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We propose a randomized sampling Kaczmarz algorithm for the solution of very large systems of linear equations by introducing
a maximal sampling probability control criterion, which is aimed at grasping the largest entry of the absolute sampling residual
vector at each iteration. +is new method differs from the greedy randomized Kaczmarz algorithm, which needs not to compute
the residual vector of the whole linear system to determine the working rows. Numerical experiments show that the proposed
algorithm has the most significant effect when the selected row number, i.e, the size of samples, is equal to the logarithm of all
rows. Finally, we extend the randomized sampling Kaczmarz to signal reconstruction problems in compressed sensing. Signal
experiments show that the new extended algorithm is more effective than the randomized sparse Kaczmarz method for online
compressed sensing.

1. Introduction

In this paper, we mainly consider the iterative solution of
large-scale consistent linear systems of the form

Ax � b, (1)

where A ∈ Cm×n, b ∈ Cm, and x ∈ Cn denotes the n-di-
mensional unknown vector. +e Kaczmarz algorithm [1] is a
typical row-action method [2–5] for solving such a linear
system (1) and is known as algebraic reconstruction
technique in the field of computerized tomography [6, 7]
and image reconstruction [5, 8–10]; see also [11–13] for
additional references. More specifically, the (t+ 1)th iter-
ative vector xt + 1 is generated by the following Kaczmarz
updates:

xt+1 � xt +
b it( ) − A it( )xt

A it( )
�����

�����
2

2

A
it( )􏼒 􏼓
∗
, t � 0, 1, 2, . . . , (2)

where A(it) denotes the itth row of the matrix A, (·)∗ de-
notes the conjugate transpose of the corresponding vector
or matrix, b(it) denotes the itth entry of the vector b, and

it= (t mod m) + 1. +us, the Kaczmarz algorithm is very
suitable for the solution of very large linear equations since
the main computation in the procedure of this algorithm is
an inner product; however, this algorithm sometimes con-
verges very slowly, see [14, 15] and the references therein. In
order to improve the convergence of this algorithm, in 2009,
Strohmer and Vershynin [16] proposed the randomized
Kaczmarz (RK) algorithm with an expected exponential rate of
convergence by using the rows of the coefficient matrix A in a
random manner rather than in a given order, i.e., the RK
chooses row it ∈ 1, 2, . . . , m{ } with probability

Pr row � it( 􏼁 �
A it( )

�����

�����
2

2

‖A‖2F
. (3)

Recently, Bai and Wu proposed a different but more
effective probability criterion and, based on it, they con-
structed the greedy randomized Kaczmarz (GRK) algorithm
for solving the linear system (1) in [17]. +is probability
criterion makes the corresponding GRK algorithm to
converge significantly faster than the RK method in both
theory and experiments. We refer to [15, 18, 19] for more
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details on convergence theory and algorithmic generaliza-
tions for the GRK algorithm.

We observe that the most expensive component at the
tth iterate of the GRK algorithm is computing the square
norm of the residual vector (i.e., ‖b − Axt‖

2
2) of the linear

system, and it is the main factor that affects the comput-
ing time. Consequently, in this paper, we first randomly
select k indices of rows, say, i1, i2, . . . , ik􏼈 􏼉 ⊆ 1, 2, . . . ,{ }, of
the coefficient matrix of the linear system (1) and then
compute the largest absolute relative residual, i.e,
max(|b(il) − A(il)xt|/‖A‖F), il ∈ i1, i2, . . . , ik􏼈 􏼉 and construct a
randomized sampling Kaczmarz (RSK) algorithm. +ere-
fore, our method needs not to calculate the residuals of all
rows as the GRK method does and can be expected to be
more effective than GRK in terms of the computing time. In
theory, we provide a proof that shows linear convergence in
expectation to the unique least-norm solution of the consistent
linear system (1) for our RSK algorithm. And in computations,
we show that the RSK algorithm significantly outperforms the
RK algorithm in terms of both iteration counts and computing
times and costs much less CPU time than the GRK algorithm
but slightly requires more iteration steps than GRK algorithm.
In addition, we extend the RSK algorithm to signal recon-
struction problems in compressed sensing [20, 21] and es-
tablish the corresponding randomized sparse sampling
Kaczmarz (RaSSK) algorithm and show that RaSSK performs
much better than the randomized sparse Kaczmarz (RaSK)
algorithm, which is a special case of the Bregman iterative
algorithm [22] for online compressed sensing.

