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High-utility patternmining is an effective technique that extracts significant information from varied types of databases. However,
the analysis of data with sensitive private information may cause privacy concerns. To achieve better trade-off between utility
maximizing and privacy preserving, privacy-preserving utility mining (PPUM) has become an important research topic in recent
years. +eMSICF algorithm is a sanitization algorithm for PPUM. It selects the item based on the conflict count and identifies the
victim transaction based on the concept of utility. AlthoughMSICF is effective, the heuristic selection strategy can be improved to
obtain a lower ratio of side effects. In our paper, we propose an improved sanitization approach named the Improved Maximum
Sensitive Itemsets Conflict First Algorithm (IMSICF) to address this issue. It dynamically calculates conflict counts of sensitive
items in the sanitization process. In addition, IMSICF chooses the transaction with the minimum number of nonsensitive itemsets
and the maximum utility in a sensitive itemset for modification. Extensive experiments have been conducted on various datasets
to evaluate the effectiveness of our proposed algorithm. +e results show that IMSICF outperforms other state-of-the-art al-
gorithms in terms of minimizing side effects on nonsensitive information. Moreover, the influence of correlation among itemsets
on various sanitization algorithms’ performance is observed.

1. Introduction

Data mining is used to discover the decision-making knowl-
edge and information frommassive data [1–4]. In a cooperative
project, data are shared among different companies for mutual
benefits. However, this brings the risk of disclosing sensitive
knowledge contained in a database [5]. Sensitive knowledge
can be represented as a set of frequent patterns and high-utility
patterns with security implication [6, 7]. +us, data owner
wants to hide sensitive information before a database is re-
leased. To solve the problem, privacy-preserving data mining
(PPDM) has been proposed and become an important research
direction [8]. PPDM methods have been applied in various
fields, such as cloud computing, e-health, wireless sensor
networks, and location-based services [9].

One way to conceal sensitive knowledge is to sanitize a
database by modifying some items in it. Atallah et al. [10]
first proved that the optimal sensitive-knowledge-hiding
problem is NP-hard and proposed a sanitization algorithm

based on heuristic strategy. After that, a lot of works have
been completed. However, the existing hiding approaches
for protecting high-utility itemsets sanitize a database on the
basis of the concept of utility. Meanwhile, the side effects on
nonsensitive information are not taken into account. +us,
the damage to nonsensitive knowledge is serious, and da-
tabase quality is low when a database is modified. To address
this problem, we propose an improved approach called the
Improved Minimum Sensitive Itemsets Conflict First Al-
gorithm (IMSICF) for hiding sensitive high-utility itemsets.
+is algorithm is based on the MSICF algorithm and makes
the following improvements:

(1) For the victim item selection, the conflict count of
each sensitive item is dynamically calculated in the
sanitization process, which ensures that the item with
the maximum conflict count is chosen to be sanitized.

(2) For the victim transaction selection, the transaction
supporting the least number of nonsensitive itemsets
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and having the maximal utility of a sensitive itemset
is chosen to be modified, which effectively reduces
undesired side effects produced by the sanitization
process.

(3) +e conflict degree is defined to reflect the corre-
lation among sensitive itemsets. Moreover, the in-
fluence of conflict degree on sanitization
performance is observed.

+e rest of the paper is organized as follows. Section 2
reviews related works. In Section 3, preliminary knowledge
of high-utility itemsets mining is introduced. Section 4
describes the hidden strategy of the proposed sanitization
approach. Section 5 gives experimental results and analysis.
Finally, conclusions are made in Section 6.

2. Related Works

In this section, related works on privacy-preserving data
mining are reviewed.

Most of previous studies focused on hiding sensitive
itemsets from frequent itemset mining approaches. Verykios
et al. [11, 12] proposed five approaches for achieving PPDM.
+e first three algorithms are used to protect sensitive as-
sociation rules. A sensitive rule is hidden by reducing its
support or confidence. +e last two algorithms are used to
conceal sensitive itemsets. However, all of the five algorithms
only hide rules that are supported by disjoint frequent
itemsets. Oliveira and Zäıane [13] presented a one-scan
algorithm that only needs to scan a database once. +e
disclosure threshold is introduced to balance privacy pro-
tection and knowledge disclosure. Amiri [14] developed
three algorithms, namely, aggregate, disaggregate, and hy-
brid, for hiding sensitive frequent itemsets. Aggregate
conceals sensitive itemsets by deleting transactions. Disag-
gregate sanitizes a database by removing some items. +e
hybrid algorithm is the combination of the previous two
algorithms. In terms of execution time and side effects, the
hybrid algorithm is recommended for database sanitization.

