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(e goal of this paper is to propose a dual version of the direct cosine simplex algorithm (DDCA) for general linear problems.(e
proposed method has not artificial variables, so it is different from both the two-phase method and big-Mmethod. Our technique
solves the dual Klee–Minty problem via two iterations and solves the dual Clausen problem via four iterations. (e power of the
proposed algorithm is evident from the extensive experimental results on benchmark problems adapted from NETLIB. Pre-
liminary results indicate that this dual direct cosine simplex algorithm (DDCA) reduces the number of iterations of the two-
phase method.

1. Introduction

Linear programming plays an important role in the opti-
mization theory. Many real-world problems can be for-
mulated as linear or nonlinear mathematical models. (e
simplex method is the common tool for solving linear
programs. It is an iterative method that was developed by
Dantzig [1–3].

(ere are many pivot rules for the simplex-type algo-
rithm such as the exterior point simplex algorithm [4–6],
primal-dual exterior point algorithm [7], and max-out-in
pivot rule [8]. It is known that the application of the
simplex algorithm requires at least one basic feasible so-
lution. On the other hand, the common techniques that are
used for determining an initial feasible basis are the two-
phase and big-M methods. (e main drawback of these
techniques lies in requiring the introduction of artificial
variables and increasing the dimension of the problem.
Corley et al. [9] introduced the cosine simplex algorithm
for solving linear programs. Yeh and Corley [10] proposed
a simple direct cosine simplex algorithm (DCA) which
solves the Klee–Minty Problem [11] via two iterations.(ey

deduced that their algorithm reduced the number of it-
erations of simplex in most cases in their experimental
results. Li and Li [12] explained the relationship between
the cosine pivot rule and the most-obtuse-angle pivot rule,
proposed by Pan [13]. In this paper, we propose a dual
version of a simple direct cosine simplex algorithm
(DDCA) which solves the dual Klee–Minty class of
problems via two iterations while the two-phase method
solves this class in n+1 iterations where n is the size of the
problem. Our technique also solves Clausen class of
problems via four iterations, but the two-phase method
solves this class in 2n-1 iterations where n is the size of the
problem. Our technique does not require the introduction
of artificial variables.

(e rest of the paper is organized as follows. Section 2
describes the proposed DDCA algorithm and its charac-
teristics. Benchmark problems “Klee–Minty and Clausen
problems” are presented in Section 3. In Section 4, we in-
troduce illustrations of the proposed method with two ex-
amples. Computational experiments are proposed in Section
5. Finally, conclusions and future work are proposed in
Section 6.
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2. Dual Cosine Simplex Algorithm (DDCA)

We consider the linear programming (LP) problem in
standard form:

(P)max bTy: ATy � c; y≥ 0 , where A is an m × n

matrix, x and c are n-dimensional vectors, and T denotes
transposition. (e dual of (P) is the problem.

(D)min cTx: Ax≥ b ,where y is an m-dimensional
vector.

For constraint i of (D), define
cos θi � (j∈N(aijcj)

2/j∈N(aij)
2) as the cosine of angle θi

between the constraints i and the objective function where

bi< 0 and N is the index set of the nonbasic variables
(Algorithm1).

Remark 1. (ere is no proof for the correctness of the above
cosine criteria. Hence, it is not true for ever.

3. Benchmark Problems

In this section, we present two well-known classes of linear
programming problems, Klee–Minty class of problems [11]
is the first problem and the other is Clausen class of
problems [14] as illustrated in the following models:

max 
n

j�1
10n− j

xj

subject to 2
i−1

j�1
10i− j

xj + xi ≤ 100
i− 1

xj ≥ 0, i � 1, 2, . . . n,

Klee–Minty problem,

max 
n

j�1

4
5

 
j

xj, x1 ≤ 1

subject to 2
i−1

j�1

5
4

 
i− j

xj + xi ≤ 5
i− 1

xj ≥ 0, i � 2, . . . n,

Clausen problem.

(1)

Klee and Minty [11, 14] proved that the simplex algo-
rithm is an exponential algorithm in 1972 (for the worst
case). An interesting result is that the dual simplex method
solves the Klee–Minty problem in a polynomial number of
iterations. Another challenging exponential example is
shown in [14]. (e advantage of Clausen’s example [14] is
that the dual simplex is exponential on the dual problem,
whereas the primal simplex method is exponential on the
primal problem.

