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Our main goal in this manuscript is to accelerate the relaxed inertial Tseng-type (RITT) algorithm by adding a shrinking
projection (SP) term to the algorithm. Hence, strong convergence results were obtained in a real Hilbert space (RHS). A novel
structure was used to solve an inclusion and a minimization problem under proper hypotheses. Finally, numerical experiments to
elucidate the applications, performance, quickness, and effectiveness of our procedure are discussed.

1. Introduction

)e standard form of the variational inclusion problem
(VIP) on a RHS ℸ is

0 ∈ (¥ + Υ)ϑ∗, (1)

where ϑ∗ is the unknown point that we need to find, for an
operator ¥: ℸ⟶ℸ and a set-valued operator
Υ: ℸ⟶ 2ℸ. VIP is a frequent problem in the optimization
field, which has a lot of applications in many areas, including
equilibrium, machine learning, economics, engineering,
image processing, and transportation problems [1–16].

)e vintage technique to solve problem (1) which is
denoted by (¥ + Υ)− 1(0) is the forward-backward splitting
method [17–22] which is defined as follows: ϑ1 ∈ ℸ and

ϑn+1 � (I + ℓΥ)− 1
(I − ℓ¥)ϑn, n≥ 1, (2)

where ℓ > 0. In (2), each step of iterates includes only the
forward step ¥ and the backward step Υ, but not ¥ + Υ. )is
technique involves the proximal point algorithm [23–25]
and the gradient method [26–28] as special cases.

In a RHS, nice splitting iterative procedures presented by
Lions and Mercier [29] are shown as follows:

ϑn+1 � 2J
¥
ℓ − I􏼐 􏼑 2J

Υ
ℓ − I􏼐 􏼑ϑn, n≥ 1, (3)

and

ϑn+1 � J
¥
τ 2J
Υ
ℓ − I􏼐 􏼑ϑn + I − J

Υ
ℓ􏼐 􏼑ϑn, n≥ 1, (4)

where JRℓ � (I + ℓR)− 1. Permanently, two algorithms are
weakly convergent [30], knowing that algorithm (3) is called
Peaceman–Rachford algorithm [19] and scheme (4) is called
Douglas–Rachford algorithm [31].

A lot of works are concerned with problem (1) for ac-
cretive operators and two monotone operators, for instance,
a stationary solution to the initial-valued problem of the
evolution equation

0 ∈
zϖ
zt

− Ξϖ,ϖ(0) � ϖ° (5)

can be adjusted as (1) when the governing maximal
monotone Ξ � ¥ + Υ [29].

[1] is used to solve a minimization problem as follows:

min
ϑ∈ℸ
ℶ(ϑ) + σ(ϑ), (6)

where ℶ, σ: ℸ⟶ (− ∞,∞] are proper and lower semi-
continuous convex functions such that ℶ is differentiable
with L-Lipschitz gradient, and the proximal mapping of σ is
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ϑ⟼ argmin
ω∈ℸ

σ(ω) +
‖ϑ − ω‖

2

2ℓ
. (7)

In particular, if ¥ � ∇ℶ and Υ � zσ, where ∇ℶ is the
gradient of ℶ and zσ is the subdifferential of σ which takes
the form zσ(ϑ) � λ ∈ ℸ: σ(ω)≥ σ(ϑ) + 〈λ,ω − ϑ〉∀ω ∈ ℸ{ },
problem (1) becomes (6), and (3) becomes

ϑn+1 � proxℓσ ϑn − ℓ∇ℶ ϑn( 􏼁( 􏼁, n≥ 1, (8)

where ℓ > 0 is the stepsize and proxℓσ � (I + ℓ zσ)− 1 is the
proximity operator of σ.

)e concept of merging the inertial term with the
backward step was initiated by Alvarez and Attouch [32] and
studied extensively in [33, 34]. For maximal monotone
operators, it was called the inertial proximal point (IPP)
algorithm, and they defined it by

In � ϑn + Λn ϑn − ϑn− 1( 􏼁,

ϑn+1 � I + ℓnΥ( 􏼁
− 1
In, n≥ 1.

⎧⎨

⎩ (9)

It was proved that if ℓn􏼈 􏼉 is nondecreasing and
Λn􏼈 􏼉 ⊂ [0, 1) with

􏽘

∞

n�1
Λn ϑn − ϑn− 1

����
����
2 <∞, (10)

then algorithm (9) converges weakly to zero of Υ. In par-
ticular, condition (10) is true for Λn < 1/3. Here, Λn is an
extrapolation factor, and the inertia is represented by the
term Λn(ϑn − ϑn− 1). Note that the inertial term improves the
performance of the procedure and has good convergence
results [35–37].