+e remainder of the paper is organized as follows. In
Section 2, we review the RK and GRK algorithms. In Section
3, we give the RSK algorithm and establish its convergence
theory. Numerical experiments and comparisons are shown
in Section 4. In Section 5, we extend the RSK to signal
reconstruction in compressed sensing and give some signal
experiments in this section. Finally, we end this paper with a
few remarks and conclusions in Section 6.

2. The RK and GRK Algorithms

In this section, we briefly introduce the RK and GRK algo-
rithms for solving systems of linear equations. First, let us give
some necessary explanations. In this paper, we useEt to denote
the expected value conditional on the first t iterations, that is,

Et[.] �
def
Et .| i1, i2, . . . , it􏼂 􏼃, (4)

where il (l� 1, 2, . . ., t) is the ilth row chosen at the lth iterate.
+en, it is easy to get that E[Et[.]] � E[.] (see, e.g., the work
of Bai and Wu [17]).

When the linear system (1) is consistent and its coeffi-
cient matrix A ∈ Cm×n(m≥ n) is of the full-column rank,
Strohmer and Vershynin [16] proposed the randomized
Kaczmarz algorithm, as given in Algorithm 1.

+e RK method is convergent to the unique least-norm
solution of the consistent linear system (1) when the coef-
ficient matrix A is of the full-column rank with m≥ n [16],
and later in [23], Ma, Needell, and Ramdas gave the same
convergence rate of the RK algorithm, but for the case that

m<n. Compared with the Kaczmarz method, we can find,
according to probability criterion (3), that the order inwhich the
RK method selects the action row is based on the probability
corresponding to the size of each row norm. It can improve the
convergence of the Kaczmarz method discussed in [1].

In [17], Bai andWu proposed a new probability criterion
(i.e., Steps 2–5 of Algorithm 2) for the RK algorithm, and
based on it, they constructed a greedy randomized Kaczmarz
algorithm, as given in Algorithm 2, which converges faster
than the RK algorithm.

According to Algorithm 2, we can find that, at the tth
iterate, the corresponding residual vector is rt � b−Axt and,
if |r

(i)
t |> |r

(j)
t |, i, j ∈ 1, 2, . . . , m{ }, then the GRK algorithm is

to make the ith row be selected with a larger probability than
the jth row. Actually, only some entries of rt whose relative
residual is greater than a threshold are nonzero. Conver-
gence property of the GRK method has been studied by Bai
andWu in [17]. In addition, from [17], we can find that if the
GRK method is convergent, then it must converge to the
least-norm solution x∗�A†b of the linear system (1), where A†

indicates the Moore–Penrose pseudoinverse of the matrix A.

3. A Randomized Sampling Kaczmarz Method

3.1. +e Randomized Sampling Kaczmarz Method. In this
part, a new algorithm will be given. +rough the contents of
the previous sections, we note that at each iteration of GRK,
it will cost a lot of money to calculate the residual vector rt. If
the dimension of the matrix is too large relative to the
memory of the computer, the performance of the GRK
method will be greatly reduced. In response to this situation,
we propose a new method to solve the linear system (1). +e
purpose of our method is to make full use of the residual
information as the GRK method does, while avoiding cal-
culating the residual rt at each iteration. Let
A � (aij) ∈ Cm×n in the linear system (1) with 1≤ i≤m. Our
method is carried out as follows: first, according to uniform
distribution, randomly select k rows i1, i2, . . ., ik from the m
rows of the coefficient matrix A and put them in a set
Vt � i1, i2, . . . , ik􏼈 􏼉; second, calculate the relative residuals of
all corresponding rows in the setVt; then, select the row with
the largest absolute relative residual value (i.e.,
max((|b(il) − A(il)xt|)/‖A‖F), il ∈ i1, i2, . . . , ik􏼈 􏼉) to imple-
ment the Kaczmarz update in (2). +e RSK algorithm
proposed in this paper is expressed in Algorithm 3.

According to Algorithm 3, we can see that the selection
of the appropriate number of rows k plays an important role
in the RSK algorithm. More specifically, if the number of
rows k is too small, it is difficult to ensure the efficiency of
selecting iterative action rows in each iteration, and, if the
number of rows k is too large, then the RSKmethod will have
higher requirement for the memory of the computer, es-
pecially when the matrix dimension is large enough. In the
following numerical examples, we will discuss the selection
of parameter k in the RSK method.

