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We introduce and analyze a weakly overpenalized symmetric interior penalty method for solving the heat equation. We first
provide optimal a priori error estimates in the energy norm for the fully discrete scheme with backward Euler time-stepping. In
addition, we apply elliptic reconstruction techniques to derive a posteriori error estimators, which can be used to design adaptive
algorithms. Finally, we present two numerical experiments to validate our theoretical analysis.

1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain with Lipschitz
boundary zΩ, then we consider the following heat equation:

ztu − Δu � f, inΩ ×(0, T],

u � 0, on zΩ ×(0, T],

u(·, 0) � u0,

(1)

where T> 0 is finite time, f ∈ L2(0, T; L2(Ω)) is the source
term, and u0 ∈ L2(Ω) stands for the initial data. ,ere has
been much research on the a priori and a posteriori error
estimates of finite element methods (FEM) for parabolic
equations (see [1–12] and the references therein). However,
most of the literature on this subject considers only con-
forming (or nonconforming) FEM in space. ,e error es-
timate of discontinuous Galerkin (DG) methods for such
problems is still very rare. In the context of DG methods for
space variable, see [13–15] for a priori error analysis, and see
[16–21] for a posteriori error analysis. Recently, Ern et al.
[22, 23] have developed a posteriori error estimates for the
parabolic problem with DG discretization in time (see [24]
for a posteriori error estimates of nonconforming Crou-
zeix–Raviart FEM for the heat equation). ,e object of the
present work is to investigate a weakly overpenalized

symmetric interior penalty (WOPSIP) method in space for
problem (1), combined with an implicit Euler scheme in
time.

,e WOPSIP method is a kind of nonconsistent dis-
continuous Galerkin (DG) scheme, which was initially
proposed in [25] for solving the second order elliptic
equation, therein a priori error estimates were obtained. In
recent years, DGmethods have received significant attention
since they are suitable for hp-adaptive computations. Besides
this, they can also deal with nonhomogeneous boundary
conditions and curved boundaries easily and allow for
meshes with hanging nodes. Compared with the well-known
DG methods in [26], the WOPSIP method has some ad-
vantages. For example, it has less computational complexity
and thus is easy to implement [25]. Additionally, a high
intrinsic parallelism property of the WOPSIP method was
investigated in [27]. ,erefore, the WOPSIP methods have
been further developed to solve biharmonic problems [28]
and Stokes equations [29], Reissner–Mindlin plate equations
[30, 31], non-self-adjoint and indefinite problems [32], and
variational inequalities [33]. In the present work, we shall
extend the results of elliptic equations in [25] to the para-
bolic case. More precisely, the space variable is approxi-
mated by the WOPSIP method, and time variable is
discretized by the backward Euler scheme. We shall give a
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detailed a priori and a posteriori error estimates. In this case,
one may come across a difficulty that stems from the
nonconsistency of the numerical method (for more details,
see (34) in ,eorem 2). On the contrary, a posteriori error
analysis for parabolic problems is more involved than that
for elliptic equations, since they involve both spatial error
and temporal error. According to a framework stated in [18],
we derive a posteriori error estimates which rely on the
available estimates for elliptic problems [32, 34].

,e rest of our paper is organized as follows. In Section 2,
we state some notations and the numerical scheme. We
establish a priori error estimates in the energy norm in
Section 3. Section 4 is devoted to a posteriori error analysis
which is based on the work [18]. We make some conclusions
in Section 5. Finally, we provide some numerical results to
validate theoretical analysis of a priori error estimates.

2. Preliminaries and WOPSIP Method

Let us first give some notations. For a bounded subdomain
D ⊂ Ω, we denote by Hm(D)(m≥ 0) the standard Sobolev
space, associated with norm ‖·‖m,D and seminorm |·|m,D.
When m � 0, H0(D) is the standard Lebesgue space L2(D),
with the inner product defined by (·, ·)D. When D � Ω, we
will omit the index Ω.

To deal with functions of time and space, we also introduce
the standard Bochner space Lp(0, T; Hm(D)), which consists
of all measurable functions u: [0, T]⟶ Hm(D) with norm

‖u‖Lp 0,T;Hm(D)( ) � 
T

0
‖u(s)‖

p

m,Dds 

1/p

, (2)

for 1≤p<∞.
,e weak formulation of (1) reads: find u ∈ L2(0, T; H1

0
(Ω)) with ztu ∈ L2(0, T; H− 1(Ω)) such that

ztu, v(  + a(u, v) � (f, v), ∀v ∈ H
1
0(Ω), t ∈ (0, T],

u(·, 0) � u0,
(3)

with a(u, v) � Ω∇u · ∇v dx.
Let Th be a family of conforming shape-regular meshes

which decompose Ω into triangle elements K{ }. Set hK �

diam(K) and h � maxK∈Th
hK. Denote by Eh the set of all

edges. Furthermore, Eh � EI
h ∪E

z
h, where EI

h is the set of
interior edges and Ez

h is the set of edges on zΩ. In what
follows, he stands for the length of the edge e. GivenD ∈ R2,
we let Pr(D) be the space of polynomials of degree at most r
on D. Moreover, we associate a fixed unit normal n with
each edge e ∈ Eh such that for edges on the boundary zΩ, n
is the exterior unit normal vector.