Inertial term was merged with forward-backward al-
gorithm by authors [38].)ey added Lipschitz-continuous, a
single-valued, cocoercive operator ¥ into the IPP algorithm:

In � ϑn + Λn ϑn − ϑn− 1( 􏼁,

ϑn+1 � I + ℓnΥ( 􏼁
− 1
n In − ℓn¥In( 􏼁, n≥ 1.

⎧⎨

⎩ (11)

Via assumption (10), provided ℓn < 2/L with L, the
Lipschitz constant of ¥ , they obtained a weak convergence
result. Note that, for Λn > 0, algorithm (11) does not take the
form of (2), in spite of ¥ is still evaluated at the points ¥n.

Relaxation techniques and inertial effects have many
advantages in solving monotone inclusion and convex op-
timization problems; this effect appeared in several names
such as relaxed inertial proximal method, relaxed inertial
forward-backward method, and relaxed inertial Dou-
glas–Rachford algorithm; for more details, refer to
[22, 24, 39–44].

Abubakar et al. [45] introduced the RITT method as
follows:

In � ϑn + Λ ϑn − ϑn− 1( 􏼁,

ψn � 1 + ℓnΥ( 􏼁
− 1 1 − ℓn¥( 􏼁In,

ϕn+1 � (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

where Λ and β are extrapolation and relaxation parameters,
respectively. Under this algorithm, they discussed the weak
convergence to the solution point of VIP (1) and the problem
of image recovery. Note that the extrapolation step works to
accelerate but not for the desired acceleration.

)e concept of the SP method was discussed by Taka-
hashi et al. [46] as in the following algorithm:

ϑ0 ∈ ℸ be arbitrarily fixed,

C1 � C, ϑ1 � PC1
ϑ0,

ωn � Λnϑn + 1 − Λn( 􏼁Znϑn,

Cn � η ∈ C: ωn − η
����

����≤ ϑn − η
����

����􏽮 􏽯,

ϑn+1 � PCn+1
ϑ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

)ey just selected one closed convex (CC) set for a family
of nonexpansive mappings Zn􏼈 􏼉 to modify Mann’s iteration
method [47] and proved that the sequence ϑn􏼈 􏼉 converges
strongly to PFix(Z)ϑ0, provided Λn ≤ e for all n≥ 1 and for
some 0< e< 1.

In 2019, Yang and Liu [48] selected the stepsize sequence
for the iterative algorithm for monotone variational in-
equalities, which are based on Tseng’s extragradient method
and Moudafi viscosity scheme that does not require either
the knowledge of the Lipchitz constant of the operator or
additional projections.

With the incorporation of results of [45, 46, 48], we
accelerate RITT algorithm by adding the SP method to al-
gorithm (12). In a RHS, strong convergence results are given
under a proposed algorithm. As applications, our algorithm
was used to find the solution to a VIP and minimization
problem under certain conditions. Eventually, numerical
experiments to illustrate the applications, performance,
acceleration, and effectiveness of the proposed algorithm are
presented.

2. Preparatory Lemmas and Definitions

Suppose that C is a nonempty closed convex subset (CCS) of
a RHSℸ; we shall refer to ”⟶ ” as the strong convergence,
and PC: ℸ⟶ C is the nearest point projection, that is, for
all ϑ ∈ ℸ and ω ∈ C, ‖ϑ − PCϑ‖≤ ‖ϑ − ω‖. PC is called the
metric projection. It is obvious that PC verifies the following
inequality:

PCϑ − PCω
����

����
2 ≤ 〈PCϑ − PCω, ϑ − ω〉, (14)

for all ϑ,ω ∈ ℸ. In other words, the metric projection PC is
firmly nonexpansive. Hence, 〈ϑ − PCϑ,ω − PCω〉≤ 0 holds
for all ϑ ∈ ℸ and ω ∈ C, see [49, 50].

)e following inequality holds in a HS [51]:

‖l ± m‖
2

� ‖l‖
2

+‖m‖
2 ± 2〈l, m〉, (15)

for all l, m ∈ ℸ.