In fact, according to Algorithms 1–3, the RSK method will
cost (2k+2) n+1+k flopping operations (flops) at each iter-
ation, while the GRK method and the RK method will cost
7m+2 (n+1) and 4n+1 flops, respectively [17].We list the flops
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of these three algorithms at each iteration in Table 1. Obviously,
when the row number m is extremely large, the RSK method
costs less flops than the GRK method. When k� 1, the RSK
method degenerates into the uniform sampling RK method.

3.2. Convergence Analysis of the RSK Algorithm. In this
section, we pay attention to the convergence property of our
algorithm. +e following theorem guarantees the conver-
gence of the RSK method.

Theorem 1. Let x∗�A†b be the solution of the consistent
linear system (1) and x0 ∈R(A∗), where R(A∗) denotes the
column space of the matrix A∗. +en, the iteration sequence
xt􏼈 􏼉
∞
t�0, generated by the RSK algorithm, converges to the

solution x∗ in expectation. Moreover, the solution error in
expectation for the iteration sequence xt􏼈 􏼉

∞
t�0 obeys

E xt+1 − x∗
����

����
2
2 ≤ 1 −

λmin A∗A( )

m2 × maxj A(j)
���

���22

⎛⎝ ⎞⎠E xt − x∗
����

����
2
2,

E xt − x∗
����

����
2
2 ≤ 1 −

λmin A∗A( )

m2×maxj A(j)‖ ‖
2
2

􏼠 􏼡

t

x0 − x∗
����

����
2
2,

t � 0, 1, 2, . . . ,

(5)

where λmin(A∗A) is the smallest positive eigenvalue of A∗A.

Require: A, b, l, and x0.
Ensure: xl.

(1) for t� 0, 1, . . ., l do
(2) Select it ∈ 0, 1, . . . , m{ } with probability Pr(row � it) � ‖A(it)‖

2
2/‖A‖2F

(3) Set xt+1 � xt + ((b(it) − A(it)xt)/‖A(it)‖
2
2)(A(it))∗

(4) end for

ALGORITHM 1: +e randomized Kaczmarz (RK) algorithm.

Require: A, b, l, and x0.
Ensure: xl.

(1) for t� 0, 1, . . ., l do
(2) Compute

εt � (1/2)((1/(‖b − Axt‖
2
2))max1≤it≤m (|b(it) − A(it)xt|

2)/‖A(it)‖
2
2􏼚 􏼛 + 1/‖A‖2F)

(3) Determine the index set of positive integers

Ut � it | |b(it) − A(it)xt|
2 ≥ εt‖b − Axt‖

2
2‖A(it)‖

2
2􏼚 􏼛

(4) Compute the ith entry 􏽥r
(i)
t of the vector 􏽥rt according to

􏽥r
(i)
t �

b(i) − A(i)xt, if i ∈ Ut,

0, otherwise􏼨

(5) Select it ∈Ut with probability Pr(row � it) � |􏽥r
(i)
t |2/‖􏽥rt‖

2
2

(6) Set xt+1 � xt + ((b(it) − A(it)xt)/‖A(it)‖
2
2)(A(it))∗

(7) end for

ALGORITHM 2: +e greedy randomized Kaczmarz (GRK) algorithm.

Require: A, b, l, k and x0.
Ensure: xl.

(1) for t� 0, 1, . . ., l do
(2) Randomly generate by uniform distribution k different elements from 1 to m, indicated by Vt � i1, i2, . . . , ik􏼈 􏼉

(3) Compute the lth entry r
(l)
t of the vector rt according to

r
(l)
t � (|b(il) − A(il)xt|/‖A‖F), if il ∈ Vt, l � 1, 2, . . . , k

(4) For l� 1, 2, . . ., k, select the row according to maxr
(l)
t for il ∈Vt and assume that the index il � j

(5) Set xt+1 � xt + ((b(i) − A(j)xt)/‖A(j)‖
2
2)(A(j))∗

(6) end for

ALGORITHM 3: +e randomized sampling Kaczmarz (RSK) algorithm.

Table 1: +e computational complexity of RK, GRK, and RSK
algorithms at each iteration.

Algorithm RK GRK RSK
Flopping operations
(flops) 4n+ 1 7m+ 2(n+ 1) (2k+ 2)n+ 1+ k

Mathematical Problems in Engineering 3



Proof. Update rule of the RSK algorithm yields

xt+1 − xt �
b it( ) − A it( )xt

A it( )
�����

�����
2

2

A
it( )􏼒 􏼓
∗
, (6)

which indicates that xt+1 − xt is parallel to (A(it))∗. Using
A(it)x∗ � b(it), we compute

A
it( ) xt+1 − x∗( 􏼁 � A

it( ) xt − x∗ +
b it( ) − A it( )xt

A it( )
�����

�����
2

2

A
it( )􏼒 􏼓
∗

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

� A
it( ) xt − x∗( 􏼁 + b

it( ) − A
it( )xt􏼒 􏼓

� b
it( ) − A

it( )x∗ � 0.