Let e be an interior edge inEI
h shared by elementsK+ and

K− . For v: Ω⟶ R, set v± � v|e∩ zK± , we define the fol-
lowing quantities:

⟦v⟧ � v
+

− v
−

,

v{ } �
1
2

v
+

+ v
−

( .

(4)

If e ∈ Ez
h, set ⟦v⟧ � v and v{ } � v. Furthermore, form≥ 1,

we also define

H
m

Th(  � v ∈ L
2
(Ω): v | K ∈ H

m
(K),∀K ∈ Th . (5)

Consider the discontinuous P1 finite element space:

Vh � v ∈ L
2
(Ω): v | K ∈ P1(K),∀K ∈ Th . (6)

,e bilinear form of the WOPSIP DG method is defined
by (see [25])

ah(w, v) � 
K∈Th


K
∇w · ∇v dx + 

e∈Eh

h
− 2
e Π

0
e⟦w⟧  Π0e⟦v⟧ ,

(7)

where Π0ev stands for the mean of v over e, that is,

Π0ev �
1
he


e
vdA. (8)

For the time discretization, we introduce the uniform
partition 0 � t0 < t1 < · · · < tN � T of [0, T], with time step
τ � T/N and tn � nτ (n � 1, . . . , N). ,e backward Euler
WOPSIP DG method for solving heat equation (1) is to find
un

h ∈ Vh for n � 1, . . . , N such that
un

h − un− 1
h

τ
, vh  + ah u

n
h, vh(  � f

n
, vh( , ∀vh ∈ Vh,

u
0
h � uh0,

(9)

where uh0 is a projection of u0 onto Vh which will be
specified later in Sections 3 and 4.

3. Stability and A Priori Error Analysis

We begin by defining the mesh-dependent norm ‖·‖h on
H2(Th) as

‖v‖h � 
K∈Th

‖∇v‖
2
0,T + 

e∈Eh

h
− 2
e Π

0
e⟦v⟧ 

2⎛⎝ ⎞⎠

1/2

. (10)

For the subsequent analysis, we need the following
Poincaré–Friedrichs inequality (see [13, 35]):

‖v‖
2
0 ≤C 

K∈Th

‖∇v‖
2
0,T + 

e∈Eh

h
− 1
e ‖⟦v⟧‖20,e

⎛⎝ ⎞⎠, ∀v ∈ H
2
Th( .

(11)

Here and hereafter, we use C to denote a positive
constant which is independent of h and τ, but may have
different values at different places.

Moreover, from Lemma 3.1 in [25] we have


e∈Eh

h
− 1
e ‖⟦v⟧‖20,e ≤C‖v‖

2
h, ∀v ∈ H

2
Th( .

(12)

Combining (11) and (12) gives

‖v‖0 ≤C‖v‖h, ∀v ∈ H
2
Th( . (13)

We first prove that the numerical solutions satisfy the
following stability result.
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Theorem 1. Let un
h n≥0 be the solution of (9). It holds that,

for all m> 0,

u
m
h

����
����
2
0 + τ 

m

n�1
u

n
h

����
����
2
h
≤C u

0
h

����
����
2
0 + τ 

m

n�1
f

n
����

����
2
0

⎛⎝ ⎞⎠. (14)

Proof. Testing vh � un
h in (9) and using the definition of ‖·‖h,

we have
1
τ

u
n
h − u

n− 1
h , u

n
h  + u

n
h

����
����
2
h

� f
n
, u

n
h( . (15)

,en, using the equation a(a − b) � (1/2)(a2−

b2) + (1/2)(a − b)2 and Cauchy–Schwarz inequality gives
1
2τ

u
n
h

����
����
2
0 − u

n− 1
h

����
����
2
0  +

1
2τ

u
n
h − u

n− 1
h

����
����
2
0 + u

n
h

����
����
2
h
≤ f

n
����

����0 u
n
h

����
����0,

(16)

which together with the inequality (13) and Young’s in-
equality implies that

1
2τ

u
n
h

����
����
2
0 − u

n− 1
h

����
����
2
0  +

1
2τ

u
n
h − u

n− 1
h

����
����
2
0 + u

n
h

����
����
2
h

≤C f
n

����
����0 u

n
h

����
����h

≤
1
2

u
n
h

����
����
2
h

+ C f
n

����
����
2
0.