Gkoulalas-Divanis and Verykios [15] introduced a new
approach for hiding sensitive itemsets by inserting some
synthetic transactions into an original database. +e hybrid
database is generated based on the constraints on the border
itemsets. Wu and Huang [16] described two greedy ap-
proaches, namely, greedy approximation algorithm and
exhausted algorithm, for concealing sensitive association
rules. Both algorithms include the sanitization procedure
and exposed procedure. +e greedy approximation algo-
rithm always outperforms the other one because the cost is
recalculated when items are modified. However, the greedy
algorithm takes a lot of time to expose missing rules.

Hong et al. [17] used the technique of term frequency-
inverse document frequency (TF-IDF) to sanitize a database.
+e transaction with more sensitive items and less influence
on other transactions is selected for modification. However,
the scalability of this approach is poor.

Le et al. [18, 19] applied the lattice theory to hide sen-
sitive association rules, and two approaches called HCSRIL
and AARHIL were proposed based on the intersection lattice

of frequent itemsets. Both algorithms select the victim item
with the least impacts on the generating set for sanitization.
+e AARHIL algorithm has better performance than
HCSRIL in terms of missing cost since the victim transaction
selection is improved. Shah et al. [20] adopted the genetic
algorithm to hide sensitive association rules. +e fitness
function is used to evaluate whether to modify a transaction
or not. +e transaction with lower fitness will be modified
with higher probability because it contains more sensitive
items and minimal number of data items.

Cheng et al. [21–25] applied a multiobjective optimi-
zation algorithm into PPDM, such as NSGA-II and Hype.
+e algorithms in [21–24] conceal sensitive association rules
by modifying some items. +e sanitization approach in [25]
hides sensitive itemsets by removing some items. +e key
issue in optimization algorithm is to design the objective
functions, which are based on the side effects on a database.
Besides, Cheng et al. [26] also proposed a greedy algorithm
for hiding sensitive rules. +e information on nonsensitive
itemsets is considered in the selection of the victim trans-
action. +us, the side effects are effectively reduced. Lin et al.
[27] presented a multiobjective algorithm (NSGA2DT) for
hiding sensitive itemsets with transaction deletion. A Fast
SoRting strategy and the prelarge concept are utilized to
accelerate the iterative process.

+e above methods focus on protecting sensitive
knowledge in frequent itemset mining. However, it is not
suitable to modify the quantities of items in a transactional
database. Recently, various methods are developed for
protecting high-utility itemsets. Moreover, PPUM has be-
come an important research issue. Yeh et al. [28, 29] pre-
sented the HHUIF and MSICF algorithms to conceal
sensitive high-utility itemsets. Both algorithms sanitize the
original database based on the concept of utility. However,
the MSICF algorithm takes the conflict count of sensitive
items into account. Rajalaxmi and Natarajan [30] identify
the victim transaction with the maximum number of sen-
sitive items. +en, the item with the maximal utility is se-
lected for modification. However, the impact on
nonsensitive itemsets is discarded. Lin et al. [31] proposed a
GA-based algorithm for PPUM by inserting some appro-
priate transactions into an original database. A function with
three factors is used to determine the transactions for in-
sertion. However, this algorithm produces some spurious
itemsets after the sanitization process.

Yun and Kim [32] presented an algorithm called FPUTT
to improve the efficiency of the HHUIF algorithm. +e tree
structure is utilized to accelerate the sanitization process.
However, the results of FPUTT in terms of side effects on
nonsensitive knowledge are the same as those of HHUIF. Lin
et al. [33, 34] then developed two approaches MSU_MAU
and MSU_MIU for PPUM. For each sensitive itemset SHi,
the transaction with the maximum utility of SHi is selected
for modification. +en, the victim item is chosen based on
the maximum utility or minimum utility. Lin et al. [35]
designed a genetic algorithm to hide sensitive HUIs by
transaction deletion. +e prelarge concept is adopted to
accelerate the evolution process. However, some spurious
itemsets are produced by the sanitization process. Li et al.
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[36] formulate the hiding process as a constraint satisfaction
problem. Integer linear programming is adopted in the
designed algorithm to obtain a lower ratio of side effects
produced in the hiding process.

Rajalaxmi and Natarajan [37] proposed two approaches
named MSMU and MCRSU to hide the sensitive frequent
and utility itemsets. Both algorithms conceal the itemsets
until their support and utility fall below the given thresholds,
respectively. Liu et al. [38] presented a novel sanitization
algorithm called HUFI to conceal sensitive frequent and
utility itemsets. +e concept of maximum boundary value is
introduced to determine the hidden strategy. +us, the
approach outperforms the other algorithms in minimizing
the side effects. Besides the above works, Le et al. [39]
proposed an efficient algorithm for hiding high-utility se-
quential patterns, which relies on a novel structure to en-
hance the sanitization process.

3. Preliminaries

Some preliminary definitions of high-utility itemsets mining
are introduced in this section [40, 41]. In addition, the
sanitization problem is described [42, 43].