Lemma 1 (see [52]). Let C be a nonempty CCS of a RHS ℸ.
For each ϑ,ω, υ ∈ ℸ and ∈ R, the following set is closed and
convex:
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η ∈ C: ‖ω − η‖
2 ≤ ‖ϑ − η‖

2
+〈υ, η〉 + δ􏽮 􏽯. (16)

Lemma 2 (see [38]). Let C be a nonempty CCS of a RHS ℸ
and PC: ℸ⟶ C be the metric projection. %en,

ω − PCϑ
����

����
2

+ ϑ − PCϑ
����

����
2 ≤ ‖ϑ − ω‖

2
, (17)

for all ϑ ∈ ℸ and ω ∈ C.

Definition 1. Suppose that D(¥) ⊂ ℸ and R(¥) ⊂ ℸ are the
domain and the range of an operator ¥ , respectively. For all
ϑ,ω ∈ D(¥), an operator ¥ is called

(1) Monotone if

〈ϑ − ω, ¥ϑ − ¥ω〉≥ 0. (18)

(2) L− Lipschitz if

‖¥ϑ − ¥ω‖≤ L‖ϑ − ω‖. (19)

(3) β− Strongly monotone if there exists β> 0 such that

〈ϑ − ω, ¥ϑ − ¥ω〉≥ β‖ϑ − ω‖
2
. (20)

(4) Λ− Inverse strongly monotone (Λ− ism) if there exists
Λ> 0 such that

〈ϑ − ω, ¥ϑ − ¥ω〉≥Λ‖¥ϑ − ¥ω‖
2
. (21)

Lemma 3 (see [44]). Let ℸ be a RHS, ¥: ℷ⟶ ℷ be an
Λ− ism operator, and Υ : ℸ⟶ 2ℸ be a maximal monotone
operator. For each ℓ > 0, we define

[ℓ � J
Υ
ℓ (I − ℓ¥) � (I + ℓΥ)− 1

(I − ℓ¥). (22)

%en, we get

(i) For ℓ > 0, fix([ℓ) � (¥ + Υ)− 1(0)

(ii) For 0< s≤ ℓ and ϑ ∈ ℸ, ‖ϑ − [sϑ‖≤ 2‖ϑ − [ℓϑ‖

Lemma 4. Let ℸ be a RHS, ¥: ℸ⟶ℸ be an Λ− ism op-
erator, and Υ : ℸ⟶ 2ℸ be a maximal monotone operator.
For each ℓ > 0, we have

[ℓϑ − [ℓω
����

����
2 ≤ ‖ϑ − ω‖

2
− ℓ(2Λ − ℓ)‖¥ϑ − ¥ω‖

2
, (23)

for all ϑ,ω ∈ ℸ.

Proof. For all ϑ,ω ∈ ℸ, we get

[ℓϑ − [ℓω
����

����
2

� J
Υ
r (I − ℓ¥)ϑ − J

Υ
r (I − ℓ¥)ω

����
����
2

≤ ‖(I − ℓ¥)ϑ − (I − ℓ¥)ω‖
2

� ‖(ϑ − ω) − ℓ(¥ϑ − ¥ω)‖
2

� ‖ϑ − ω‖
2

− 2ℓ〈ϑ − ω, ¥ϑ − ¥ω〉 + ℓ2‖¥ϑ − ¥ω‖
2

≤ ‖ϑ − ω‖
2

− 2ℓΛ‖¥ϑ − ¥ω‖
2

+ ℓ2‖¥ϑ − ¥ω‖
2

� ‖ϑ − ω‖
2

− ℓ(2Λ − ℓ)‖¥ϑ − ¥ω‖
2
.

(24)

)e proof is ended. □

3. Shrinking Projection Relaxed Inertial Tseng-
Type Algorithm

We provide a method consisting of the forward-backward
splitting method with an inertial factor and an explicit
stepsize formula, which are being used to ameliorate the
convergence average of the iterative scheme and to make the
manner independent of the Lipschitz constants. )e detailed
method is provided in Algorithm 1.

Note that

(i) Since ¥ is an Λ− ism operator, it is a Lipschitz
function with a constant L, ¥In ≠ ¥ψn, and we get

ρ In − ψn

����
����

¥In − ¥ψn

����
����
≥
ρ
L

. (25)

It is obvious for ¥In � ¥ψn that inequality (25) is
satisfied. Hence, it follows that ℓn ≥min (ρ/L), ℓ0􏼈 􏼉.
)is implies that the generated sequence ℓn􏼈 􏼉 is
bounded below by min (ρ/L), ℓ0􏼈 􏼉, i.e., ℓn􏼈 􏼉 is
monotonically decreasing.