(17)

,us,
1
2τ

u
n
h

����
����
2
0 − u

n− 1
h

����
����
2
0  +

1
2τ

u
n
h − u

n− 1
h

����
����
2
0 +

1
2

u
n
h

����
����
2
h

≤C f
n

����
����
2
0.

(18)

Multiplying (18) by 2τ and summing from n � 1 to
n � m, we arrive at

u
m
h

����
����
2
0 − u

0
h

����
����
2
0 + 

m

n�1
u

n
h − u

n− 1
h

����
����
2
0  + τ 

m

n�1
u

n
h

����
����
2
h
≤Cτ 

m

n�1
f

n
����

����
2
0.

(19)

Noting that 
m
n�1(‖un

h − un− 1
h ‖

2
0)≥ 0, we get

u
m
h

����
����
2
0 + τ 

m

n�1
u

n
h

����
����
2
h
≤ u

0
h

����
����
2
0 + Cτ 

m

n�1
f

n
����

����
2
0. (20)

,e conclusion (14) follows immediately. □

To carry out a detailed error analysis, we introduce Ihu

which denotes the continuous linear interpolation of u. We
then have the following standard estimates (see [36]):

u − Ihu
����

����m,K
≤Ch

2− m
|u|2,K, m � 0, 1. (21)

In addition, we introduce the following trace inequality:

h
− 1
e ‖w‖

2
0,e ≤C h

− 2
K ‖w‖

2
0,K +‖∇w‖

2
0,K , ∀w ∈ H

1
(K),

(22)

with e being an edge of K.
Also, we need the elliptic projection operator

Ph: H2(Ω)⟶ Vh defined by

ah v − Phv, wh(  � 0, ∀wh ∈ Vh. (23)

It is well known that the projection operator Ph satisfies
the following estimates (see [11]).

Lemma 1. For any v ∈ H2(Ω), it holds that

v − Phv
����

����0,Ω + h v − Phv
����

����h
≤Ch

2
‖v‖2. (24)

For convenience, we use the following notation for any
function g(t, x): at each time step tn � nτ, n � 1, . . . ,

N, gn � g(tn, x),∀x ∈ Ω. In addition, Taylor expansion
yields

gn − gn− 1

Δt
� ztg( 

n
+

1
Δt


tn

tn− 1

t
n− 1

− s zttg(s)ds. (25)

Now, we are in a position to state a priori error estimates,
which is the main result of this section.

Theorem 2. Let u and un
h n≥0 be the solutions of (1) and (9),

respectively. Assume that ztu ∈ L2(0, T; H2(Ω)),
zttu ∈ L2(0, T; L2(Ω)), and u0

h satisfying

u0 − u
0
h

����
����0≤Ch

2
u0

����
����2. (26)

,en, for all m> 0 it holds that

τ 
m

n�1
u

n
− u

n
h

����
����
2
h
≤Ch

2 τ 
m

n�1
u

n
����

����
2
2 + h

2
u0

����
����
2
2 + h

2


tm

0
ztu(s)

����
����
2
2ds⎛⎝ ⎞⎠

+ Cτ2 
tm

0
zttu(s)

����
����
2
0ds.

(27)

Proof. Integrating by parts and using the Taylor formulation
(25), we have
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un − un− 1

τ
, vh  + ah u

n
, vh( 

� f
n
, vh(  + Rn, vh(  + 

e∈Eh


e
∇un

· n ⟦vh⟧dA, ∀vh ∈ Vh,

(28)

where

Rn � −
1
τ


tn

tn− 1

s − tn− 1( zttu(s)ds. (29)

We then split the error un − un
h into

u
n

− u
n
h � u

n
− Phu

n
(  + Phu

n
− u

n
h(  � θn

+ ρn
. (30)

,us, subtracting (9) from (28) and using the definition
of θn and ρn gives

ρn − ρn− 1

τ
, vh  + ah ρn

, vh( 

� 
e∈Eh


e
∇un

· n ⟦vh⟧dA −
θn − θn− 1

τ
, vh  + Rn, vh( .

(31)

Testing vh � ρn in (31), using the definition of ‖·‖h and
the formula a(a − b) � (1/2)(a2 − b2) + (1/2)(a − b)2, we
obtain

1
2τ

ρn
����

����
2
0 − ρn− 1����

����
2
0  +

1
2τ

ρn
− ρn− 1����

����
2
0 + ρn

����
����
2
h

� 
e∈Eh


e
∇un

· n ⟦ρn⟧dA + Rn, ρn
(  −

θn − θn

τ
, ρn

 

≡ S1 + S2 + S3.

(32)

We now bound the first term S1 of the above equation.
We then employ the definition of Π0e to find that

S1 � 
e∈Eh


e
∇un

· n ⟦ρn⟧dA

� 
e∈Eh


e
∇ u

n
− Ihu

n
(  · n ⟦ρn⟧dA

+ 
e∈Eh


e
∇ Ihu

n
(  · n Π0e⟦ρ

n⟧dA

≡ S11 + S12.