(e following examples show the superiority of our
technique over the two-phase method. Example 1 shows that
the two-phase method requires 6 tableaus while our tech-
nique requires 3 iterations only, without including the initial
one.

4. Illustrative Examples

Example 1. Consider the following Random Linear Pro-
gramming Problem:
min w � 4x1 + x2

subject to:
3x1 + x2 ≤ 3; 3x1 + x2 ≥ 3; 4x1 + 3x2 ≥ 6; x1

+2x2 ≤ 4x1, x2 ≥ 0.

(2)

(e variables x3 and x6 are slack variables, but the
variables x4 and x5 are the surplus variables for the corre-
sponding constraints. We calculate cos θi for every i� 2, 3 (in
the first iteration) as follows:

cos θ1 � #,

cos θ2 �
[(−3) ×(−4) +(−1)(−1)]2

(− 3)2 +(− 1)2
�
169
10

� 16.9,

cos θ3 �
[(−4) ×(−4) +(−3)(−1)]2

(− 4)2 +(− 3)2
�
361
25

� 14.44,

cos θ4 � #.

(3)

(e value of cos θ2 is bigger than the value of cos θ3.
(erefore, the variable x4 is the leaving variable. From STEP
2, the entering variable is calculated as follows.

min |bi/aij|: aij

< 0 and j ∈ N} � | − 3/−3|, | − 3/−1|{ } � 1, and therefore, the
element x1 is the entering variable. We can construct a new
simplex table by the pivoting operations (i.e., Step 3) as
shown in Iteration 1 in Table 1. We repeat all above op-
erations until all coefficients in Row 0 are nonpositive in
Iteration 3, and x3 � 0, x4 � 2/5, x5 � 9/5, and x6 �1 are op-
timal with z� 17/5 in the original problem.

Furthermore, the two-phase method requires 6 itera-
tions, as shown in Table 2, without including the initial one.

Example 2. Dual Klee–Minty problem.
Consider the following dual Klee–Minty problem of size

n� 3:
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Require: infeasible basis
While b i< 0
Step 1 (dual feasibility condition): let N is the index set of the nonbasic variables. (e leaving variable, xi, is the basic variable

having themaximum cos θi for minimization problem, where cos θi � (j∈N(aijcj)
2/j∈N(aij)

2) is the angle between the constraint i
and the objective function. (e tie is broken by choosing the most negative value in the right hand side.
Step 2 (dual optimality condition): given that xi is the leaving variable, the entering variable is the nonbasic variable aij< 0 that

corresponds to min |bi/aij|: aij < 0 and j ∈ N  (e ties are broken arbitrary. If aij ≥ 0 for all nonbasic variables, then the problem has
no feasible solution.
Step 3: apply a pivoting

End while
(e current basis is feasible
Apply the simplex algorithm.

ALGORITHM 1: Dual cosine simplex method (DCSM).

Table 1: (e solution of Example 1 by the proposed DCSM.

Iteration x1 x2 x3 x4 x5 x6 R.H.S

0

Z −4 −1 0 0 0 0 0
x3 3 1 1 0 0 0 3
x4 −3 −1 0 1 0 0 −3
x5 −4 −3 0 0 1 0 −6
x6 1 2 0 0 0 1 4

1

Z 0 2 0 0 −1 0 6
x3 0 0 1 1 0 0 0
x4 1 1/3 0 −1/3 0 0 1
x5 0 −5/3 0 −4/3 1 0 −2
x6 0 5/3 0 1/3 0 1 3

2

Z 0 0 0 −8/3 1/5 0 18/5
x3 0 0 1 1 0 0 0
x4 1 0 0 −3/5 1/5 0 3/5
x5 0 1 0 4/5 −3/5 0 6/5
x6 0 0 0 −1 1 1 1

3

Z 0 0 0 −7/5 0 −1/5 17/5
x3 0 0 1 1 0 0 0
x4 1 0 0 −2/5 0 −1/5 2/5
x5 0 1 0 1/3 0 −3/5 9/5
x6 0 0 0 −1 1 1 1

Table 2: (e solution of Example 1 by the two-phase method.

