold
simultaneously under condition (76). *us, nondegeneracy
condition (77) holds. We now have to guarantee that the
landing point of any N-pulse orbit taking off from a slow
sink lies in the domain of attraction of a sink on Aε. To verify
it, we consider the point in the interval [− (π/2), (π/2)] and is
kπ apart from the approximate landing point ϕc + NΔϕ. *e
ϕ-coordinate of this point is calculated as

ϕN
∗ � ϕs + ϕc + NΔϕ − ϕs􏼂 􏼃mod π, (79)

in which we recall that

ϕc �
1
2
arcsin

d

2
, (80a)

ϕs �
π
2

−
1
2
arcsin

d

2
. (80b)

If ϕN
∗ > ϕs, we redefine ϕN

∗ by subtracting π. *e main
purpose here is to achieve kπ translation of the landing point
which is the closest to the saddle point ϕs in the interval
[− (π/2), (π/2)]. We require that

􏽢HD 0,ϕN
∗􏼐 􏼑< 􏽢HD 0,ϕs( 􏼁, (81)

or, equivalently, that

cos 2ϕN
∗ − cos 2ϕs > d ϕs − ϕN

∗􏼐 􏼑, (82)

to make sure that the projection of landing points falls in the
domain of attraction of one of the sinks.

Based on the above analysis, the results in this section
give rise to the following theorem.

Theorem 1. For any integer N≥ 1, there exists a positive
number ε0(N)> 0 and a finite union CN of codimension-one
surfaces in the ( 􏽥ξ1, α5, μ, f0, ε) ∈ CN parameter space near

the set satisfying 0<d< 1, (75), and (82) such that, for any
( 􏽥ξ1, α5, μ, f0, ε) ∈ CN and 0< ε< ε0(N), the following con-
clusions hold:

(1) If the integer

Q � INT
1
2

+
NΔϕ + arcsin(d/2)

π
􏼢 􏼣, (83)

is even, then each of the saddle-focus-type equilibria
contained in the slow manifold Aε admits two gener-
alized Shilnikov-type homoclinic orbits. If Q is odd, then
there exist two cycles of Shilnikov-type heteroclinic orbits
connecting the two saddle-foci to each other. In both
cases, the N-pulse orbits form pairs which are symmetric
with respect to the subspace (z1, z2) � (0, 0).

(2) Aere exists an open set of parameters containing CN

for which system (26) admits Smale horseshoes in its
dynamics.

5. Numerical Simulations

In order to verify the analytical predictions, we choose
systems (13a)–(13d) to perform numerical simulations. *e
fourth-order Runge–Kutta algorithm is employed to indi-
cate the existence of the multipulse Shilnikov-type homo-
clinic orbits and chaotic motions in the CNT-reinforced
composite plate. Figure 6 is obtained to show that there exist
multipulse chaotic motions for the CNT-reinforced com-
posite plate. In Figure 6, the parameters and initial condi-
tions are selected as μ � 0.05, σ1 � − 1.86, σ2 � 1.5, α1 � 7.2,
α2 � − 10.8, α3 � − 3.9, α4 � 11.6, α5 � 15, β2 � − 4.78,
β3 � − 4, β4 � 5, β5 � − 7.18, f0 � 12.235, (x1, x2,

x3, x4) � (0.105, − 0.101, − 0.013, − 0.506), and the phase shift
at I � Ir �

����������
− (2σ2/3β3)

􏽰
� (1/2) is Δϕ � 2.37. We choose

the pulse number N � 4; then, (75) gives
d � (μ/f0) � 0.00409. Using equations (79) and (80a) and
(80b), we have ϕN

∗ � 3.199, ϕs � 1.569, cos 2ϕN
∗ −

cos 2ϕs � 1.993, and d(ϕs − ϕN
∗ ) � − 0.067. Obviously, con-

dition (82) holds, which implies that the chaotic motion
presented in Figure 6 is multipulse Shilnikov-type chaotic
motion.
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6. Conclusions

In this paper, the multipulse homoclinic orbits and chaotic
dynamics of a CNT-reinforced composite plate under
combined in-plane and transverse excitations are studied.
*e method of multiple scales is adopted to acquire the
averaged equations in the case of 1 :1 internal resonance,

principal parametric resonance, and 1/2 subharmonic res-
onance. On the basis of the averaged equations obtained, the
normal form theory is employed to derive the expressions of
normal form associated with a double zero and a pair of pure
imaginary eigenvalues. *e energy-phase method proposed
by Haller and Wiggins [20] is utilized to detect the presence
of themultipulse homoclinic orbits and chaotic dynamics for
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Figure 6:*emultipulse chaotic motion obtained based on equation (13): (a) the phase portrait on the plane (x1, x2), (b) the phase portrait
on the plane (x3, x4), (c) the waveform on the plane (t, x1), (d) the waveform on the plane (t, x3), (e) the phase portraits in the three-
dimensional space (x1, x2, x3), and (f) the phase portraits in the three-dimensional space (x2, x3, x4).
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the resonant case. As the trajectory of motion comes close to
the sink point Pε, every Shilnikov-type orbit takes off again and
repeats this similar motion in the full four-dimensional phase
space and eventually leads to the multipulse Shilnikov-type
orbits. Our analysis in Section 4 also indicates that the mul-
tipulse Shilnikov-type orbits depend on the system parameters
and dissipative perturbations. It is known that the existence of
multipulse Shilnikov-type orbits implies the existence of chaos
in the sense of Smale horseshoes. Homoclinic trees are pre-
sented to describe the repeated bifurcations of multipulse
solutions. From the diagrams, we can see a gradual breakup of
the homoclinic tree with the increase of the dissipation factor.
*is observation denotes that the damping coefficient and
system parameters affect the distribution of the pulse numbers
and the layer radii. *e analytical results obtained here are
extensions of those appearing in [19].

To confirm the theoretical results, numerical simulations
are applied to examine the chaotic dynamics of the CNT-
reinforced composite plate. *e numerical results demonstrate
that there exist multipulse homoclinic orbits and chaotic dy-
namics in systems (13a)–(13d) when the conditions are sat-
isfied. As we all know, under certain conditions, the multipulse
chaotic motions in the averaged equations can result in the
multipulse amplitude-modulated chaotic vibrations in the
original system, which indicates the existence of multipulse
chaotic dynamics in the CNT-reinforced composite plate. *e
research in this paper provides a detailed explanation of the
multipulse jumping behaviors for the CNT-reinforced com-
posite plate under combined in-plane and transverse excita-
tions. It is established simultaneously that the damping
coefficient and system parameters have a significant influence
on the nonlinear dynamics of the CNT-reinforced composite
plate. *erefore, as mentioned above, the nonlinear dynamic
behaviors of the CNT-reinforced composite plate can be
controlled by varying the system parameters.
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