3.1. Definitions. Let I � I1, I2, . . . , Im􏼈 􏼉 be a set of distinct
items. Let D � T1, T2, . . . , Tn􏼈 􏼉 be a transaction database,
where each transaction Ti has a unique identifier TID and
Ti ⊆ I. Each item has an external utility value, which reflects
the importance of an item. An itemset is a subset of I, and it
is called a k-itemset if it contains k items.

Definition 1. Each item it is assigned an external utility
value, which is denoted as eu(it). For example, in Table 1,
eu(b) � 3.

Definition 2. Each item it in a transaction T is assigned an
internal utility value, which is denoted as iu(it, T). For
example, in Table 1, iu(b, T1) � 1.

Definition 3. +e utility of item it in a transaction T is
denoted as u(it, T) and defined as iu(it, T) × eu(it). For
example, in Table 1, u(d, T2) � 1 × 6 � 6.

Definition 4. +e utility of itemset SHi in a transaction T is
denoted as u(SHi, T) and defined as 􏽐it∈SHi

u(it, T). For
example, in Table 1, u( b, c{ }, T3) � 3 + 4 � 7.

Definition 5. +e utility of itemset SHi is denoted as u(SHi)

and defined as 􏽐SHi∈Tu(SHi, T). For example, in Table 1,
u( b, c{ }) � 7 + 16 + 19 � 42.

Definition 6. +e utility of a transaction T is denoted as
tu(T) and defined as 􏽐it∈Tu(it, T). For example, in Table 1,
u(T2) � 2 + 6 � 8.

Definition 7. +e user-specified minimum utility threshold
is denoted as minutil. A pattern X is a high-utility itemset if
u(X)≥minutil. Otherwise, it is a low-utility itemset. High-

utility itemset mining is to discover the itemsets whose
utility values are beyond minutil.

3.2. Sanitization Problem Description. Given a transaction
database D, the minimum utility threshold minutil, and the
high-utility itemsets mined from D based on minutil. SH �

SH1, SH2, . . . , SHt􏼈 􏼉 is a set of sensitive high-utility itemsets,
where SHi is the itemset that needs to be hidden. A sensitive
transaction refers to the transaction supporting at least one
sensitive itemset.+e sanitization problem is to transform an
original database D to a sanitized database D′ so that all
sensitive itemsets are hidden, while at the same time, the side
effects on the database and nonsensitive knowledge are
minimized.

One way to sanitize a database is to modify some items in
it. +e modified item contained in D is the victim item,
which is denoted as Ivic. +e transaction supporting Ivic is
the victim transaction, which is denoted as Tvic.

4. The Hiding Approach

In this section, a sanitization approach named the Improved
Maximum Sensitive Itemsets Conflict First Algorithm
(IMSICF) is presented in detail. +e victim item is selected
based on the conflict count, which is calculated dynamically.
Moreover, the victim transaction is selected based on the
side effects on nonsensitive knowledge, which effectively
reduces the missing costs. To better illustrate how the
IMSICF algorithm works, an example is given.

4.1. .e Sanitization Process of Hiding Sensitive Itemsets

Definition 9. Let SH � SH1, SH2, . . . , SHt􏼈 􏼉 be a set of
sensitive high-utility itemsets. +e conflict count of a sen-
sitive item it in SH is denoted as Icount(it) and defined as
| SHi ∈ SH | it ∈ SHi􏼈 􏼉|; that is, Icount(it) is the number of
sensitive itemsets containing it. +e conflict degree of SH is
defined as

􏽐it∈SHIcount it( 􏼁

ni

, (1)

where ni refers to the number of distinct items contained in
SH. +e conflict degree reflects the correlation among
sensitive itemsets. +e higher conflict degree indicates that
sensitive itemsets have more common items.

For example, given a set of sensitive itemsets
SH � b, e{ }, e, f􏼈 􏼉􏼈 􏼉, the conflict degree of SH is 4/3 because
Icount(b) � 1, Icount(e) � 2, and Icount(f) � 1.

Table 1: A transaction database (left) External utility value (right).

TID Transaction (item, iu) Item eu
T1 (a, 2) (b, 1) (e, 3) a 5
T2 (c, 1) (d, 6) b 3
T3 (b, 1) (c, 2) (e, 1) (f, 1) c 2
T4 (a, 3) (b, 4) (c, 2) (d, 2) (e, 5) d 1
T5 (b, 3) (c, 5) e 6
T6 (a, 2) (e, 7) (f, 3) f 10
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Definition 10. Let SHi be a sensitive itemset and minutil be
the minimum utility threshold. To hide SHi, the minimum
utility to be reduced is defined as u(SHi) − minutil + 1 and
denoted as diffu, where u(SHi) is the utility of SHi.

Let D be a database and SHi a sensitive itemset. To hide
SHi, the utility of SHi should be reduced until it falls below the
minimum utility threshold; namely, diffu of SHi should be
lower than or equal to zero. +e strategy of hiding SHi is to
sanitize some items in the selected transactions in D. +e
sanitization process of hiding SHi is shown in Figure 1. First,
the victim item is identified. +en, a sensitive itemset sup-
porting the victim item is determined. Next, the victim
transaction is selected to bemodified. After the victim item and
transaction are determined, an original database is sanitized. In
the following, the sanitization process is described in detail.