(33)

Furthermore, applying Cauchy–Schwarz inequality and
Young’s inequality and using (11), (21), and (22), we can
estimate the terms S11 and S12 as follows:

S11 � 
e∈Eh


e
∇ u

n
− Ihu

n
(  · n ⟦ρn⟧dA

≤ 
e∈Eh

he ∇ u
n

− Ihu
n

(  
����

����
2
0,e

⎛⎝ ⎞⎠

1/2


e∈Eh

h
− 1
e ⟦ρ

n⟧
����

����
2
0,e

⎛⎝ ⎞⎠

1/2

≤Ch u
n


2 ρn

����
����h

≤Ch
2

u
n

����
����
2
2 +

1
8
ρn

����
����
2
h
,

S12 � 
e∈Eh


e
∇ Ihu

n
(  · n  Π0e⟦ρ

n⟧ dA

≤ 
e∈Eh

h
3
e ∇ Ihu

n
(  

����
����
2
0,e

⎛⎝ ⎞⎠

1/2


e∈Eh

h
− 3
e Π

0
e⟦ρ

n⟧
����

����
2
0,e

⎛⎝ ⎞⎠

1/2

� 
e∈Eh

h
3
e ∇ Ihu

n
(  

����
����
2
0,e

⎛⎝ ⎞⎠

1/2


e∈Eh

h
− 2
e Π

0
e⟦ρ

n⟧ 
2⎛⎝ ⎞⎠

1/2

≤ 
e∈Eh

h
3
e ∇ u

n
− Ihu

n
(  

����
����
2
0,e

⎛⎝ ⎞⎠

1/2


e∈Eh

h
− 2
e Π

0
e⟦ρ

n⟧ 
2⎛⎝ ⎞⎠

1/2

+ 
e∈Eh

h
3
e ∇u

n
 

����
����
2
0,e

⎛⎝ ⎞⎠

1/2


e∈Eh

h
− 2
e Π

0
e⟦ρ

n⟧ 
2⎛⎝ ⎞⎠

1/2

≤Ch
2

u
n


2 ρn

����
����h

+ C h u
n


1,Ω + h

2
u

n


2,Ω  ρn
����

����h

≤Ch u
n

����
����2 ρn

����
����h

≤Ch
2

u
n

����
����
2
2 +

1
8
ρn

����
����
2
h
.

(34)

Next, we give bounds for S2. Applying Cauchy–Sch-
warz inequality, the inequality (13) and Young’s in-
equality yields

S2 � Rn, ρn
( 

≤ Rn

����
����0 ρn

����
����0

≤C Rn

����
����0 ρn

����
����h

≤C Rn

����
����
2
0 +

1
8
ρn

����
����
2
h
.

(35)

Similarly, it holds that
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S3 � −
θn − θn− 1

τ
, ρn

 

≤
θn − θn− 1

τ

��������

��������0
ρn

����
����0

≤C
θn − θn− 1

τ

��������

��������0
ρn

����
����h

≤C
θn − θn− 1

τ

��������

��������

2

0
+
1
8
ρn

����
����
2
h
.

(36)

Combining (32)–(36), we obtain

1
2τ

ρn
����

����
2
0 − ρn− 1����

����
2
0  +

1
2τ

ρn
− ρn− 1����

����
2
0 +

1
2
ρn

����
����
2
h

≤C h
2

u
n

����
����
2
2 + Rn

����
����
2
0 +

θn − θn− 1

τ

��������

��������

2

0

⎛⎝ ⎞⎠.

(37)

Moreover, applying Cauchy–Schwarz inequality for Rn

gives

Rn

����
����
2
0 ≤

1
τ2


tn

tn− 1

s − tn− 1( 
2ds  

tn

tn− 1

utt(s)
����

����
2
0ds 

�
τ
3


tn

tn− 1

zttu(s)
����

����
2
0ds .

(38)

On the contrary,

θn
− θn− 1

� 
tn

tn− 1

ztθ(s)ds. (39)

,us,

θn − θn− 1

τ

��������

��������

2

0
�

1
τ2


tn

tn− 1

ztθ(s)ds

��������

��������

2

0

≤
1
τ2


tn

tn− 1

12dt  
tn

tn− 1

ztθ(s)
����

����
2
0ds 

�
1
τ


tn

tn− 1

ztθ(s)
����

����
2
0ds .

(40)

Plugging (38) and (40) into (37) and then multiplying
the result inequality by 2τ and summing from n � 1 to
n � m, we obtain

ρm
����

����
2
0 − ρ0

����
����
2
0 + 

m

n�1
ρn

− ρn− 1����
����
2
0 + τ 

m

n�1
ρn

����
����
2
h

≤C h
2τ 

m

n�1
u

n
����

����
2
2 + τ2 

tm

0
zttu(s)

����
����
2
0ds + 

tm

0
ztθ(s)

����
����
2
0ds⎛⎝ ⎞⎠.