(7)

In other words, xt+1 − x∗ is orthogonal to A(it). Conse-
quently, by the Pythagorean theorem, we obtain

xt+1 − x∗
����

����
2
2 � xt − x∗

����
����
2
2 − xt+1 − xt

����
����
2
2. (8)

Based on this equality, we have

Et xt+1 − x∗
����

����
2
2 � xt − x∗

����
����
2
2 − Et xt+1 − xt

����
����
2
2

� xt − x∗
����

����
2
2 − Et

b(j) − A(j)xt

A(j)
���

���22

A
(j)

􏼐 􏼑
∗

���������

���������

2

2

� xt − x∗
����

����
2
2 − Et

b(j) − A(j)xt|
2􏼌􏼌􏼌􏼌

A(j)
���

���22

.

(9)

Note that the population mean can be expressed as the
expectation of the sample mean, thus,

Et

b(j) − A(j)xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

A(j)
���

���2
�
1
k
Et

k b(j) − A(j)xt( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

A(j)
���

���2

≥
1
k
Et

􏽐
it
i�i1

b(i) − A(i)xt( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

A(i)
���

���2

�
1
m

􏽐
m
i�1 b(i) − A(i)xt( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

A(i)
���

���2
.

(10)

So, we upper bound

Et xt+1 − x∗
����

����
2
2 ≤ xt − x∗

����
����
2
2 −

1
m2 􏽘

m

i�1

b(i) − A(i)xt|
2􏼌􏼌􏼌􏼌

maxj A(j)
���

���22

� xt − x∗
����

����
2
2 −

1
m2

A xt − x∗( 􏼁
����

����
2
2

maxj A(j)
���

���22

� xt − x∗
����

����
2
2 1 −

1
m2

A xt − x∗( 􏼁
����

����
2
2

maxj A(j)
���

���22 xt − x∗
����

����
2
2

⎛⎝ ⎞⎠.

(11)

By the assumption that x0 ∈R(A∗), we have from the RSK
algorithm that xt also does for each t. Since x∗�A†b ∈R(A∗),
we obtain xt − x∗ ∈R(A∗), which implies that

A xt − x∗( 􏼁
����

����
2
2 ≥ λmin A

∗
A( 􏼁􏼁 xt − x∗

����
����
2
2. (12)

Hence, it holds that

Et xt+1 − x∗
����

����
2
2 ≤ 1 −

λmin A∗A( )

m2 × maxj A(j)
���

���22

⎛⎝ ⎞⎠ xt − x∗
����

����
2
2.

(13)

In addition, by taking full expectation on both sides of
(13) and using the law of iterated expectation
E[Ek[·]] � E[·], we immediately get

E xt+1 − x∗
����

����
2
2 ≤ 1 −

λmin A∗A( )

m2 × maxj A(j)
���

���22

⎛⎝ ⎞⎠E xt − x∗
����

����
2
2.

(14)

It follows from induction on the iteration index t, and we
finally obtain that

E xt − x∗
����

����
2
2 < 1 −

λmin A∗A( )

m2 × maxj A(j)
���

���22

⎛⎝ ⎞⎠

t

x0 − x∗
����

����
2
2. (15)

□

Remark 1. Actually, compared with the GRK algorithm in
[17], the RSK algorithm cannot improve the convergence for
the number of iterations for the linear system (1). However,
when the row numberm of the coefficient matrix A is much
larger than k, in each iteration of the GRK algorithm, we
must calculate the residuals of all m rows, while in the RSK
algorithm, we just calculate the residual of k rows. +is
explains how and why the RSK algorithm uses less calcu-
lation time to achieve convergence accuracy when compared
with the RK and GRK algorithms.

3.2.1. Sensitivity Analysis. +e essence of the RaSK algo-
rithm is to solve the least square problem. Consider least
square problem (16), given matrix A ∈Rm×n, observation
vector b ∈Rm, and x ∈Rn is the vector to be solved and
satisfies

min‖Ax − b‖
2
. (16)

Let A be accurate and vector b be the measured data, and
then we consider the sensitivity of the solution x of problem
(16) with respect to each component of data bj. Let the
sensitivity of x with respect to bj be

Sij �
zxi

zbj

. (17)

According to articles [24, 25], we have the following
conclusions.

