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In this paper, we studied a Cucker–Smale model with continuous non-Lipschitz protocol. (e methodology presented in the
current work is based on the explicit construction of a Lyapunov functional. By using the fixed-time control technology, we show
that the flocking can occur in fixed time if the communication rate function is locally Lipschitz continuous and has a lower bound,
and we can obtain the estimation of the converging time which is independent of the initial states of agents.(eoretical results are
supported by numerical simulations.

1. Introduction

Collective motions refers to an orderly movement organized
by agents with limited environmental information and
simple rules. In recent years, the study on collective motions
has gained increasing interest in robotics, control theory,
economics, and social sciences [1, 2]. Several mathematical
models have been proposed [3–6] to characterize the
mechanism of collective flocking motion without central
direction. Among others, the celebrated Cucker–Smale
model [5] provided a framework to explain the self-orga-
nizing behavior in various complex systems, and the model
is given by the following ODE system:

dxi

dt
� vi, t> 0, i � 1, 2, · · · , N,

dvi

dt
� k 

N

j�1
aij xj − xi

�����

�����  vj − vi ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

subject to the initial configuration (xi(0), vi(0)) � (xi0, vi0),
where N denotes the number of particles, k measures the
interaction strength, xi and vi denote the position and ve-
locity of the i th particle at the time t, and aij measures the
influence intensity quantified by the pairwise influence of
particle j on the alignment of particle i. It is a function of the
distance of two particles defined as

a
CS
ij xj − xi

�����

�����  �
ψ xj − xi

�����

����� 

N
,

(2)

where ψ(r) � (1/(1 + r2)β) is called the influence function,
β≥ 0. In [5], the authors showed that the unconditional
flocking occurs when β< (1/2), while the conditional
flocking occurs under some restricted conditions on the
initial data setting when β≥ (1/2). In [7], the authors ex-
tended the conclusions of unconditional flocking to
β≤ (1/2) by the energy method. In [8], the authors intro-
duced a nonsymmetric influence function and took into
account relative distance between agents instead of the
distance between agents:

a
MT
ij xj − xi

�����

�����  �
ψ xj − xi

�����

����� 

1≤k≤Nψ xk − xi

����
���� 

. (3)

Based on the notion of active sets, a sufficient condition
for flocking was derived. Recently, there are many extensive
observations and improvements to the Cucker–Smale
model. See, for examples, time delay is introduced in [9–12],
collision avoidance is considered in [13–16], and hierarchical
structure is involved in [12, 17–20]. However, the flocking
phenomenon described in the most previous works is an
asymptotic behaviour, which means that the flocking can
only occur when time approaches to infinity. (en, a natural
question is that whether the system undergoes flocking
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behaviours within a finite time? In fact, under some occa-
sional perturbations, individuals in bird flocks or fish
schools can return back to ordered group motion after
adjusting their states in a short time. Recently, there are few
contributions to the Cucker–Smale model by using finite-
time control theory. In [21], when the communication rate
function is locally Lipschitz continuous and has a lower
bound, the authors obtain the finite-time flocking by con-
structing a Lyapunov functional. In [22], the authors
modified the Cucker–Smale model with continuous non-
Lipschitz protocol. When the influence function has a
singular interval, the system will undergo a flocking evo-
lution in finite time, and the minimum distance between
agents in the flocking evolution process is greater than the
control parameter. Although finite-time flocking perfor-
mance has favourable properties, the estimation of con-
vergence time usually depends on initial states of networked
particles. It will restrict the applications in practice if the
initial conditions are unavailable previously. In the similar
performance, there are lots of works in the field of fix-time
consensus [23–26]. However, there is little work about the

fixed-time flocking performance of the Cucker–Smale
model.

(e main purpose of this article is to investigate the
fixed-time flocking performance of a Cucker–Smale model.
(e remaining of this paper is organized as follows. In
Section 2, a Cucker–Smale model with continuous non-
Lipschitz protocol is presented, and some useful prelimi-
naries are also given in this section. In Section 3, the suf-
ficient conditions for fixed-time flocking are established, and
the numerical simulations are provided to validate the
theoretical results in Section 4. Finally, the conclusions are
drawn in Section 5.