4.1.1. .e Victim Item Selection. Let D be a database, SH �

SH1, SH2, . . . , SHt􏼈 􏼉 is a set of sensitive itemsets. In the
MSICF algorithm, the items in SH are sorted according to
the descending order of conflict counts. +en, the victim
item is selected based on the sorted results. Because the order
of sorted items is fixed, the victim item selection cannot be
changed if an original database is modified. +us, we im-
prove the selection of the victim item. In our approach, the
item with the maximum conflict count is selected to be
sanitized, that is, Ivic � argmaxit∈SHIcount(it). Once a sen-
sitive itemset is hidden, the conflict count of each sensitive
item is recalculated to prevent other sensitive itemsets from
being hidden in the sanitization process. In this way, we can
make sure that a victim item has the maximum conflict
count in the sanitization process.

4.1.2. .e Victim Transaction Selection. Let D be a database
and SHi a sensitive itemset. For the MSICF algorithm, the
transaction with the maximum utility of a victim item is
selected to be a victim transaction. However, the damage to
nonsensitive knowledge is not taken into account. To reduce
the side effects on nonsensitive information, the transaction
that causes the minimum impact should be modified with
priority. +us, we assign a transaction weight to each sen-
sitive transaction, which is used to determine the victim
transaction. +e transaction weight is computed as

tw(T) �
u SHi, T( 􏼁

1 + NSHC(T)
, (2)

where u(SHi, T) is the utility of SHi in transaction T and
NSHC(T) is the number of nonsensitive itemsets supported
by T. +e transaction with the maximum utility of SHi

indicates that the deletion of a victim item will decrease
more utility. Moreover, the transaction supporting the
minimumnumber of nonsensitive itemsets indicates that the
modification of it will generate less side effects. +us, the
transaction having the maximum transaction weight would
be sanitized first. Because NSHC(T) is zero when a trans-
action does not support any nonsensitive itemset, we set the
denominator of Formula (2) to NSHC(T) + 1.

4.1.3. .e Original Database Sanitization. Let SHi be a
sensitive itemset, Ivic a victim item, and Tvic a victim
transaction. If diffu of SHi is not greater than
u(Ivic, Tvic) − eu(Ivic), it indicates that the victim item is not
removed from a victim transaction. +en, iu(Ivic) is reduced
to iu(Ivic) − 􏼆diffu/eu(Ivic)􏼇, where eu(Ivic) is the external
utility of Ivic. Correspondingly, diffu is decreased to
diffu − eu(Ivic)∗ 􏼆diffu/eu(Ivic)􏼇. Otherwise, if Ivic is re-
moved from the victim transaction, diffu is updated to
diffu − u(SHi, Tvic) rather than diffu − u(Ivic, Tvic). +e
reason is that SHi is not supported by Tvic if Ivic is removed
from Tvic.

4.2..e Sketch of the IMSICF Algorithm. +e pseudocode of
the IMSICF algorithm is shown in Algorithm 1. Initially, the
conflict count of each sensitive item in SH is calculated (Line
2). +en, the item with the maximum conflict count is se-
lected to be victim item Ivic (Line 3). After the sanitized item
is identified, the sensitive itemsets containing Ivic are hidden
one by one. For a sensitive itemset SHi, the minimum utility
to be reduced is computed (Line 5). +e utility of SHi is
reduced until diffu is less than or equal to zero. To hide SHi,
the sensitive transactions of SHi are identified. +en, the
transaction weight of each transaction is calculated
according to Formula (2). +e transaction with the maxi-
mum weight is selected to be victim transaction Tvic. +is is
reasonable since the minimum side effects on nonsensitive
information are generated by modifying the selected Tvic
(Line 7-8). Next, the victim item in Tvic is modified, and the
database and itemsets are updated, respectively (Line 9–16).
If diffu of SHi is not greater than zero, the sensitive itemset is
removed from SH (Line 18). +e algorithm is terminated
until all sensitive itemsets are hidden.

4.3. An Illustrative Example. For a given transaction data-
base in Table 1, the high-utility itemsets derived at minutil �

60 are listed in Table 2. +e user-specified sensitive itemsets
are {b, e} and{e, f}, which are identified in boldface in Table 2.
+e proposed algorithm (IMSICF) is applied to hide sen-
sitive itemsets.