Theorem 2. In the least square problem (16), the sensitivity
of x with respect to bj is
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Sij �
zxi

zbj

� 􏽘
n

k�1

uik

λk

􏽘

n

l�1
i≠k

vlkbl + vjk⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (18)

where uik and vlk are the elements of orthogonal matrix U and
V, respectively, and it satisfies singular value decomposition
formula A�VΛUT with Λ� diag (λ1, λ2, . . .) being the sin-
gular value of matrix A.

Proof. Without losing generality, let rank (A)� n(m≥ n),
and according to the singular value decomposition formula
of the matrix, we have

A � VΛUT
, (19)

where the orthogonal matrix V ∈Rm×m, U ∈Rn×n and
Λ∈Rm×n.

LetΛ � diag(λ1, λ2, . . . , λn) and λ1≥ λ2 ≥. . .≥ λn, then we
have

Λ �
Λ

0
⎛⎝ ⎞⎠. (20)

For any x and b, let

α � U
T
x,

β � V
T
b,

(21)

then we can get

Ax − b � VλU
T
Uα − Vβ � V

Λ

0
⎛⎝ ⎞⎠α − β⎡⎢⎢⎣ ⎤⎥⎥⎦. (22)

Let β � (β1/β2), where β1 ∈ Rn and β2 ∈ Rm−n. We have

Ax − b � V
Λα − β1

−β2
⎛⎝ ⎞⎠,

‖(Ax − b)‖
2
2 �
Λα − β1

−β2
⎛⎝ ⎞⎠

����������

����������

2

2

� Λα − β1
����

����
2
2 + β2

����
����
2
2.

(23)

So x should satisfy

Λα � β1,

ΛUT
x � β1.

(24)

+us, we can get

x � ΛUT
􏼐 􏼑

−1
β1 � U

−TΛ−1β1 � UΛ−1β1,

xi � 􏽘
n

k�1

1
λk

uikβk.

(25)

According to β�VTb, we have

βk � 􏽘

n

l�1
vlkbl. (26)

+us, we can get

xi � 􏽘
n

k�1

1
λk

uik 􏽘

n

l�1
vlkbl � 􏽘

n

k�1
􏽘

n

l�1

uikvkbl

λk

� 􏽘
n

l�1
􏽘

n

k�1

uikvlk

λk

bl,

(27)

So we have

zxi

zbj

� 􏽘
n

k�1

uik

λk

􏽘

n

l�1
l≠k

vlkbl + vjk⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (28)

In fact, Sij reflects the rate of change of x with respect to
data bj, which depends on the singular value of matrix A and
its decomposition orthogonal matrix U, V. In particular,
when m� n, the least square problem is reduced to solve the
system of equations. □

4. Numerical Experiments

4.1.AlgorithmComparison. In this section, we use RK, GRK,
and RSK algorithms to solve equations (1) with different
matrices A. +e numerical behaviors of these algorithms are
tested and evaluated in terms of the computing time in
seconds (denoted as “CPU”) and the number of iteration
steps (denoted as “IT”), and the CPU and IT mean the
medians of the CPU time and iteration steps with respect to
50 times repeated runs of the corresponding method. In
addition, we also report the speed-up of RSK (k) (k rep-
resents the number of rows selected from the coefficient
matrix A in the RSK algorithm) against GRK, which is
defined as

speed − up �
CPUGRK

CPURSK(k)

. (29)

All algorithms started from the initial vector x0 � 0 and
terminated once the relative solution error (RSE), defined as

RSE �
xt − x∗

����
����
2
2

x∗
����

����
2
2

, (30)

at the current iterate xt, satisfies RSE< 10−6, or the number of
iteration steps exceeds 200,000. +e latter is given a label “−”
in the numerical tables. For part of the tested matrices, we
give their Euclidean condition number, denoted by cond(A),
and their density is defined as

density �
number of nonzeros of anm × nmatrix

m × n
. (31)

All experiments are carried out using MATLAB
(R2015b) on a personal laptop with 2.5GHz (Intel(R) Core
(TM) CPU i5-7300HQ), 8.00GB memory, and Windows
operating system (Windows 10).

Example 1. In this example, test matrices A are randomly
generated by the MATLAB function randn, which produces
independent entries subject to the standard normal distri-
bution N (0,1). In our implementations, the random vectors
􏽥x ∈ Rn is randomly generated by using the MATLAB
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function randn, and b ∈ Rm is taken to be A􏽥x; in addition,
the solution vectors x∗ ∈ Rn is taken to be pinv(A)b.