2. Problem Statement and Preliminaries

In this section, we consider an N-agent model with non-
linear terms. Let xi � (x1

i , x2
i , . . . , xd

i ) ∈ Rd,

vi � (v1i , v2i , . . . , vd
i ) ∈ Rd denote the position and velocity of

the i th agent at the time t, respectively. (e modified
Cucker–Smale model in this paper can be described by the
following equations:

dxi

dt
� vi, t> 0, i � 1, 2, · · · , N,

dvi

dt
�

k1

N


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
p

+
k2

N


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
q
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

subject to initial configuration

xi(0), vi(0)(  � xi0, vi0( , (5)

where p and q are two constants with 0<p< 1< q. k1 and k2
measure the interaction strengths, ψ is defined in (2), and
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p

 ,

(6)

where sgn(·) is the signum function:

sgn(s) �

1, s> 0,

0, s � 0,

− 1, s< 0.

⎧⎪⎪⎨

⎪⎪⎩
(7)

At this stage, we list the following lemmas, which play an
important role in the proof of the main results.

Lemma 1 (special case with k � 1 in [27]). Consider the
following equation:

_x � f(t, x),

x(0) � x0,
(8)

where x ∈ Rn and f : R+ × Rn⟶ Rn is a nonlinear con-
tinuous function. Assume the origin is an equilibrium point of

(8). If there exists a continuous radially unbounded function
H: Rn⟶ R+ ∪ 0{ } such that

(i) H(z) � 0 ⇔ z � 0.
(ii) If there are some positive constants ϑ, δ, a, and b such

that 0< a< 1< b and the inequality

_H(z(t)) ≤ − ϑH
a
(z(t)) − δH

b
(z(t)), (9)

holds for any solution z(t) of (8), then the origin is globally
fixed-time stable, and H(t) ≡ 0 if

t≥
1

ϑ(1 − a)
+

1
δ(b − 1)

. (10)

Lemma 2 (see [28]). Let y ∈ Rn and 0< r< s; then, the
following inequalities hold:
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,

1
n



n

i�1
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1/s

≥
1
n



n

i�1
yi



r⎛⎝ ⎞⎠

1/r

.

(11)
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3. Sufficient Conditions for Fixed-
Time Flocking

In this section, we shall show that systems (4) and (5) with
continuous non-Lipschitz protocol have fixed-time flocking.
First, we first introduce the definition of the fixed-time
flocking.

Definition 1. Systems (4) and (5) are said to reach fixed-time
flocking if and only if the systems satisfy the following two
conditions:

(i) Velocity alignment: the velocity fluctuations go to
zero in the fixed-time T; the time function T is called
the convergence time independent of the initial
values.

vi − vj

�����

����� � 0, ∀t≥T for i, j � 1, 2, · · · , N. (12)

(ii) Forming a group: the position fluctuations are
uniformly bounded in time t:

sup
0≤t≤∞

xi − xj

�����

�����<∞, for i, j � 1, 2, · · · , N. (13)

Theorem 1. Consider the Cucker–Smale model ((4) and (5))
and assume that the communication rate function ψ is locally
Lipschitz continuous with a lower bound, that is, there exists
ψ∗ > 0 such that inf s>0ψ(s)≥ψ∗. 8en, systems (4) and (5)
reach fixed-time flocking. And the convergence time is given
by

T≤T
∗ ≐

2
ϑ(1 − p)

+
2

δ(q − 1)
, (14)

where ϑ � k1ψ∗2(p+1)/2N(p− 1)/2 and δ � k2ψ∗2(q+1)/2d(1− q)/2.