To hide the sensitive itemsets SH � b, e{ }, e, f􏼈 􏼉􏼈 􏼉, the
conflict count of each item contained in SH is calculated.+e
results are Icount(b) � 1, Icount(e) � 2, and Icount(f) � 1.
Item e is selected to be the victim item because it has the
maximum conflict count. +en, the sensitive itemset for
hiding is randomly selected from among the ones
containing the victim item. Let us assume that the selected
itemset is {b, e}. +e minimum utility to be reduced is
diffu � 72 − 60 + 1 � 13, and the sensitive transactions are
ST � T1, T3, T4􏼈 􏼉.+e transaction weight of each transaction
is assigned according to Formula (2). Because
tw(T1) � 21/4, tw(T3) � 9/2, and tw(T4) � 42/6, the
transaction T4 is chosen for modification. After the victim
item and transaction are identified, the item is sanitized
according to the original database sanitization method de-
scribed in Section 3.1. Because diffu< u(e, T4) − eu(e), the
internal utility of item e is updated to
iu(e, T4) − 􏼆diffu/eu(e)􏼇 � 2. +e utility of {b, e} is reduced
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to 54. +us, {b, e} is concealed, and the nonsensitive itemsets
{a, b, c, e} and {a, b, c, d, e} are falsely hidden. +en, {e, f} is
hidden by following the above steps. After all of the sensitive
itemsets are hidden, four nonsensitive itemsets, namely, {a,
b, c, e}, {a, b, c, d, e}, {e}, and {a, e, f}, are hidden.

5. Experimental Analysis

To evaluate the performance of the IMSICF algorithm, a
series of experiments have been conducted on various real
and synthetic datasets, in which IMSICF is compared with
the state-of-the-art algorithms. Besides, the experimental
results are discussed in this section.

5.1. ExperimentalData. +e experiments were conducted on
a 2.8 GHz Intel Xeon E5-2360 processor with 8GB RAM. To
evaluate the performance of the proposed algorithm, four
state-of-the-art sanitization algorithms, namely, HHUIF,
MSICF, MSU-MIU, and MSU-MAU, were used for com-
parison. Because the PPUMGAT algorithm hides sensitive
itemsets by transaction deletion, we do not compare the
proposed algorithm with PPUMGAT. All of the algorithms
were implemented in Java language. Four datasets [33] were
used to run the programs. +e characteristics of these
datasets are displayed in Table 3. +e density is measured as
the average transaction length divided by the number of
items. For each dataset, the external utility values were
generated with the Gaussian normal distribution, and the
internal utility values are the random numbers ranging from
1 to 10. +e EFIM algorithm [44] was used to mine high-
utility itemsets, and the minimum utility thresholds for
mushroom, Foodmart, T25I10D10K, and T20I6D100K were
set at 8.66%, 0.045%, 0.24%, and 0.17%, respectively. +e
sensitive itemsets were randomly selected from the mined
itemsets.

+e proposed algorithm identifies the victim item based
on the conflict count of each sensitive item.+us, the conflict
degree of the sensitive itemsets is presented to observe how
the correlation among the itemsets influences the perfor-
mance of the sanitization algorithms. Besides, the sensitive

Victim item 
selection A sensitive itemset Victim transaction 

selection
Sanitize the 

original database

Figure 1: +e sanitization process for hiding a sensitive itemset.

Input: a database D, a set of sensitive itemsets SH � SH1, SH2, . . . , SHt􏼈 􏼉, the given utility threshold minutil.
Output: the sanitized database D′

(1) while SH≠∅
(2) Calculate Icount(ip) of each sensitive item ip, ip ∈ SHi.
(3) Ivic � argmaxip∈SHIcount(ip)

(4) for each SHi ∈ SH∧ Ivic ∈ SHi

(5) diffu � u(SHi) − minutil + 1
(6) while diffu> 0
(7) Find the sensitive transactions ST, SHi ⊆ ST
(8) Tvic � argmaxT∈STtw(T)

(9) if diffu> u(Ivic, Tvic) − eu(Ivic)

(10) Delete Ivic
(11) diffu � diffu − u(SHi, Tvic)

(12) else
(13) iu(Ivic) � iu(Ivic) − 􏼆diffu/eu(Ivic)􏼇

(14) diffu � diffu − eu(Ivic)∗􏼆diffu/eu(Ivic)􏼇

(15) end if
(16) Update the database and the itemsets
(17) end while
(18) SH � SH − SHi

(19) end for
(20) end while

ALGORITHM 1: +e IMSICF algorithm.

Table 2: Derived high-utility itemsets.

HID Itemsets Utility
1 e 96
2 a, e 125
3 b, e 72
4 e, f 88
5 a, b, e 88
6 a, e, f 82
7 a, b, c, e 61
8 a, b, c, d, e 63
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percentage is used to evaluate the scalability of the saniti-
zation approaches. Sensitive percentage is measured as the
number of sensitive itemsets divided by the number of high-
utility itemsets. +is value of parameter ranges from 0.1% to
0.5%. Moreover, two-way ANOVA is used to evaluate the
differences between the compared approaches. Two-way
ANOVA is a comparison of means between groups that have
been split on two independent variables (called factors). +e
P value is important because it indicates whether the dif-
ference between the sanitization algorithms is significant. If
P value is below 0.05, it means that there is a significant
difference between the compared approaches. Otherwise, it
indicates that there is no significant difference between the
sanitization approaches.