(41)

Noting that 
m
n�1‖ρn − ρn− 1‖

2
0 ≥ 0 and τ

m
n�1‖ρn‖2h ≥ 0, and

using the estimate (24), we infer that

τ 

m

n�1
ρn

����
����
2
h
≤ ρ0

����
����
2
0 + C h

2τ 

m

n�1
u

n
����

����
2
2 + τ2 

tm

0
zttu(s)

����
����
2
0ds⎛⎝

+ h
4


tm

0
ztu(s)

����
����
2
2ds.

(42)

Moreover, it follows from (24) and (26) that

ρ0
����

����0 � Phu0 − u
0
h

����
����0

≤ Phu0 − u0
����

����0 + u0 − u
0
h

����
����0

≤Ch
2

u0
����

����2.

(43)

Plugging (43) into (42) and then combining (30), the
triangle inequality yields the desired estimate in (27). □

Remark 1. For simplicity, in the present work, we only
consider the lowest linear finite element, and the extension
of the results to high order methods [37] can be derived
straightforwardly.

Remark 2. In this work, we only consider the constant
coefficient parabolic equation, and the extension to more
practical problems such as equations with variable coeffi-
cient can be derived by using the techniques developed in
Section 6 in [25]. Additionally, the present work only ad-
dresses the conforming mesh, and the extension to meshes
with hanging nodes can be also obtained by utilizing ap-
proaches stated in Section 6 in [25].

4. A Posteriori Error Analysis

We begin by recalling an a posteriori error estimator for the
stationary problem (see [32]), which is a key step in the
subsequent error analysis.

Theorem 3. Let z ∈ H1
0(Ω) be the solution of

a(z, v) � (f, v), ∀v ∈ H
1
0(Ω), (44)

and let Z ∈ Vh be the solution satisfying

ah Z, vh(  � f, vh( , ∀vh ∈ Vh. (45)

,en, we have the following a posteriori error estimates:

‖z − Z‖h ≤C E Z, f,Th(  , (46)

with

E Z, f,Th(  � 
K∈Th

hK‖f‖0,K + 

e∈EI
h

he‖⟦∇Z · n⟧‖20,e
⎛⎜⎜⎝

+ 
e∈Eh

h
− 2
e Π

0
e⟦Z⟧



2

+ h
− 1
e ‖⟦Z⟧‖20,e ⎞⎠

1/2

.

(47)

Remark 3. It is worth mentioning that, the authors in [34]
have proposed a different error estimator, which can also be
applied directly in the forthcoming analysis.
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,e following useful fact is a standard result in studying a
posteriori error estimates of DG methods. It shows that,
given any discontinuous function vh ∈ Vh, there exists a
continuous polynomial function to approximate it (see
[34, 38]).

Lemma 2. For any vh ∈ Vh, there exits an decomposition
vh � vc

h + vd
h such that


K∈Th

∇ vh − v
c
h( 

����
����
2
0,K

+ h
− 2
K vh − v

c
h

����
����
2
0,K

 ≤C 
e∈Eh

h
− 1
e ⟦vh⟧

����
����
2
0,e

,

(48)

where vc
h ∈ H1

0(Ω)∩Vh and vd
h ∈ Vh.

To proceed, we reformulate the DG method (9) to make
it be suitable for adaptive computations. At each time step
n> 0, we assume that a meshTn which can be obtained from
Tn− 1 by locally refining and coarseningTn− 1. Analogous to
Section 3, we denote by En � EI

n ∪E
z
n the set of edge ofTn,

and use Vn
h to stand for the finite element space with respect

to Tn. Let In: Vn− 1
h ⟶ Vn

h be a general data transfer op-
erator, set τn � tn − tn− 1, the backward Euler WOPSIP DG
method for approximating (1) can be reformulated as: find
un

h ∈ Vn
h (n � 1, . . . , N) such that

un
h − Inun− 1

h

τn

, v
n
h  + B

n
u

n
h, v

n
h(  � f

n
, v

n
h( , ∀vn

h ∈ V
n
h,

u
0
h � P

0
hu0,

(49)

where

B
n
(w, v) � 

K∈Tn


K
∇w · ∇v dx + 

e∈En

h
− 2
e Π

0
e⟦w⟧  Π0e⟦v⟧ ,

(50)

and P0
h: L2(Ω)⟶ V0

h is the L2-projection operator onto
V0

h. ,e corresponding mesh-dependent norm is defined by
‖v‖2Tn

� Bn(v, v). In view of un
h , we define a function which

is piecewise linear continuous in time:

uh(0) � u
0
h,

uh(t) � ln− 1(t)u
n− 1
h + ln(t)u

n
h,

(51)

for t ∈ (tn− 1, tn] (n � 1, . . . , N), where

ln(t) �
t − tn− 1

τn

1 tn− 1 ,tn[ ] +
tn+1 − t

τn+1
1 tn,tn+1[ ], (52)

are the Lagrange basic functions.
As in Lemma 2, at each time step tn (n � 1, . . . , N), we

can decompose un
h into

u
n
h � u

n
c + u

n
d, with respect to themesh �Tn, (53)

u
n
h � u

n
c+ + u

n
d+, with respect to themesh �Tn+1, (54)

where �Tn refers to the coarsest common refinement. More
precisely, it is the coarsest triangulation which satisfies