Proof. Firstly, we consider macroscopic variables:

xc �
1
N



N

i�1
xi, vc �

1
N



N

i�1
vi. (15)

By the symmetry of the indices, we have



N

i�1

dvi

dt
�

k1

N


N

i�1


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
p

+
k2

N


N

i�1


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
q

� 0. (16)

Hence, the explicit dynamics for the macroscopic var-
iables is given as

dxc

dt
� vc,

dvc

dt
� 0,

(17)

which implies that

vc(t) � v(0),

xc(t) � xc(0) + tvc(0),

t≥ 0.

(18)

Introducing the fluctuations (xi, vi),
xi ≐ xi − xc,

vi ≐ vi − vc.
(19)

(en, systems (4) and (5) can be written as

dxi

dt
� vi, t> 0, i � 1, 2, · · · , N,

dvi

dt
�

k1

N


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
p

+
k2

N


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
q
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)
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with the initial value
xi(0), vi(0)(  � xi0, vi0( . (21)

For convenience, we remove the hat out of the variables
and also use (xi, vi) instead of (xi, vi). It is easy to see that



N

i�1
xi � 0, 

N

i�1
vi � 0. (22)

Take the candidate Lyapunov function

V(t)≐ 
N

i�1
vi

����
����
2
, X(t)≐ 

N

i�1
xi

����
����
2
. (23)

(en, we have


1≤ i,j≤N

vj − vi

�����

�����
2

� 2N 
N

i�1
‖vi‖

2
− 2 

N

i�1
vi, 

N

j�1
vj  � 2NV,

(24)


1≤i,j≤N

xj − xi

�����

�����
2

� 2N 
N

i�1
xi

����
����
2

− 2 
N

i�1
xi, 

N

j�1
xj  � 2NX.

(25)

It is easy to see that the velocity difference of all indi-
viduals will tend to zero in fixed time if the function V(t)

tends to 0 in fixed time. And the diameter of a group is
bounded if the function X(t) is bound.

From Lemma 2, using the fact inf s>0ψ(s)≥ψ∗, we see
that

dV

dt




�

d
dt



N

i�1
vi

����
����
2




� 2

N

i�1
vi, _vi 





�
2k1

N


1≤i,j≤N
ψ xj − xi

�����

����� sig vj − vi 
p
, vi 

+
2k2

N


1≤i,j≤N
ψ xj − xi

�����

����� sig vj − vi 
q
, vi 

� −
k1

N


1≤i,j≤N
ψ xj − xi

�����

����� sig vj − vi 
p
, vj − vi  

−
k2

N


1≤i,j≤N
ψ xj − xi

�����

����� sig vj − vi 
q
, vj − vi  

≤ −
k1

N
ψ∗ 

1≤i,j≤N


d

k�1
vjk − vik




p+1

−
k2

N
ψ∗ 

1≤i,j≤N


d

k�1
vjk − vik




q+1

.

(26)

Note that 0<p< 1< q. (en, employing Lemma 2, one
can easily obtain



d

k�1
vjk − vik




p+1

⎛⎝ ⎞⎠

1/(p+1)

≥ 
d

k�1
vjk − vik




2

⎛⎝ ⎞⎠

1/2

� vj(t) − vi(t)
�����

�����,

1
d



d

k�1
vjk − vik




q+1

⎛⎝ ⎞⎠

1/(q+1)

≥
1
d



d

k�1
vjk − vik




2

⎛⎝ ⎞⎠

1/2

.

(27)

(us, we have



d

k�1
vjk − vik




p+1
≥ vj(t) − vi(t)

�����

�����
p+1

,



d

k�1
vjk − vik




q+1
≥ d

1
d



d

k�1
vjk − vik




2

⎛⎝ ⎞⎠

(q+1)/2

� d
(1− q)/2

vj(t) − vi(t)
�����

�����
q+1

.