5.2. Performance Measurement. To evaluate the efficiency,
the execution time of the sanitization process is measured
and the data processing stages are discarded. On the other
hand, five performance measures are used to evaluate the
effectiveness and summarized as follows.

(1) Hiding failure (HF): it is the proportion of the
sensitive itemsets that fail to be hidden, which is
calculated as

HF �
SH D′( 􏼁

SH(D)
, (3)

where SH(D′) and SH(D) are the sensitive high-
utility itemsets mined from a sanitized database D′
and an original database D, respectively.

(2) Missing cost (MC): it is the proportion of themissing
nonsensitive itemsets that are hidden by accident
after sanitization, which is computed as

MC �
NSH(D) − NSH D′( 􏼁

NSH(D)
, (4)

where NSH(D′) and NSH(D) are the nonsensitive
itemsets discovered from the databases D′ and D,
respectively.

(3) Artificial cost (AC): it refers to the proportion of the
artificial itemsets, which is computed as

AC �
H D′( 􏼁 − H(D)∩H D′( 􏼁

H D′( 􏼁
, (5)

where H(D′) and H(D) are the high-utility itemsets
mined from the databases D′ and D, respectively.

(4) Itemset utility similarity (IUS): it reveals the utility
loss for the discovered itemsets by the sanitization
process, which is calculated as

IUS �
􏽐

X∈HUIs
D
′
u(X)

􏽐X∈HUIsD u(X)
, (6)

where 􏽐
X∈HUIs

D
′
u(X)and 􏽐X∈HUIsD u(X) denote the

utility of the high-utility itemsets discovered from
the databases D′ and D, respectively.

(5) Database utility similarity (DUS): it reveals the utility
loss for an original database by the sanitization
process, which is calculated as

DUS �
􏽐Ti∈D′tu Ti( 􏼁

􏽐Ti∈Dtu Ti( 􏼁
, (7)

where 􏽐Ti∈D′tu(Ti) and 􏽐Ti∈Dtu(Ti) denote the utility
of the databases D′ and D, respectively.

5.3. Execution Time. +e results of the execution times
under various sensitive percentages are plotted in Figure 2. It
is clear to see that the runtime is increased with the growth of
the sensitive percentage. +is is reasonable because the
increasing number of sensitive itemsets requires more
transactions for modification. From Figure 2, we can also
observe that the proposed algorithm takes more time than
the other algorithms. +e reason is that HHUIF, MSICF,
MSU_MIU, and MSU_MAU sanitize the database based on
the concept of utility. However, IMSICF needs to calculate
the number of nonsensitive itemsets supported by each
sensitive transaction, which costs a lot of time. Besides, note
that the runtime in mushroom is more than that in the other
datasets. +e reason is that mushroom is a much denser
dataset.

Based on two-way ANOVA, there is a significant dif-
ference between the execution times of the sanitization al-
gorithms for various datasets (P � 3.15∗ 10− 13 in
Figure 2(a), P � 2.41∗ 10− 08 in Figure 2(b), P � 2.15∗ 10− 15

in Figure 2(c), and P � 6.41,∗ 10− 18 in Figure 2(d)).
+e results of the execution times under various conflict

degrees for different databases are plotted in Figure 3. We
can see that the runtime is decreased with the growth of the
conflict degree in most cases. +is is reasonable because the
higher the conflict degree is, the more sensitive the itemsets
will be concealed at the same time. From Figure 3, we also
find that the proposed algorithm IMSICF costs more time
than the other algorithms in most cases. +is is because
IMSICF takes a lot of time to calculate the number of
nonsensitive itemsets supported by each sensitive

Table 3: +e characteristics of various databases.

Dataset No. of transactions No. of items Avg. trans. length Density (%)
Mushroom 8124 119 23 19.3
Foodmart 4141 1559 4 0.25
T25I10D10K 10000 929 24.77 2.66
T20I6D100K 100000 893 19.9 2.22
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Figure 2: Execution times under various sensitive percentages: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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Figure 3: Execution times under various conflict degrees: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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transaction. However, IMSICF performs the best in Figure 3
because Foodmart is a very sparse dataset compared to the
other datasets. Moreover, the sparse dataset indicates that
the number of nonsensitive itemsets supported by each
transaction is less. +us, the execution time in Foodmart is
less than that in other datasets.

Based on two-way ANOVA, there is a significant dif-
ference between the execution times of the sanitization al-
gorithms for T25I10D10K and mushroom datasets
(P � 0.0037 in Figure 2(a) and P � 0.002 in Figure 2(d)). For
T20I6D100K and Foodmart datasets, there is no significant
difference between the sanitization algorithms
(P � 0.13> 0.05 in Figure 2(b) and P � 0.44 in Figure 2(c)).