(ii) By (i) and (25), we have

ℓn+1 ¥In − ¥ψn

����
����≤ ρ In − ψn

����
����, (26)

i.e., the update (28) is well defined.
(iii) If we delete the shrinking projection term from our

algorithm, we get the algorithms of the papers
[22, 45, 53].

Theorem 1. Let ℸ be a RHS and the operators ¥: ℸ⟶ℸ
be Λ− ism on ℸ, and Υ : ℸ⟶ 2ℸ is maximally monotone. If
feasible set Ω � (¥ + Υ)− 1(0) of (1) is a nonempty CCS of a
RHS ℸ, then the sequence ϑn􏼈 􏼉 generated by Algorithm 1
converges strongly to a point τ � PΩ(ϑ1), provided that

(i) 0< liminfn⟶∞ℓℓn ≤ limsupn⟶∞ℓn < 2Λ.
(ii) limn⟶∞‖ψn − In‖ � 0.

Proof. )e proof will be divided as follows: □

Mathematical Problems in Engineering 3



Part 1. Demonstrate that PCn+1
ϑ1 is well-defined, for each

ϑ1 ∈ ℸ, n≥ 1, andΩ ⊂ Cn+1. It follows from condition (i) and
Lemma 4 that [ℓn

� (I + ℓnΥ)
− 1(I − ℓn¥) is a nonexpansive

mapping. Lemma 3 implies thatΩ is a closed and convex set,

and Lemma 1 clarifies that Cn+1 is closed and convex, for all
n≥ 1.

Let η ∈ Ω; we have

In − η2
����

���� � ϑn − η( 􏼁 − Λ ϑn− 1 − ϑn( 􏼁
����

����
2

� ϑn − η
����

����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 + Λ2 ϑn− 1 − ϑn

����
����
2
. (27)

Since the resolvent [ℓn
is firmly a nonexpansive mapping

and by Lemma 3, we have

〈ψn − η,In − ψn − ℓn¥In〉 �〈JΥℓ I − ℓn¥( 􏼁In − J
Υ
ℓ I − ℓn¥( 􏼁η, I − ℓn¥( 􏼁In − I − ℓn¥( 􏼁η + I − ℓn¥( 􏼁η − ψn〉

≥ ψn − η
����

����
2

+〈ψn − η, η − ψn〉 − 〈ψn − η, ℓn¥ψn〉 � − 〈ψn − η, ℓn¥ψn〉.
(28)

Hence, by (28), we get

〈ψn − η,In − ψn − ℓn ¥In + ¥ψn( 􏼁〉 ≥ 0, (29)

which leads to

2〈In − ψn,ψn − η〉 − 2ℓn〈¥In + ¥ψn,ψn − η〉 ≥ 0. (30)

It is obvious that

2〈In − ψn,ψn − η〉 � In − η
����

����
2

− In − ψn

����
����
2

− ψn − η
����

����
2
.

(31)

Applying (31) in (30), we can write

ψn − η
����

����
2 ≤ 〈In − η〉2 − In − ψn

����
����
2

− 2ℓn〈¥In − ¥ψn,ψn − η〉.

(32)

Now, from definition ϕn, we have

ϕn − η
����

����
2

� (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁 − η
����

����
2

� (1 − β) In − η( 􏼁 + β ψn − η( 􏼁 + βℓn ¥In − ¥ψn( 􏼁
����

����
2

� (1 − β)
2
In − η

����
����
2

+ β2 ψn − η
����

���� + β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2β(1 − β)〈In − η,ψn − η〉

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2β2ℓn〈ψn − η, ¥In − ¥ψn〉.

(33)

Initialization: select initial ϑ0, ϑ1 ∈ ℸ, ρ ∈ (0, 1), Λ≥ 0, ℓ0 > 0, and 0< β< 1.
St. (i). Put In as:

In � ϑn + Λ(ϑn − ϑn− 1),

St. (ii). Calculate:
ψn � (1 + ℓnΥ)

− 1(1 − ℓn¥)In.,
If In � ψn, discontinue. In is a solution of (1), otherwise, continue to St. (iii)

St. (iii). Calculate:
ϕn � (1 − β)In + βψn + βℓn(¥In − ¥ψn),

where ℓn+1 is stepsize sequence revised as follows:

ℓn+1 �
min ℓn, (ρ‖In − ψn‖)/(‖¥In − ¥ψn‖)􏼈 􏼉, if ¥In ≠ ¥ψn,

ℓn, else,􏼨

St. (iv). Calculate:
Cn+1 � η ∈ Cn: ‖ϕn − η‖2 ≤ ‖ϑn − η‖2 + Λ2‖ϑn− 1 − ϑn‖2 − 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ‖In − ψn‖2􏽮 􏽯,

where Δ � (2 − β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1).