(28)

Let s � 1 and r � ((p + 1)/2); by applying (11) and (24)
to the processing inequality, we show that



N

i,j�1
vj(t) − vi(t)

�����

�����
2

 
(p+1)/2
≥ 

N

i,j�1
vj(t) − vi(t)

�����

�����
2

⎛⎝ ⎞⎠

(p+1)/2

� (2NV)
(p+1)/2

. (29)
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Similarly, let s � ((q + 1)/2) and r � 1; by applying (11)
and (24), we get that



N

i,j�1
vj(t) − vi(t)

�����

�����
2

 
(q+1)/2
≥N

(1− q)/2


N

i,j�1
vj(t) − vi(t)

�����

�����
2

⎛⎝ ⎞⎠

(q+1)/2

� N
(1− q)/2

(2NV)
(q+1)/2

. (30)

Hence, we conclude
dV

dt
≤ − k1ψ

∗2(p+1)/2
N

(p− 1)/2
V

(p+1)/2
− k2ψ

∗2(q+1)/2
d

(1− q)/2
V

(q+1)/2
.

(31)

Finally, from Lemma 1, when a � ((p + 1)/2) and
b � ((q + 1)/2), we have

V(t) ≡ 0, t≥T, (32)

and the convergence time independent of the initial values is
estimated by

T≤T
∗ ≐

1
ϑ(1 − ((p + 1)/2))

+
1

δ(((q + 1)/2) − 1)

�
2

ϑ(1 − p)
+

2
δ(q − 1)

,

(33)

where ϑ � k1ψ∗2(p+1)/2N(p− 1)/2 and δ � k2ψ∗2(q+1)/2d(1− q)/2.
(us, from (24), we achieve

vi(t) ≡ 0, ∀t≥T, i � 1, 2, · · · , N. (34)

(is implies that condition (i) of the definition of fixed-
time flocking holds.

Now, we prove condition (ii) of the definition of fixed-
time flocking is also true. It is necessary to show that the
function X(t) is bounded.

It follows from (31) that V(t) is a nonincreasing function
with respect to t. (at is, when t> 0, V(0)≥V(t)≥ 0. By
using the triangle inequality and Cauchy–Schwarz in-
equality, we have

dX

dt
� 2

N

i�1
xi, vi ≤ 2

N

i�1
xi

����
���� vi

����
����≤ 2X

1/2
V

1/2
. (35)

Integrating the differential inequality (35) from 0 to t

yields that

X
1/2

(t)≤X
1/2

(0) + 
t

0
V

1/2
(s)ds. (36)

If t<T, then it is deduced from (36) that

X
1/2

(t)≤X
1/2

(0) + 
T

0
V

1/2
(t)dt≤X

1/2
(0) + V

1/2
(0)T<∞.

(37)

If t>T, then it is deduced from (31) and (36) that

X
1/2

(t)≤X
1/2

(0) + 
T

0
V

1/2
(t)dt + 

t

T
V

1/2
(t)dt

≤X
1/2

(0) + 
T

0
V

1/2
(t)dt

≤X
1/2

(0) + V
1/2

(0)T<∞.

(38)

(us,

sup
0≤t≤∞

xi − xj

�����

�����
2
<∞, for i, j � 1, 2, · · · , N. (39)

(is completes the proof. □

Remark 1. Compared to [21], we added the term

k2

N


N

j�1
ψ xj − xi

�����

����� sig vj − vi 
q
, (40)

to the control protocol; the advantage of (eorem 1 is that
the convergence time is independent of the initial states of
agents which is estimated by

T≤T
∗ ≐

2
k1ψ∗2(p+1)/2N(p− 1)/2(1 − p)

+
2

k2ψ∗2(q+1)/2d(1− q)/2(q − 1)
.

(41)

However, in [21], the convergence time is estimated by

T≤T
∗ ≐

2 
N
i�1 vi(0)

����
����
2

 
(1− p)/2

N− ((1+p)/2)

ψ∗2(1+p)/2(1 − p)
,

(42)

which is formulated by the initial speed of all agents.

4. Simulations

In this section, we choose some special initial values and
parameters to verify our results. Let N � 30, p � 0.2, q � 2,
k1 � 1, k2 � 2, d � 2, Using Euler algorithm, step length
h � 0.01, and

ψ(r) �

1
1 + r2( )

β, if r≤ r∗,

1

1 + r∗( )2( 
β, if r> r∗,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)
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where β � 0.2, r∗ � 3, andψ∗ � 0.6310. Using the formula
in (eorem 1, we see that T∗ � 10.9824 for the random
initial position generated on [0, 20] and random velocity on
[0, 4].