Tn ≤ �Tn and Tn− 1 ≤ �Tn. Here, we write Tn ≤ �Tn to mean
that �Tn is a refinement ofTn. In addition, we define uc

h(t) �

ln− 1(t)un− 1
c+ + ln(t)un

c and ud
h(t) � ln− 1(t)un− 1

d+ + ln(t)un
d.

Moreover, we introduce the discrete elliptic operator
An: Vn

h⟶ Vn
h by

A
nη, θ(  � B

n
(η, θ), ∀θ ∈ V

n
h, (55)

with Anη ∈ Vn
h. Additionally, we define some elliptic re-

constructions which are used commonly in the a posterior
error analysis for parabolic equations [6].

Definition 1. ,e elliptic reconstruction wn ∈ H1
0(Ω) of un

h is
defined as the solution of the elliptic problem:

B
n

w
n
, v(  � A

n
u

n
h, v( , ∀v ∈ H

1
0(Ω). (56)

Similarly, wn− 1 ∈ H1
0(Ω) satisfies

B
n

w
n− 1

, v  � A
n
I

n
u

n− 1
h , v , ∀v ∈ H

1
0(Ω). (57)

Remark 4. We should point that the DG solution of wn,
denoted by wn

h, is also the DG solution un
h. Indeed, we have

Bn(wn
h, vh) � (Anun

h, vh) � Bn(un
h, vh), for all vh ∈ Vn

h; thus,
wn

h � un
h.

Similar to uh(t) stated in (51), we define wh(t) by

w(t) � ln− 1(t)w
n− 1

+ ln(t)w
n
. (58)

Now, the error e can be decomposed into

e � uh − u � φ − χ,

φ � w − u,

χ � w − uh,

(59)

where φ is called the elliptic error and χ is the parabolic
error. Furthermore, we define ec � uc

h − u and χc � w − uc
h.

,us, e � ec + ud
h and χc � χ + ud

h .
,en, we can obtain the following result, which is a key

step to prove the main result in ,eorem 4. We remark that
similar result can be found in Lemma 5.3 in [39].

Lemma 3. For each t ∈ (tn− 1, tn] (n � 1, 2, . . . , N), we have

zte, v(  + B
n
(φ, v)

�
Inun− 1

h − un− 1
h( 

τn

, v  + ln− 1(t) A
n
I

n
u

n− 1
h − A

n
u

n
h, v 

+ P
n
hf

n
− f, v( ,

(60)

for all v ∈ H1
0(Ω).

Proof. Since ztuh � ((un
h − un− 1

h )/τn), this combined with
(49), (56), and (57) yields
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ztuh, v(  � I − P
n
h( ztuh, v(  + P

n
hztuh, v( 

� I − P
n
h( ztuh, v(  + P

n
hztuh, P

n
hv( 

� I − P
n
h( ztuh, v(  + ztuh, P

n
hv( 

� I − P
n
h( ztuh, v(  + f

n
, P

n
hv( 

+
Inun− 1

h − un− 1
h( 

τn

, P
n
hv  − A

n
u

n
h, P

n
hv( 

� I − P
n
h( ztuh, v(  + P

n
hf

n
, v( 

+
Inun− 1

h − un− 1
h( 

τn

, P
n
hv  − B

n
w

n
, v( ,

(61)

for all v ∈ H1
0(Ω). Here, Pn

h stands for the L2-projection
operator onto Vn

h. ,us,

zte, v(  + B
n
(φ, v)

� zt uh − u( , v(  + B
n
(w − u, v)

� ztuh, v(  + B
n
(w, v) − ztu, v(  − B

n
(u, v)

� ztuh, v(  + B
n
(w, v) − (f, v)

� I − P
n
h( ztuh, v(  + P

n
hf

n
, v(  + I

n
u

n− 1
h − u

n− 1
h /τn, P

n
hv 

− B
n

w
n
, v(  + B

n
(w, v) − (f, v),

(62)

where in the last line we have used (61).
In addition, for each t ∈ (tn− 1, tn] (n � 1, 2, . . . , N), it

follows from (56)–(58) that

B
n

w − w
n
, v(  � B

n
ln(t)w

n
+ ln− 1(t)w

n− 1
− w

n
, v 

�
t − tn

τn

B
n

w
n− 1

− w
n
, v 

�
t − tn

τn

A
n
I

n
u

n− 1
h − A

n
u

n
h, v .