St. (v). Compute
ϑn+1 � PCn+1

(ϑ1), n≥ 1,

put n � n + 1, and return to St. (i).

ALGORITHM 1: Splitting method for the VIP.
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From equation (15), one can write

2〈In − η,ψn − η〉 � In − η
����

����
2

− In − ψn

����
����
2

+ ψn − η
����

����
2
.

(34)

Applying (34) in (33), we get

ϕn − η
����

����
2

� (1 − β) In − η
����

����
2

+ β ψn − η
����

����
2

− β(1 − β) ψn − In

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉

+ 2β2ℓn〈ψn − η, ¥In − ¥ψn〉.
(35)

It follows from (32), (35), and (26) that

ϕn − η
����

����
2 ≤ (1 − β) In − η

����
����
2

+ β In − η
����

����
2

− In − ψn

����
����
2

− 2ℓn〈¥In − ¥ψn,ψn − η〉􏼔 􏼕 − β(1 − β) ψn − In

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2β2ℓn〈ψn − η, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

− 2βℓn〈¥In − ¥ψn,ψn − η〉 + β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2βℓn〈ψn − η, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − ψn, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

+ β2ℓ2n
ρ2

ℓ2n+1
In − ψn

����
����
2

+ 2βℓn(1 − β)
ρ

ℓn+1
In − ψn

����
����
2

� In − η
����

����
2

− β 2 − β − 2ρ(1 − β)
ℓn

ℓn+1
− βρ2

ℓ2n
ℓ2n+1

􏼢 􏼣 In − ψn

����
����
2

� In − η
����

����
2

− βΔn In − ψn

����
����
2
.

(36)

Applying (27) in (36), we have

ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔn In − ψn

����
����
2
.

(37)

It is clear thatΩ ⊂ C1 � ℸ. Assume thatΩ ⊂ Cn for some
n≥ 1. )en, η ∈ Cn and by (37), we have for all n≥ 1,
η ∈ Cn+1. )us, Ω ⊂ Cn+1 for all n≥ 1, i.e., PCn+1

ϑ1 is well-
defined and bounded.

Part 2. Illustrate that ϑn􏼈 􏼉 is bounded. Since Ω≠∅ and
closed and convex subset of ℸ, there is a unique u ∈ Ω such
that u � PΩϑ1. )is leads to ϑn � PCn

ϑ1, Cn ⊂ Cn+1, and
ϑn+1 ∈ Cn for all n≥ 1, and we have

ϑn − ϑ1
����

����≤ ϑn+1 − ϑ1
����

����. (38)

Furthermore, as Ω ⊂ Cn, for all n≥ 1, we obtain

ϑn − ϑ1
����

����≤ u − ϑ1
����

����. (39)

It follows by (38) and (39) that limn⟶∞‖ϑn − ϑ1‖ exists.
Hence, ϑn􏼈 􏼉 is bounded.

Part 3. Fulfillment of limn⟶∞ϑn � τ. By the definition of
Cn, for m> n, we observe that ϑm � PCm

ϑ1 ∈ Cm ⊂ Cn. From
Lemma 2, we have

ϑm − ϑn

����
����
2 ≤ ϑm − ϑ1

����
����
2

− ϑn − ϑ1
����

����
2
. (40)

By Part 2, we conclude that limn,m⟶∞‖ϑm − ϑn‖2 � 0.
)us, ϑn􏼈 􏼉 is a Cauchy sequence. Hence, limn⟶∞ϑn � τ.
Additionally, we get

lim
n⟶∞

ϑn+1 − ϑn

����
���� � 0. (41)

Part 4. Prove that τ ∈ Ω. It follows from (41) that

In − ϑn

����
���� � Λ ϑn − ϑn− 1

����
����⟶ 0 as n⟶∞. (42)

Also, by (42) and condition (ii), we can write

ψn − ϑn

����
����≤ ψn − In

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞.

(43)
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From triangle inequality on the norm and (42) and (43),
we obtain

In − ψn

����
����≤ In − ϑn

����
���� + ψn − ϑn

����
����⟶ 0 as n⟶∞.

(44)

Replacing η with ϑn in (36) and using (41) and (44), we
have

ϕn − ϑn

����
����
2 ≤Λ2 ϑn− 1 − ϑn

����
����
2

− βΔn In − ψn

����
����
2⟶ 0 as n⟶∞.