In Tables 2 and 3, we report iteration counts and CPU
times for RK, GRK, RSK (2), and RSK (7) when the linear
system (1) is consistent. As the results in Table 2 show that
the RSK (7) vastly outperform both the RK and GRK in
terms of CPU times with significant speed-ups when the
corresponding linear system is fat (i.e., m< n) and the
minimum speed-up is 1.22 and the maximum reaches 2.08.
From Table 3, we see that the CPU times of RSK (10) are
considerably less than those of RK and GRK when the
corresponding linear system is thin (i.e., m> n), with the
speed-up being at least 2.32 and at most attaining 3.49. In
addition, we can find that the “fatter” the matrix is, the RSK
algorithm shows less advantages, and the “thinner” the

matrix is, the RSK algorithm shows more advantages. It is in
line with our intuition because if the row number m is
extremely large, the RSK algorithm can reduce more
computational complexity, for the RSK algorithm is inde-
pendent of m while the GRK algorithm is not.

Example 2. In this example, we select full-rank sparse
matrices from [26], which originate in different applications
such as linear programming, combinatorial optimization,
DNA electrophoresis model, and Pajek or world city net-
work.+ey possess certain structures and properties, such as
square (m� n) (e.g., cage5), thin (m> n) (e.g., WorldCities),
or fat (m< n) (e.g., bibd_16_8, and refine). +ere are also
rank-deficient sparse matrices from [26], which come from
applications like combinatorial problem and Pajek or world

Table 2: IT and CPU of RK, GRK, and RSK (k) for m× n matrices A with m� 100 and 200 and different n.

m× n 100×1000 100× 3000 100× 5000 200×1000 200× 3000 200× 5000

RK IT 1127.3 906.0 825.6 3109.3 2137 2049.2
CPU 0.1335 0.1572 0.1907 0.3740 0.4142 0.5292

GRK IT 319.4 232.1 212.5 932.6 552.6 481.4
CPU 0.0496 0.0626 0.0896 0.1574 0.2127 0.4336

RSK (2) IT 739.9 595.4 548.0 2005.4 1374.4 1257.8
CPU 0.0396 0.0615 0.1043 0.1092 0.1907 0.3539

Speed-up 1.25 1.02 0.86 1.44 1.12 1.23

RSK (7) IT 369.7 275.6 254.9 1060.8 649.2 583.8
CPU 0.0259 0.0456 0.0733 0.0757 0.1364 0.2564

Speed-up 1.92 1.37 1.22 2.08 1.56 1.69

Table 3: IT and CPU of RK, GRK, and RSK (k) for m× n matrices A with n� 100 and 200 and different m.

m× n 1000×100 3000×100 5000×100 1000× 200 3000× 200 5000× 200

RK IT 1439.2 1329.5 1284.3 3550.4 2794.0 2655.7
CPU 0.1760 0.2407 0.3204 0.4416 0.5147 0.6745

GRK IT 223.8 175.1 161.9 608.5 375.0 335.9
CPU 0.0377 0.0537 0.0809 0.1101 0.1553 0.2692

RSK (2) IT 928.2 860.6 844.0 2246.0 1799.9 1733.7
CPU 0.0320 0.0365 0.0437 0.0803 0.0863 0.1057

Speed-up 1.18 1.47 1.85 1.37 1.80 2.55

RSK (10) IT 399.6 372.3 368.5 978.1 773.8 753.5
CPU 0.0157 0.0231 0.0308 0.0460 0.0586 0.0771

Speed-up 2.40 2.32 2.63 2.39 2.65 3.49

Table 4: IT and CPU of RK, GRK, and RSK (k) for m× n matrices A with different m and n.

Name refine cage5 bibd−16−8 WorldCities flower−5−1 relat6 football
m× n 29× 62 37× 37 120×12870 315×100 211× 201 2340×157 35× 35
Density 8.51% 17.02% 23.33% 23.87% 1.42% 2.21% 9.63%
Cond(A) 66.67 15.42 9.54 66.00 Inf Inf Inf

RK IT 25963.3 10046.1 3058.5 24641 43611 9027.0 —
CPU 2.6477 1.0146 2.3381 2.5843 4.5635 1.4171 —

GRK IT 689.1 556.1 1060.9 8925.8 9034.8 1672.9 102331
CPU 0.0858 0.0676 1.8835 1.3617 1.2300 0.4332 11.8878

RSK (2) IT 1046.3 1173.5 1932.1 19249.1 17504.2 7578.5 189040.5
CPU 0.0311 0.0405 1.1868 0.5917 0.5764 0.2641 5.1743

Speed-up 2.76 1.67 1.59 2.30 2.13 1.64 2.30

RSK (5) IT 632.4 614.3 1182.9 11435.0 11157.3 3808.3 127467.4
CPU 0.0193 0.0259 1.0222 0.3645 0.3762 0.1535 3.4984

Speed-up 4.45 2.61 1.84 3.74 3.27 2.82 3.40
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soccer network, such as square (e.g., football) and thin (e.g.,
relat6 and flower_5_1).