(63)

On the contrary, we have

I − P
n
h( ztuh, v(  � I − P

n
h( 

un
h − un− 1

h

τn

, v 

�
− 1
τn

I − P
n
h( u

n− 1
h , v 

�
− 1
τn

u
n− 1
h , v  +

1
τn

P
n
hu

n− 1
h , v .

(64)

We also have
Inun− 1

h − un− 1
h( 

τn

, P
n
hv − v  �

− 1
τn

u
n− 1
h , P

n
hv − v 

�
− 1
τn

u
n− 1
h , P

n
hv  +

1
τn

u
n− 1
h , v .

(65)

Substituting (63)–(65) into (62) gives the desired result.
We then define the error estimators as follows:

(1) We define the time-stepping estimator as

αn �
CP�
3

√ I
n
u

n− 1
h − u

n
h

����
����Tn

, (66)

with CP satisfying

P
n
hv

����
����Tn
≤CP‖v‖Tn

, for all v ∈ H
1
0(Ω). (67)

(2) Set the data approximation estimator in time
to be

βn � 
tn

tn− 1

Pn
hfn − f(s)

����
����
2
H− 1(Ω)

τn

ds⎛⎝ ⎞⎠

1/2

. (68)

(3) ,e estimator with respect to mesh-change is given
by

ζn �
Inun− 1

h − un− 1
h

����
����H− 1(Ω)

τn

. (69)

(4) ,e nonconforming part of parabolic estimator is
defined as

ξn �
un

d − un− 1
d+

����
����H− 1(Ω)

τn

, (70)

and the nonconforming part of elliptic estimator is
given by

θn � u
n
d

����
����
2
Tn

+ u
n− 1
d+

����
����
2
Tn

 
1/2

. (71)

(5) ,e space error estimator is

ρn � E u
n
h, A

n
u

n
h,Tn( , (72)

where E is stated in (47) in ,eorem 3. Similarly, we
define

ρn− 1 � E I
n
u

n− 1
h , A

n
I

n
u

n− 1
h ,Tn . (73)

(6) We also define
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ϵn �
un

d − un
d+

����
����0

τn

, (74)

which can be understood as the nonconforming par-
abolic part estimator of higher order.

We now state the main result of this section, which is
largely based on the work [18]. For the sake of completeness,
we sketch a proof. □

Theorem 4. Let u and uh(t) be solutions of (1) and (51),
respectively. For each m � 1, 2, . . . , N, we have


tm

0
u(s) − uh(s)

����
����
2
Tn
ds 

1/2

≤ u(0) − u
c
h(0)

����
����0 +

�
2

√
ηe,m + 3ηp,m

+
1
2



m

n�1
θ2nτn

⎛⎝ ⎞⎠

1/2

+
�
3

√


m− 1

n�1
ϵnτn.

(75)

Here, ηe,m refers to the elliptic error estimator which is
defined as

ηe,m � 
m

n�1
ρ2n− 1 + ρ2n τn

⎛⎝ ⎞⎠

1/2

, (76)

and ηp,m is parabolic error estimator defined by

ηp,m � 
m

n�1
αn + βn + ζn + ξn( 

2τn
⎛⎝ ⎞⎠

1/2

. (77)

Proof. Selecting v � ec in (60) and noting that e � ec + ud
h

and φ � ec + χc, we deduce that
1
2
d
dt

ec

����
����
2
0 +‖φ‖

2
Tn

� ztec, ec(  + B
n
(φ,φ)

� − ztu
d
h, ec  + B

n φ, χc(  + ln− 1(t)

· A
n
I

n
u

n− 1
h − A

n
u

n
h, ec 

+
Inun− 1

h − un− 1
h( 

τn

+ P
n
hf

n
− f, ec .

(78)

Integrating (78) on [0, tm] implies that

1
2

ec tm( 
����

����
2
0 +

1
2


tm

0
‖φ(s)‖

2
Tn
ds

�
1
2

ec(0)
����

����
2
0 + 

tm

0
B

n φ, χc( ds + 
m

n�1


tn

tn− 1

ln− 1(s) A
n
I

n
u

n− 1
h − A

n
u

n
h, ec ds

+ 
m

n�1


tn

tn− 1

Inun− 1
h − un− 1

h( 

τn

+ P
n
hf

n
− f, ec ds − 

tm

0
ztu

d
h, ec ds

+
1
2



m− 1

n�1
u tn(  − u

n
c+

����
����
2
0 − ec tn( 

����
����
2
0 

≡ M0 + M1 + M2 + M3 + M4 + M5.