5.4. Missing Costs. +e results of the missing costs under
various sensitive percentages are shown in Figure 4. It can be
observed that the missing costs are increased with the rise of
the sensitive percentage due to the increasing number of
modified transactions. From the results of Figure 4, it is also
clear to see that the proposed algorithm prevents more
nonsensitive itemsets from being overhidden. An important
reason is that the transaction with the minimum number of
nonsensitive itemsets and the maximum utility of sensitive
itemset is chosen for modification. +e second reason is that
the conflict count of each item contained in sensitive
itemsets is recalculated once a sensitive itemset is hidden.
However, the algorithms MSU_MAU, MSU_MIU, HHUIF,
and MSICF select the victim item based on the value of
utility. +us, the side effects on nonsensitive information are
discarded in the sanitization process. Moreover, based on
two-way ANOVA, there is a significant difference between
the missing costs of the sanitization algorithms for various
datasets (P � 1.46∗ 10− 8 in Figure 2(a), P � 9.43∗ 10− 6 in
Figure 2(b), P � 4.24∗ 10− 7 in Figure 2(c), and P � 0.0006
in Figure 2(d)).

+e results of the missing costs under various conflict
degrees are shown in Figure 5. From the results of Figure 5, it
can be observed that the missing costs decrease as the
conflict degree is increased. +e reason is that the higher the
conflict degree is, the more sensitive the itemsets will be
hidden by modifying a victim item. Correspondingly, the
number of nonsensitive itemsets concealed by mistake is
decreased. From Figure 5, we can also find that the proposed
algorithm outperforms other algorithms. +is is caused by
the sanitization strategy of IMSICF. Besides, it is noted that
the number of missing nonsensitive itemsets inmushroom is
more than that in other datasets. +e reason is that
mushroom is much denser compared to the other datasets,
which indicates that the modification of the dataset will
cause more side effects on nonsensitive itemsets. Moreover,
based on two-way ANOVA, there is a significant difference
between the missing costs of the sanitization algorithms for
various datasets (P � 0.004 in Figure 2(a), P � 0.021 in
Figure 2(b), P � 2.04∗ 10− 7 in Figure 2(c), and P � 0.02 in
Figure 2(d)).

5.5. Itemset Utility Similarity. +e results of the itemset
utility similarity under various sensitive percentages for

different datasets are plotted in Figure 6.We can find that the
IUS values are decreased with the growth of the sensitive
percentage. +is is reasonable because the increase on the
number of sensitive itemsets will cause more transactions to
be sanitized.+us, the damage to the nonsensitive itemsets is
correspondingly increased. From the results of Figure 6, we
also observe that the proposed algorithm outperforms the
other four algorithms in most cases. +e reason is that
IMSICF takes the side effects on nonsensitive knowledge
into account when identifying the victim transaction.
However, the other algorithms select the victim transaction
based on the value of utility, without considering the damage
to nonsensitive information by the sanitization process.
Besides, it is interesting to see that the IUS values of
mushroom are lower than those of the other datasets since
mushroom is a very dense dataset.

Based on two-way ANOVA, there is a significant dif-
ference between the IUS values of the sanitization algorithms
for various datasets (P � 2.36∗ 10− 8 in Figure 2(a),
P � 0.0003 in Figure 2(b), P � 8.44∗10− 7 in Figure 2(c), and
P � 0.0009 in Figure 2(d)).

+e results of the itemset utility similarity under various
conflict degrees for different datasets are plotted in Figure 7.
It can be observed that the conflict degree has a great impact
on the itemset utility similarity. With the growth of the
correlation among the sensitive itemsets, more sensitive
itemsets are hidden when a sensitive itemset is sanitized.
+us, less nonsensitive itemsets are concealed in error after
the database sanitization, and the IUS values are corre-
spondingly increased. From Figure 7, it is also clear to see
that the proposed algorithm outperforms the other algo-
rithms under various conflict degrees. +e reason is that the
impact on nonsensitive information is considered in the
IMSICF algorithm. Moreover, the conflict count of each
sensitive item is dynamically calculated. However, the other
algorithms only take the concept of utility into account in
the sanitization process.

Based on two-way ANOVA, there is a significant dif-
ference between the IUS of the sanitization algorithms for
various datasets (P � 0.0046 in Figure 2(a), P � 0.025 in
Figure 2(b), P � 1.25∗ 10− 7 in Figure 2(c), and P � 0.019 in
Figure 2(d)).