In Table 4, we list the numbers of iteration steps and the
computing times for RK, GRK, RSK (2), and RSK (5) al-
gorithms. According to the test results in Table 4, we can see
that the RSK algorithm performs better than the GRK

algorithm in terms of CPU, even if the matrix is square or
not, full-rank or not, and sparse or not and the condition
number is infinite or not. More specifically, in terms of the
RSK (2) algorithm, the speed-up is at least 1.59 and the
biggest is 2.76; and in terms of the RSK (5) algorithm, the
speed-up is at least 1.84 and the biggest even attains 4.45.
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Figure 1: Pictures of CPU for RSK versus k for a randommatrix with differentm and n. (a) Simulation results form� 50, n� 1000, and log2
(m)≈5.6. (b) Simulation results for m� 1000, n� 50, and log2 (m)≈10. (c) Simulation results for m� 100, n� 1000, and log2 (m)≈6.6. (d)
Simulation results form� 2000, n� 0, and log2 (m)≈11. (e) Simulation results form� 150, n� 1000, and log2 (m)≈7.2. (f ) Simulation results
for m� 3000, n� 50, and log2 (m)≈12.

Mathematical Problems in Engineering 7



4.2. +e Choice of Parameter k. +ere is no doubt that the
value of parameter k makes a huge difference in the per-
formance of the RSK algorithm. In this section, we will have
a tentative discussion on k and the matrix row number m.
We simulate the relationship between the CPU of the RSK
algorithm (with RSE< 10−6) and the size of k under different
A. +e simulation results are shown in Figure 1.

+rough a large number of our numerical experiments,
we find that k� [log2(m)] may be a good choice.

5. Application of RSK Algorithm in
Compressed Sensing

5.1. +e RaSSK Algorithm. Consider the linear system
Ax= b, where A ∈ Rm×n, m< n, x is a sparse n dimension
vector, and b is an m-dimension vector. By solving the
following regularized basis pursuit problem

min
x∈Rn

f(x) � λ‖x‖1 +
1
2
‖x‖

2
2,

s.t. Ax � b,

(32)

we can find that the least Euclidean norm solution satisfies
the sparsity requirement. In 2014, Lorenz et al. [22] proposed
the RaSK algorithm for solving the regularized basis pursuit
problem as given in Algorithm 4).

Shrink function Sλ(x) � max | x| − λ, 0{ } · sign(x),
where λ(>0) is set according to different applications and is
to control the sparsity of the solution. Lorenz et al. proved
that, for a consistent linear system Ax� b, the RaSK algo-
rithm converges to the unique solution of the regularized
basis pursuit problem in [22].

Similar to the construction method of the RaSK algo-
rithm, we can give the randomized sampling sparse Kacz-
marz (RaSSK) algorithm which is listed in Algorithm 5.

+e proof of the convergence of RaSSK is similar to
RaSK. It can be seen as a special case of the Bregman
projections for split feasible problems (BPSFP) algorithm in
[22]; if we change its feasibility question to “Find
x ∈ ∩mk�1A

k” (i.e., the hyperplane formed by the rows of the
matrix A) and define f(x) � λ‖x‖1 +(1/2)|x‖22, then, the
convergence can be easily obtained by +eorem 2.8 in [22].

5.2. Signal Experiments. In this section, we will show the
efficiency of the RaSSK method by several numerical ex-
amples and compare it with the RaSK algorithm. We im-
plement the numerical experiments, by MATLAB (R2015b)
on a personal laptop with 2.5GHz (Intel(R) Core(TM) CPU
i5-7300HQ), 8.00GB memory, and Windows operating
system (Windows 10).

Example 3. In this example, the test signal is randomly
generated with length 256 and limit its sparsity to 10, that is,
only 10 nonzero coefficients. +e signal is reconstructed by
RaSK and RaSSK, respectively. +e recovery signal map,
relative error map, and relative residual map are given in
Figure 2. As shown in this figure, the parameter λ in the
RaSSK method and the RaSK method is 50. We can see that
both algorithms can reconstruct the original signal. It is
worth mentioning that the RaSSK method is more efficient
compared to the RaSK method.