Iteration x1 x2 x3 x4 x5 R1 R2 x6 R.H.S

0 Phase1

Z′ 0 0 0 0 0 −1 −1 0 0
x5 3 1 0 0 1 0 0 0 3
R1 3 1 −1 0 0 1 0 0 3
R2 4 3 0 −1 0 0 1 0 6
x6 1 2 0 0 0 0 0 1 4

1 Phase1

Z′ 7 4 −1 −1 0 0 0 0 9
x5 3 1 0 0 1 0 0 0 3
R1 3 1 −1 0 0 1 0 0 3
R2 4 3 0 −1 0 0 1 0 6
x6 1 2 0 0 0 0 0 1 4

2 Phase1

Z′ 0 1.67 −1 −1 −2.33 0 0 0 2
x1 1 0.33 0 0 0.33 0 0 0 1
R1 0 0 −1 0 −1 1 0 0 0
R2 0 1.67 0 −1 −1.33 0 1 0 2
x6 0 0 0 0 −0.33 0 0 1 3
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min w � x1 + 100x2 + 10000x3

subject to :
x1 + 20x2 + 200x3 ≥ 100; x2 + 20x3 ≥ 10; 4x3

≥ 1, x1, x2, x3 ≥ 0.

(4)

(e variables x4, x5, and x6 are the surplus variables for
the corresponding constraints. We calculate the corre-
sponding cos θi in the Iteration 0 for every i� 1, 2, 3 as
follows:

cos θ1 �
[(−1) ×(−1) +(−20)(−100) +(−200) ×(−10000)]2

(− 1)2 +(− 20)2 +(− 200)2
�
4.0008 × 1012

40401
� 99027351.81,

cos θ2 �
[(0) ×(−1) +(−1)(−100) +(−20) ×(−10000)]2

(0)2 +(− 1)2 +(− 20)2
�
4.004001 × 1010

401
� 99850399,

cos θ3 �
[(0) ×(−1) +(0)(−100) +(−1) ×(−10000)]2

(0)2 +(0)2 +(− 1)2
�
108

1
� 108.

(5)

(e value of cos θ3 is bigger than the values of cos θ1 and
cos θ2. We choose x6 as the leaving variable. (e entering
variable is calculated as follows (STEP 2):

min
bi

aij




: aij < 0 andj ∈ N  �

−100
−1




,

−100
−20




,

−100
−200




  �

1
2
.

(6)

Table 2: Continued.

Iteration x1 x2 x3 x4 x5 R1 R2 x6 R.H.S

3 Phase1

Z′ 0 0 −1 0 −1 0 −1 0 0
x1 1 0 0 0.2 0.6 1 −0.2 0 0.6
R1 0 0 −1 0 −1 0 0 0 0
x2 0 1 0 −0.6 −0.8 0 0.6 0 1.2
x6 0 0 0 1 1 0 −1 1 1

4 Phase2

Z′ 0 0 0 0.2 1.6 Blocked Blocked 0 3.6
x1 1 0 0 0.2 0.6 0 −0.2 0 0.6
R1 0 0 −1 0 −1 1 0 0 0
x2 0 1 0 −0.6 −0.8 0 0.6 0 1.2
x6 0 0 0 1 1 0 −1 1 1

5 Phase 2

Z′ 0 0 −1.6 0.2 0 Blocked Blocked 0 3.6
x1 1 0 −0.6 0.2 0 0 −0.2 0 0.6
x5 0 0 1 0 1 1 0 0 0
x2 0 1 0.8 0.6 0 0 0.6 0 1.2
x6 0 0 −1 1 0 0 −1 1 1

6 Phase 2

Z′ 0 0 −1.4 0 0 Blocked Blocked −0.2 3.4
x1 1 0 −0.4 0 0 0 −0.2 −0.2 0.4
x5 0 0 1 0 1 1 0 0 0
x2 0 1 0.2 1 0 0 0.6 0.6 1.8
x4 0 0 −1 0 0 0 −1 1 1

Table 3: (e solution of Example 2 by the proposed DCSM.