(en, the following simulation results (Figures 1 and 2)
are obtained. In Figure 1, the x, y direction velocity of the all
agents is presented, and the velocity of all agents converges
to the same value after about T � 1.5. Moreover, in Figure 2,
it shows that the maximum distance between all agents is
stable after T � 1.5. In the process of forming fixed-time
flocking, the minimum distance among all agents is about
0.3359 for given random initial values.

5. Conclusion

In this paper, we investigated the flocking problem of a
modified Cucker–Smale model with continuous non-Lip-
schitz protocol. By using a Lyapunov functional, we show
that the flocking can occur in fixed time if communication
rate function is locally Lipschitz continuous and with a lower
bound. (e main results demonstrate that the flocking
converging time is independent of the initial states of agents.
(eoretical results are supported by numerical simulations;
at the same time, we observe that the minimum distance of
the agent is only 0.339, which is very dangerous. (erefore,

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

t

Ve
lo

ci
ty

−x

Agent 1 8 15 22 29
Agent 2 9 16 23 30
Agent 3 10 17 24
Agent 4 11 18 25

Agent 5 12 19 26
Agent 6 13 20 27
Agent 7 14 21 28

(a)

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

t

Ve
lo

ci
ty

−y

Agent 1 8 15 22 29
Agent 2 9 16 23 30
Agent 3 10 17 24
Agent 4 11 18 25

Agent 5 12 19 26
Agent 6 13 20 27
Agent 7 14 21 28

(b)

Figure 1: (e velocity of agents.
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Figure 2: (e maximum (a) and minimum (b) distance between agents.

6 Mathematical Problems in Engineering



avoiding the collision problem will guide significance to our
further research studies.

Data Availability

(e simulation data used to support the findings of this
study are included within the article.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(e authors would like to thank the reviewer for con-
structive comments. (is work was supported by the
National Natural Science Foundation of China (Grant no.
11671011).

References

[1] L. Pareschi and G. Toscani, Interacting Multiagent Systems:
Kinetic Equations and Monte Carlo Methods, Oxford Uni-
versity Press, Oxford, UK, 2013.

[2] T. Vicsek and A. Zafeiris, “Collective motion,” Physics Re-
ports, vol. 517, no. 3-4, pp. 71–140, 2012.

[3] G. Albi and L. Pareschi, “Modeling of self-organized systems
interacting with a few individuals: from microscopic to
macroscopic dynamics,” Applied Mathematics Letters, vol. 26,
no. 4, pp. 397–401, 2013.

[4] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and
L. S. Chayes, “Self-propelled particles with soft-core inter-
actions: patterns, stability, and collapse,” Physical Review
Letters, vol. 96, no. 10, 2006.

[5] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE
Transactions on Automatic Control, vol. 52, no. 5, pp. 852–
862, 2007.

[6] F. Cucker and S. Smale, “On the mathematics of emergence,”
Japanese Journal of Mathematics, vol. 2, no. 1, pp. 197–227,
2007.

[7] S.-Y. Ha and J.-G. Liu, “A simple proof of the Cucker-Smale
flocking dynamics and mean-field limit,” Communications in
Mathematical Sciences, vol. 7, no. 2, pp. 297–325, 2009.

[8] S. Motsch and E. Tadmor, “A new model for self-organized
dynamics and its flocking behavior,” Journal of Statistical
Physics, vol. 144, no. 5, pp. 923–947, 2011.

[9] Y. Liu and J. Wu, “Flocking and asymptotic velocity of the
Cucker-Smale model with processing delay,” Journal of
Mathematical Analysis and Applications, vol. 415, no. 1,
pp. 53–61, 2014.

[10] Y.-P. Choi and J. Haskovec, “Cucker-Smale model with
normalized communication weights and time delay,” Kinetic
& Related Models, vol. 10, no. 4, pp. 1011–1033, 2017.
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