(45)

Applying (41), (42), and (45), we can write

ϑn+1 − In

����
����≤ ϑn+1 − ϑn

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞,

ϑn+1 − ϕn

����
����≤ ϑn+1 − ϑn

����
���� + ϕn − ϑn

����
����⟶ 0 as n⟶∞,

ϕn − In

����
����≤ ϕn − ϑn

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞.

(46)

It follows from (44) that

lim
n⟶∞

[ℓn
In − In

�����

����� � lim
n⟶∞

ψn − In

����
���� � 0. (47)

Since liminfn⟶∞ℓn > 0, there is ε> 0 such that ℓn ≥ ε and
ε ∈ (0, 2Λ) for all n≥ 1. )en, by Lemma 3 (ii) and (47), we
get

[εIn − In

����
����≤ 2 [ℓn

In − In

�����

�����⟶ 0 as n⟶∞. (48)

From (45) and (46), since ϑn⟶ τ as n⟶∞, we have
also In⟶ τ as n⟶∞. Since [ε is a nonexpansive and
continuous mapping, from (47), we conclude that τ ∈ Ω.

Part 5. Show that τ � PΩ(ϑ1). Since ϑn � PCn
ϑ1 andΩ ⊂ Cn,

we can get

〈ϑ1 − ϑn, ϑn − η〉 ≥ 0, ∀η ∈ Ω. (49)

Setting n⟶∞ in (49), we have

〈ϑ1 − τ, τ − η〉 ≥ 0, ∀η ∈ Ω. (50)

)is shows that τ � PΩ(ϑ1). )is finishes the proof.

4. Solve a Minimization Problem

As an application of our theorem, we solve the following
constrained convex minimization problem:

min ϑ∈Cℶ(ϑ), (51)

where ℶ: ℸ⟶ R is a convex function. We suppose that
the function ℶ is differentiable such that ∇ℶ is an Λ− ism
operator.

It is easy to see that problem (51) is equivalent to the
following problem:

minϑ∈ℸ ℶ(ϑ) + ℘C(ϑ)􏼂 􏼃, (52)

where ℘C is the indicator function of C. )us, this problem
becomes the problem of finding an element ϑ∗ ∈ ℸ such that

∇ℶ ϑ∗( 􏼁 + z℘C ϑ∗( 􏼁 ∋ 0, (53)

where z℘C is the subdifferential of ℘C. We know that z℘C is a
maximal monotone operator, and (I + m z℘C)− 1 � PC for
all m> 0.

For solving problem (51), we state the theorem in the
following, which is similar to )eorem 1.

Theorem 2. Let the sequence ℓn􏼈 􏼉 be bounded below by
min (ρ/L), ℓ0􏼈 􏼉, where ρ ∈ (0, 1) and ℓ0 > 0. Given a param-
eter Λ≥ 0 such that 0< inf

n
ℓn􏼈 􏼉≤ supn ℓn􏼈 􏼉< 2Λ. Let ϑn􏼈 􏼉 be

the sequence in ℸ which is defined by ϑ0, ϑ1 ∈ ℸ, C1 � ℸ,
0< β< 1, and

In � ϑn + Λ ϑn − ϑn− 1( 􏼁,

ψn � PC In − ℓn∇ℶIn( 􏼁,

ϕn � (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁,

where, ℓn+1 �

min ℓn,
ρ In − ψn

����
����

¥In − ¥ψn

����
����

􏼨 􏼩, if ¥In ≠ ¥ψn,

ℓn, else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cn+1 �

η ∈ ℸ: ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ In − ψn

����
����
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ϑn+1 � PCn+1
ϑ1( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where ¥: ℸ⟶ℸ is Λ− ism on a RHS ℸ, Υ: ℸ⟶ 2ℸ is a
maximally monotone operator, and Δ � (2−

β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1). If Ω≠∅, then the se-

quence ϑn􏼈 􏼉 converges strongly to τ � PΩ(ϑ1), provided that
limn⟶∞‖ψn − In‖ � 0.