5.6. Database Utility Similarity. +e results of the database
utility similarity under various sensitive percentages are
shown in Figure 8. It can be seen that the DUS values are
decreased with the growth of the sensitive percentage be-
cause more items are modified for hiding more sensitive
itemsets. As shown in Figure 8, we also observe that the
IMSICF algorithm outperforms the other approaches except
the MSU_MIU algorithm. +e reason is that MSU_MIU
identifies the victim transaction Tvic with the maximum
utility of a sensitive itemset X, and the item contained in X
with the minimum utility is selected to be a victim item Ivic.
In addition, the utility of X is reduced by u(X, Tvic) when Ivic
is removed from Tvic. +us, the database utility similarity of
MSU_MIU is higher than that of the other algorithms.
However, the proposed algorithm IMSICF selects the
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Figure 4: MC values under various sensitive percentages: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.

1.69 2.79 5.00 7.17 14.05
Conflict degree

0

15

30

45

60

M
C 

(%
)

MSICF

HHUIF
MSU_MIU MSU_MAU

IMSICF

(a)

1.26 3.15 5.00 7.00 14.57
Conflict degree

0

20

40

60

M
C 

(%
)

MSICF

HHUIF
MSU_MIU MSU_MAU

IMSICF

(b)

1.19 3.16 5.68 7.87 15.25
Conflict degree

0

0.4

0.8

1.2

M
C 

(%
)

MSICF

HHUIF
MSU_MIU MSU_MAU

IMSICF

(c)

2.77 3.50 5.68 7.20 13.33
Conflict degree

0

50

100

M
C 

(%
)

MSICF

HHUIF
MSU_MIU MSU_MAU

IMSICF

(d)

Figure 5: MC values under various conflict degrees: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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Figure 6: IUS values under various sensitive percentages: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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Figure 7: IUS values under various conflict degrees: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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sanitized item based on the side effects on nonsensitive
information.+us, IMSICF performs worse thanMSU_MIU
in terms of DUS. Moreover, HHUIF, MSICF, and MSU_-
MAU algorithms select the victim item with the maximum
utility. Hence, these algorithms perform worse than the
previous two algorithms.

Based on two-way ANOVA, there is a significant dif-
ference between the DUS of the sanitization algorithms for
various datasets (P � 3.27∗ 10− 8 in Figure 2(a),
P � 2.55∗10− 7 in Figure 2(b), P � 2.43∗10− 7 in Figure 2(c),
and P � 1.11∗10− 8 in Figure 2(d)).

+e results of the database utility similarity under var-
ious conflict degrees for different datasets are shown in
Figure 9. +e DUS values are increased as the conflict degree
increases. +is is reasonable because few items are sanitized
when the sensitive itemsets have more common items. In
Figure 9, we also find that the MSU_MIU algorithm per-
forms the best in terms of DUS under various conflict de-
grees. +e reason is that the item with the minimal utility is
chosen for modification. +e proposed algorithm IMSICF
has better performance than MSU_MAU, HHUIF, and
MSICF because these algorithms identify the victim item
with the maximum utility. Besides, note that DUS of
mushroom is lower than that of other datasets. +is is be-
cause the number of items supported by a transaction in
mushroom is much higher compared to the other datasets.
Moreover, based on two-way ANOVA, there is a significant
difference between the DUS of the sanitization algorithms

for various datasets (P � 0.0016 in Figure 2(a), P � 0.039 in
Figure 2(b), P � 1.13∗ 10− 6 in Figure 2(c), and P � 0.0015
in Figure 2(d)).

+e above experimental results demonstrate that the
proposed algorithm IMSICF outperforms the other state-of-
the-art algorithms in terms of MC and IUS. +e reason is
that IMSICF selects the victim transaction based on the side
effects on nonsensitive itemsets. Besides, we can find that the
MSU_MIU algorithm performs better than other algorithms
in DUS. +is is reasonable because the victim item with the
minimum utility is chosen formodification, and the utility of
a sensitive itemset is reduced by the utility of the itemset in
the identified transaction when a victim item is removed. In
addition, it can be observed that the density of a dataset
affects the performance of the itemset hiding.

6. Conclusions

In this paper, an improved sanitization algorithm called
IMSICF is proposed for privacy-preserving utility mining.
+is algorithm identifies the victim item with the maximum
conflict count, which is dynamically computed in the san-
itization process. +en, the sensitive itemset containing the
victim item is selected to be hidden.+e transaction with the
maximum utility of the currently hidden sensitive itemset
and the minimum count of nonsensitive itemsets is chosen
for modification. Hence, the side effects on nonsensitive
knowledge are effectively reduced. In our experiments, real
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Figure 8: DUS values under various sensitive percentages: (a) T25I10D10K; (b) T20I6D100K; (c) Foodmart; (d) mushroom.
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and synthetic datasets are used to evaluate the performance
of the proposed algorithm. +e experimental results show
that IMSICF outperforms the state-of-the-art algorithms in
missing cost and itemset utility similarity, at the expense of a
degradation on efficiency. Besides, it is observed that the
conflict degree of sensitive itemsets has a great impact on the
performance of the sanitization algorithms.

For future work, we will focus on preserving other forms
of sensitive knowledge, such as frequent and utility itemset.
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