Iteration x1 x2 x3 x4 x5 x6 R.H.S

0

Z −1 −10 −10000 0 0 0 0
x4 −1 −20 −200 1 0 0 −100
x5 0 −1 −20 0 1 0 −10
x6 0 0 (−1) 0 0 1 −1

1

Z −1 −10 0 0 0 −10000 10000
x4 −1 −20 0 1 0 200 100
x5 0 −1 0 0 1 20 10
x3 0 0 1 0 0 −1 1
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Table 4: (e solution of Example 2 by the two-phase method.

Iteration x1 x2 x3 x4 x5 x6 R1 R2 R3 R.H.S

0 Phase1

Z′ 0 0 0 0 0 0 −1 −1 −1 0
R1 1 20 200 −1 0 0 1 0 0 100
R2 0 −1 −20 0 −1 0 0 1 0 10
R3 0 0 (−1) 0 0 −1 0 0 1 1

1 Phase1

Z′ 1 21 221 −1 −1 −1 0 0 0 111
R1 1 20 200 −1 0 0 1 0 0 100
R2 0 1 20 0 −1 0 0 1 0 10
R3 0 0 1 0 0 −1 0 0 1 1

2 Phase1

Z′ −0.11 −1.10 0 0.11 −1 −1 −1.11 0 0 0.50
x3 0.01 0.10 1 −0.01 0 0 0.01 0 0 0.50
R2 −0.10 −1 0 (0.10) −1 0 −0.10 1 0 0
R3 −0.01 −0.10 0 0.01 0 −1 −0.01 0 1 0.50

3 Phase1

Z′ 0 −0.05 0 0 0.05 −1 −1 −1.05 0 0.50
x3 0 0.05 1 0 −0.05 0 0 0 0 0.50
x4 −1 −10 0 1 −10 0 −1 10 0 0
R3 0 −0.05 0 0 0.05 −1 0 −0.05 1 0.50

4 Phase1

Z′ 0 0 0 0 0 0 −1 −1 −1 0
x3 0 0 1 0 0 −1 0 0 1 1
x4 −1 −20 0 1 0 −200 −1 0 200 100
R3 0 −1 0 0 1 −20 0 −1 20 10

5 Phase 2

Z′ −1 −100 0 0 0 −104 Blocked Blocked Blocked 10000
x3 0 0 1 0 0 −1 0 0 1 1
x4 −1 −20 0 1 0 −200 −1 0 200 100
x5 0 −1 0 0 1 −20 0 −1 20 10

Table 5: (e Tableau obtained from the dual cosine and two-phases.

Size
Dual Klee–Minty problem Dual Clausen problem

Dual cosine DDCA Two-phase method Dual cosine DDCA Two-phase method
1 2 1 4 3
2 2 3 4 4
3 2 4 4 5
4 2 5 4 7
5 2 6 4 9
6 2 7 4 11
7 2 8 4 13
8 2 9 4 15
9 2 10 4 17
10 2 11 4 19

Table 6: Properties of 33 NETLIB problems.

Problem
name

No. of
nonzeros Density New number of

constraints
New number
of variables

Number of
variables

Number of “≤ ”
constrains

Number of “≥ ”
constrains

Number of “�”
constrains

adlittle 465 0.0856 56 97 97 40 1 15
afiro 88 0.10185 27 32 32 19 0 8
bandm 2659 0.01847 305 472 472 0 0 305
beaconfd 3476 0.07669 173 262 262 33 0 140
brandy 2150 0.03925 220 249 249 54 0 166
etamacro 2489 0.00547 400 688 688 183 125 354
fit1d 14,430 0.0134 24 1026 1026 1038 11 1
fit1p 10,894 0.00633 627 1677 1677 399 0 627
grow15 5665 0.00976 300 645 645 600 0 300
grow22 8318 0.00666 440 946 946 880 0 440
grow7 2633 0.02083 140 301 301 280 0 140
kb2 291 0.13649 43 41 41 21 15 16
lotfi 1086 0.02305 153 308 308 42 16 95
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Table 6: Continued.