5. Solve a Split Feasibility Problem

In this section, we investigated the application of our pro-
posed methods to the split convex feasibility problem
(SCFP). Let T: ℸ 1⟶ℸ 2 be a bounded linear operator and
T∗ its adjoint defined on the two RHSs ℸ 1 and ℸ 2. Assume
that C ⊂ ℸ 1 and Q ⊂ ℸ 2 are nonempty CCSs. )e SCFP
[54] take the shape as follows:

create a point ϑ ∈ C so thatT(ϑ) ∈ Q. (55)

In a HS, SFP was initiated by Censor and Elfving [54],
and they used a multidistance approach to find an adaptive
approach for resolving it. Many of the problems that emerge
from state retrieval and restoration of medical image can be
formulated as SVFP [55, 56]. SFP is also used in a variety of
disciplines such as dynamic emission tomographic image
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reconstruction, image restoration, and radiation therapy
treatment planning [57–59]. Let us consider

¥(ϑ) ≔ ∇
1
2

Tϑ − PQ(Tϑ)
����

����
2

􏼒 􏼓 � T
∗

I − PQ􏼐 􏼑Tϑ (56)

for the metric projection PQ on to Q, the gradient ∇, and
Υ � ziC. Due to the above construction, problem (55) has an
inclusion format as described in (1). It can be seen that ¥ is
Lipschitz continuous with constant L � ‖T‖2, and Υ is
maximal monotone, see, e.g., [60].

Let C be a nonempty CCS of a RHS ℸ, and a normal
cone of C at ϑ ∈ C is defined by

NC(ϑ) � z ∈ ℸ: 〈z, y − ϑ〉≤ 0, ∀y ∈ C􏼈 􏼉. (57)

Suppose g: ℸ⟶ (− ∞, +∞) is a proper, lower semi-
continuous, and convex function. For each ϑ ∈ ℸ, the
subdifferential zg of g is given by

zg(ϑ) � z ∈ ℸ: g(y) − g(ϑ)≥ 〈z, y − ϑ〉, ∀y ∈ C􏼈 􏼉.

(58)

For any nonempty CCSC ofℸ, the indicator function iC
of C is defined by

iC(ϑ) �
0, if ϑ ∈ C

∞, otherwise.
􏼨 (59)

It is obvious that the indicator function iC is proper,
convex, and lower semicontinuous on ℸ. A subdifferential
ziC of iC is a maximal monotone operator, and

ziC(ϑ) � z ∈ ℸ: iC(y) − iC(ϑ)≥ 〈z, y − ϑ〉, ∀y ∈ C􏼈 􏼉

� z ∈ ℸ: 〈z, y − ϑ〉≤ 0, ∀y ∈ C􏼈 􏼉 � NC(ϑ).

(60)

For each ϑ ∈ ℸ, now we define the resolvent of an in-
dicator function ziC for each λ> 0 in the following manner:

J
ziC
λ � Id + λ ziC( 􏼁

− 1
. (61)

Hence, we can observe that

y � J
ziC
λ (ϑ)⟺ ϑ ∈ y + λ ziC(y)( 􏼁

− 1⟺ ϑ − y ∈ λ ziC(y)

⟺y � PC(ϑ).

(62)

Now, on the basis of the above, Algorithm 1 may be
reduced to the following scheme.

Theorem 3. Let ϑn􏼈 􏼉 be a sequence generated by the following
scheme: choose ϑ− 1, ϑ0 ∈ C, ρ ∈ (0, 1), Λ≥ 0, ℓ0 > 0, and
0< β< 1.

St. (i): compute In in the following way:

In � ϑn + Λ ϑn − ϑn− 1( 􏼁. (63)

St. (ii): calculate

ψn � PC In − ℓnT
∗

I − PQ􏼐 􏼑TIn􏽨 􏽩. (64)

If In � ψn, stop, and In is a solution of problem (55);
otherwise, continue to St. (iii).
St. (iii): calculate

ϕn � (1 − β)In + βψn + βℓn T
∗

I − PQ􏼐 􏼑TIn − T
∗

I − PQ􏼐 􏼑Tψn􏽨 􏽩,

(65)

where ℓn+1 is the stepsize sequence revised in the fol-
lowing way:

ℓn+1 �
min ℓn,

ρ In − ψn

����
����

T
∗

I − PQ􏼐 􏼑TIn − T
∗

I − PQ􏼐 􏼑Tψn􏽨 􏽩

⎧⎨

⎩

⎫⎬

⎭, if T
∗

I − PQ􏼐 􏼑TIn ≠T
∗

I − PQ􏼐 􏼑Tψn,

ℓn, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(66)

St. (iv): calculate

Cn+1 � η ∈ ℸ: ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ In − ψn

����
����
2

􏼚 􏼛, (67)

where Δ � (2 − β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1).