Example 4. In this example, we use the famous image lena
with 64 × 64 and 128 ×128 pixels to test our algorithm. +e

Require: x0, A, b, and l.
Ensure: xl.

(1) for t� 0, 1, . . ., l do
(2) Generate it randomly by Pr(row � it) � ‖A(it)‖

2
2/‖A‖2F

(3) Set xt+1/2 � xt + ((b(it) − A(it)xt)/‖A(it)‖
2
2)(A(it))∗

(4) Set xt+1 � Sλ(xt+1/2)
(5) end for

ALGORITHM 4: +e randomized sparse Kaczmarz (RaSK) algorithm [22].

Require: x0, A, b, l, k.
Ensure: xl.

(1) for t� 0, 1, . . ., l do
(2) Randomly generate by uniform distribution k different elements from 1 to m, indicated by Vt � i1, i2, . . . , ik􏼈 􏼉

(3) Compute the lth entry r
(l)
t of the vector rt according to

r
(l)
t � ((|b(il) − A(il)xt|)/‖A‖F), if il ∈ Vt, l � 1, 2, . . . , k

(4) For l� 1, 2, . . ., k, select the row according to maxr
(l)
t for il ∈Vt and assume that the index il� j

(5) Set xt+1/2 � xt + ((b(j) − A(j)xt)/‖A(j)‖
2
2)(A(j))∗

(6) Set xt+1 � Sλ(xt+1/2)
(7) end for

ALGORITHM 5: +e randomized sampling sparse Kaczmarz (RaSSK) algorithm.
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Figure 2: Recovery map, relative error map, and relative residual map in signal reconstruction by RaSK and RaSSK algorithms. (a) Signal
recovery map by RaSK. (b) Signal recovery map by RaSSK. (c) Relative error ‖x − x real‖2/‖x real‖2. (d) Relative error ‖Ax − b‖2/‖b‖2.

Table 5: Numerical results of RaSK and RaSSK for the 64× 64 and 128×128 image to be reconstructed.

64× 64 RaSK RaSSK 128×128 RaSK RaSSK
Observation matrix size m× n 1000× 2051 1000× 2051 Observation matrix sizem × n 3000× 8195 3000× 8195
Original image sparsity 25.03% 25.03% Original image sparsity 50.02% 50.02%
Sparse image sparsity 6.63% 6.63% Sparse image sparsity 2.66% 2.66%
λ 50 50 λ 50 50
Iteration step 21483 47 Iteration step 50000 723
CPU 32.1677 0.0743 CPU 704.1457 10.6620

(a) (b) (c) (d)

Figure 3: +e RaSK and RaSSK algorithms for a 64× 64 reconstructed image. (a) is the original image, (b) is the image after sparse
representation, (c) is the image obtained by the RaSK algorithm, and (d) is the image obtained by the RaSSK algorithm.
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MATLAB function randn generates an m × n random
matrix which is independently distributed in the standard
normal distribution N (0,1) as the observation matrix. For
the sparse representation of the image, we use MATLAB
function dwt, which is a wavelet transform process. +e
error is defined by

x − realx
����

����
2
2

realx
����

����
2
2

, (33)

and the stopping criterion of the algorithm is error< 0.1 or
reaches the maximum number of iteration steps 50,000. +e
value of the parameter λ and the results are shown in Table 5.
In this table, “CPU” denotes the computing time and “IT”
denotes the number of iteration steps.

From Table 5, it is easy to obtain that the RaSSK algo-
rithm significantly performs better than the RaSK algorithm.
It greatly reduces the number of iteration steps and the
computing time. Meanwhile, from Figures 3 and 4, we can
find that for human beings, there is almost no perception
loss whenever some information is discarded.

6. Conclusion

Variants of the RK algorithm are effective iteration methods
for large-scale linear systems. In this paper, based on the
randomized Kaczmarz algorithm and the greedy random-
ized Kaczmarz algorithm, we propose a new algorithm
which makes use of the residual information, while it need
not calculate all the residuals. +is algorithm converges
faster than RK [16] and GRK [17] in experiments. Fur-
thermore, after a large amount of numerical experiments, we
recommend the parameter k to take [log2(m)]. As an ap-
plication, we apply it to the signal reconstruction in com-
pressed sensing. +e experiments show that our algorithm
has a good performance.
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