Problem
name

No. of
nonzeros Density New number of

constraints
New number
of variables

Number of
variables

Number of “≤ ”
constrains

Number of “≥ ”
constrains

Number of “�”
constrains

recipelp 752 0.0198 91 180 180 77 43 91
sc105 281 0.02598 105 103 103 60 0 45
sc205 552 0.01326 205 203 203 114 0 91
sc50a 131 0.05458 50 48 48 30 0 20
sc50b 119 0.04958 50 48 48 30 0 20
scagr25 2029 0.00862 471 500 500 146 25 300
scagr7 553 0.03062 129 140 140 38 7 84
scfxm1 2612 0.01732 330 457 457 143 0 187
scfxm2 5229 0.00867 660 914 914 286 0 374
scfxm3 7846 0.00578 990 1371 1371 429 0 561
scsd1 3148 0.05379 77 760 760 0 0 77
scsd6 5666 0.02855 147 1350 1350 0 0 147
sctap1 2052 0.01425 300 480 480 0 180 120
share1b 1182 0.0449 117 225 225 28 0 89
share2b 730 0.09626 96 79 79 83 0 13
shell 4900 0.00303 536 1775 1775 119 9 784
ship04 l 8450 0.00992 402 2118 2118 40 8 354
ship04s 5810 0.00991 402 1458 1458 40 8 354
stair 3857 0.0186 356 467 467 153 0 698
stocfor1 474 0.0365 117 111 111 48 6 63
Sum 111,017 1.09377 8539 19,531 19,531 5453 454 7079
Average 3364.152 0.03315 258.758 591.849 591.849 165.242 13.7576 214.515
Max 14,430 0.13649 990 2118 2118 1038 180 784
Min 88 0.00303 24 32 32 0 0 1

Table 7: (e classification of the benchmark problems according to the variable number range.
Variable number range 30–99 100–500 501–99 1000–1500 1501–1999 Over 2000
Number of problems 6 15 5 4 2 1

Table 8: A comparison between the two-phase method and the proposed DDCA.

Problem name
Iteration number

Difference in iteration number
DCA Simplex

Phase I Phase II Phase I&II Phase I Phase II Phase I&II Phase I Phase II Phase I&II
adlittle 21 99 120 38 100 138 17 1 18
afiro 6 7 13 10 7 17 4 0 4
bandm 828 323 1151 1042 242 1284 214 −81 133
beaconfd 132 17 149 154 37 191 22 20 42
brandy 731 82 813 521 71 592 −210 −11 −221
etamacro 940 355 1295 944 423 1367 4 68 72
fit1d 52 1664 1716 94 1355 1449 42 −309 −267
fit1p 820 2288 3108 1441 1358 2799 621 −930 −309
grow15 285 205 490 303 485 788 18 280 298
grow22 425 245 670 443 704 1147 18 459 477
grow7 131 78 209 143 168 311 12 90 102
kb2 74 25 99 397 38 435 323 13 336
lotfi 208 164 372 126 77 203 −82 −87 −169
recipelp 300 6 306 299 28 327 −1 22 21
sc105 54 46 100 64 42 106 10 −4 6
sc205 118 110 228 128 115 243 10 5 15
sc50a 24 20 44 29 23 52 5 3 8
sc50b 32 14 46 37 21 58 5 7 12
scagr25 503 869 1372 639 218 857 136 −651 −515
scagr7 126 85 211 159 45 204 33 −40 −7
scfxm1 753 252 1005 802 211 1013 49 −41 8
scfxm2 1592 322 1914 1478 386 1864 −114 64 −50
scfxm3 1947 490 2437 2324 591 2915 377 1 378
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(erefore, the element x3 is the entering variable.We can
construct a new simplex table by the pivoting operations
(i.e., STEP 3) as shown in Iteration 1 in Table 3. We repeat all
above operations until all coefficients in Row 0 are non-
positive in Iteration 3, and x1 � 1 and x2 � x3 � 0 are optimal
with z� 104 in the original problem.

On the other hand, the two-phase method requires 5
iterations, as shown in Table 4, without including the initial
one.