St. (v): compute
ϑn+1 � PCn+1

ϑ1( 􏼁, n≥ 1. (68)
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Put n � n + 1, and return to St. (i). If the solution set ΓSFP
is nonempty, then the sequence ϑn􏼈 􏼉 converges weakly to
an element of Γ(SFP).

6. Numerical Discussion

)is part is devoted to present a numerical solution to a
SCFP in an infinite HS, which is a special inclusion problem
as explained in Section 5. )e problem setting is taken from
[61]. We provide the comparison of Algorithm 1 (Alg1) in
[45] and our proposed Algorithm 1 (Alg2).

Example 1. Let ℸ1 � ℸ2 � L2([0, 2π]) be two HSs with an
inner product

〈ϑ, y〉 ≔ 􏽚
2π

0
ϑ(t)y(t)dt, ∀ϑ, y ∈ L2([0, 2π]), (69)

and the induced norm defined by

‖ϑ‖ ≔

�����������

􏽚
2π

0
|ϑ(t)|

2dt

􏽳

, ∀ϑ ∈ L2([0, 2π]). (70)

Next, consider the feasible set C ⊂ ℸ 1 as

10–6
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Number of iterations

Alg1 [l0 = 1.00]
Alg1 [l0 = 0.80]
Alg1 [l0 = 0.60]

Alg1 [l0 = 0.40]
Alg1 [l0 = 0.20]

Figure 1: Numerical conduct of Alg1 by choosing different values of ℓ0.
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Figure 2: Numerical conduct of Alg1 by choosing different values
of ℓ0.
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Figure 3: Numerical conduct of Alg2 by choosing different values
of ℓ0.
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C � ϑ ∈ ℸ1: 􏽚
2π

0
ϑ(t)dt≤ 1􏼨 􏼩, (71)

and Q ⊂ ℸ2 is

Q � ϑ ∈ ℸ2: 􏽚
2π

0
|ϑ(t) − sin(t)|

2dt≤ 16􏼨 􏼩. (72)

Consider the mapping T: ℸ 1⟶ℸ 2 such that
(Tϑ)(s) � ϑ(s), ϑ ∈ ℸ1.)en, (T∗ϑ)(s) � ϑ(s), and ‖T‖ � 1.
So, we shall solve the following problem:

create ϑ∗ ∈ C so thatT ϑ∗( 􏼁 ∈ Q. (73)

We can also observe that since (Tϑ)(s) � ϑ(s), ϑ ∈ ℸ1,
the above problem is actually a CFP of the form
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Figure 4: Numerical conduct of Alg2 by choosing different values of ℓ0.
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Figure 5: Numerical comparison of Alg2 with Alg.1 by assuming values of ϑ− 1 � ϑ0 � t.
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create ϑ∗ ∈ C∩Q. (74)

Figures 1–9 and Tables 1 and 2 show the numerical
results by assuming Dn � ‖ϑn − ϑn1

‖≤ 10− 6.

Remark 1. It is well known that the success of any iterative
method depends on two main things: first, the number of
iterations: when the number of iterations is small, the
method is successful in saving effort. Second, time factor: the

method that needs less time in implementation is excellent
than its counterpart, which needs a lot of time and is
considered successful in saving time. So, from figures and
tables, we observe that our algorithm needs fewer iterations
and less time than Algorithm 1 [45]. )is illustrates that our
method is successful in speeding up Algorithm 1 [45] and
solving problem (55). Also, the performance of our algo-
rithm is good because it saves time and effort in studding the
convergence rate.
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Figure 6: Numerical comparison of Alg2 with Alg.1 by assuming values of ϑ− 1 � ϑ0 � t2/5.
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Figure 7: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � 2ett5.
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Figure 8: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � et sin(t).
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Figure 9: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � (t2 − et)cos(t).

Table 1: Numerical comparison of Alg2 with Alg1 by assuming different values of ℓ0.

Number of iterations Execution time in
seconds

ϑ− 1 � ϑ0 ρ Λ ℓ0 Alg1 Alg2 Alg1 Alg2
1/5 exp (t/2)5/4 0.27 0.50 1.00 56 50 0.0136 0.0190
1/5 exp (t/2)5/4 0.27 0.50 0.80 62 52 0.0219 0.0150
1/5 exp (t/2)5/4 0.27 0.50 0.60 72 56 0.0186 0.0205
1/5 exp (t/2)5/4 0.27 0.50 0.40 83 62 0.0160 0.0183
1/5 exp (t/2)5/4 0.27 0.50 0.20 104 72 0.0252 0.0225
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