5. Computational Experiments

In this section, we present the computational results of the
dual cosine simplex algorithm (DDCA) and two-phase
method for dual Klee–Minty and dual Clausen classes of
problems. We compare the number of iterations of the dual
cosine simplex algorithm (DDCA) with the two-phase
method. We used different tolerances to reduce the number
of iterations for each benchmark problem. We used the two-
phase method [3, 15–18] to evaluate the effectiveness of the
proposedmethod. On the other hand, the two-phasemethod
was used for the problems contain “≥ ” constraints and/or
equality constraints.

(e programming language used was MATLAB v7.01
SP2 with default options. All codes were run under 64-bit
Window 8.1 Operating System having Core (TM)i5 CPU M
460 @2.53GHz, 4.00GB of memory.

It is clear that the basic difference between the dual
cosine simplex method (DCSM) and the two-phase method
is that our technique does not involve artificial variables.
From Table 5, the contribution of the proposed algorithm is
to solve the Klee–Minty problem and Clausen problem with
2 and 4 iterations, respectively. On the other hand, the
simplex method with two-phase method spends O(n) iter-
ations for these problems.

Table 6 characterizes 33 NETLIB test problems [19] were
used in comparison to evaluate the effectiveness of the
proposed methods. For simplicity, we converted the
bounded variables and free variables into constraints. (e

accuracy rates of the solution obtained from the proposed
algorithms were tested by LINGO software.

Table 6 contains 6 categories of the problems according
to the range of variable numbers as shown in Table 7.

Table 6 contains the largest nonzero number, density,
number of variables (after transferring sign constraints),
number of constraints (after transferring sign constraints),
“≤ ” constraint number, “≥ ” constraint number, and “�”
constraint number.

In general, from Table 8, the contribution of the pro-
posed algorithm is that DDCA is generally better than the
two-phase method (22 problems vs. 11 problems). (e
details of our results are as follows:

(a) Six problems with the variable numbers 30–99:
DDCA is better than the two-phase method (5
problems vs. one problem)

(b) Fifteen problems with the variable numbers
100–500: DDCA is better than the two-phase
method (10 problems vs. 5 problems)

(c) Five problems with the variable numbers 501–999:
DDCA is better than the two-phase method (4
problems vs. one problem)

(d) Four problems with the variable numbers
1000–1500: DDCA and two-phase methods are equal
(2 problems vs. 2 problems)

(e) Two problems with the variable numbers 1501–1999:
the two-phase method is better than DDCA (0
problems vs. 2 problems)

(f ) One problem with the variable numbers over 2000:
the two-phase method is better than DDCA (0
problems vs. 1 problem)

6. Conclusions

We proposed a dual version of the direct cosine simplex
algorithm (DDCA) for general linear problems. (e pro-
posed method has not artificial variables, so it is different

Table 8: Continued.

Problem name
Iteration number

Difference in iteration number
DCA Simplex

Phase I Phase II Phase I&II Phase I Phase II Phase I&II Phase I Phase II Phase I&II
scsd1 90 200 290 139 206 345 49 6 55
scsd6 216 184 400 170 447 617 −46 263 217
sctap1 453 161 614 705 163 868 252 2 254
share1b 352 224 576 363 158 521 11 −66 −55
share2b 125 50 175 112 27 139 −13 −23 −36
shell 795 264 1059 843 209 1052 48 −55 −7
ship04 l 700 143 843 728 78 806 28 −65 −37
ship04s 488 106 594 499 58 557 11 −48 −37
stair 1019 323 1342 1203 265 1468 184 −58 126
stocfor1 81 12 93 90 29 119 9 17 26
Sum 14421 9433 23854 16467 8385 24852
Average 437 285.848 722.848 499 254.091 753.091
Max 1947 2288 3108 2324 1358 2915
Min 6 6 13 10 7 17
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from both the two-phase method and big-M method. Our
technique solved the dual Klee–Minty problem via two it-
erations and solved the dual Clausen problem via four it-
erations. (e power of the proposed algorithm is evident
from the extensive experimental results on benchmark
problems adapted from NETLIB. Preliminary results indi-
cate that this dual direct cosine simplex algorithm (DDCA)
reduces the number of iterations of the two-phase method.
In future work, we can improve this work by using different
algorithms [20–24] with other combinations between them.
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