(79)

,e first term M1 can be bounded by

M1 � 
tm

0
B

n φ, χc( ds≤ 
tm

0
‖φ(s)‖Tn

χc(s)
����

����Tn
ds. (80)

To estimate M2, it follows from (67) that

A
n
I

n
u

n− 1
h − A

n
u

n
h, ec  � A

n
I

n
u

n− 1
h − A

n
u

n
h, P

n
hec 

� B
n

I
n
u

n− 1
h − u

n
h, P

n
hec 

≤ I
n
u

n− 1
h − u

n
h

����
����Tn

P
n
hec

����
����Tn

≤CP I
n
u

n− 1
h − u

n
h

����
����Tn

ec

����
����Tn

,

(81)

this together with ec � φ − χc implies that

M2 ≤ 

m

n�1


tn

tn− 1

ln− 1(s)CP I
n
u

n− 1
h − u

n
h

����
����Tn

ec

����
����Tn

ds

≤ 

m

n�1


tn

tn− 1

l
2
n− 1(s)C

2
P I

n
u

n− 1
h − u

n
h

����
����
2
Tn
ds 

1/2


tn

tn− 1

ec

����
����
2
Tn
ds 

1/2

� 

m

n�1
αn

��
τn

√


tn

tn− 1

ec

����
����
2
Tn
ds 

1/2

≤ 
m

n�1
αn

��
τn

√


tn

tn− 1

‖φ‖
2
Tn
ds 

1/2

+ 
tn

tn− 1

χc

����
����
2
Tn
ds 

1/2
⎛⎝ ⎞⎠.

(82)
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For the term M3, we first have

M3 � 

m

n�1


tn

tn− 1

Inun− 1
h − un− 1

h( 

τn

+ P
n
hf

n
− f, ec ds

≤ 
m

n�1


tn

tn− 1

Inun− 1
h − un− 1

h( 

τn

��������

��������H− 1(Ω)

∇ec

����
����0ds

+ 
m

n�1


tn

tn− 1

P
n
hf

n
− f

����
����H− 1(Ω)
∇ec

����
����0ds

≡ M31 + M32.

(83)

We then estimate M31 as follows:

M31 � 
m

n�1


tn

tn− 1

Inun− 1
h − un− 1

h( 

τn

��������

��������H− 1(Ω)

∇ec

����
����0ds

≤ 
m

n�1


tn

tn− 1

Inun− 1
h − un− 1

h

����
����
2
H− 1(Ω)

τ2n
ds⎛⎝ ⎞⎠

1/2

· 
tn

tn− 1

∇ec

����
����
2
0ds 

1/2

� 
m

n�1
ζn

��
τn

√


tn

tn− 1

∇ec

����
����
2
0ds 

1/2

.

(84)

Similarly, the term M32 can be bounded by

M32 � 
m

n�1


tn

tn− 1

τ− 1/2
n P

n
hf

n
− f

����
����H− 1(Ω)

τ1/2n ∇ec

����
����0ds

≤ 
m

n�1


tn

tn− 1

Pn
hfn − f(s)

����
����
2
H− 1(Ω)

τn

ds⎛⎝ ⎞⎠

1/2

·
��
τn

√


tn

tn− 1

∇ec

����
����
2
0ds 

1/2

� 
m

n�1
βn

��
τn

√


tn

tn− 1

∇ec

����
����
2
0ds 

1/2

.

(85)

Substituting (84) and (85) into (83) yields

M3 ≤ 
m

n�1
ζn + βn( 

��
τn

√


tn

tn− 1

‖∇φ‖
2
0ds 

1/2
⎛⎝

+ 
tn

tn− 1

∇χc

����
����
2
0ds 

1/2
⎞⎠.

(86)

For the term M4, we have

M4 ≤ 

m

n�1


tn

tn− 1

ztu
d
h

�����

�����H− 1(Ω)
∇ec

����
����0ds

≤ 
m

n�1
ξn

��
τn

√


tn

tn− 1

‖∇φ‖
2
0ds 

1/2

+ 
tn

tn− 1

∇χc

����
����
2
0ds 

1/2
⎛⎝ ⎞⎠.

(87)

Observing that

u tn(  − u
n
c+

����
����
2
0 − ec tn( 

����
����
2
0 � u

n
d − u

n
d+

����
����
2
0

+ 2 u
n
d − u

n
d+, ec tn( ( ,

(88)

we then have

M5 �
1
2



m− 1

n�1
u tn(  − u

n
c+

����
����
2
0 − ec tn( 

����
����
2
0 

≤
1
2



m− 1

n�1
ϵ2nτ

2
n + 2ϵnτn max

1≤k≤m− 1
ec tk( 

����
����0 

≤
3
2



m− 1

n�1
ϵnτn

⎛⎝ ⎞⎠

2

+
1
4

max
1≤k≤m− 1

ec tk( 
����

����
2
0.

(89)

Adapting similar techniques as in the proof of ,eorem
5.7 in [18], we can obtain the desired estimate (75). □

5. Numerical Experiments

In this section, we give some numerical tests to validate our
theoretical analysis in ,eorem 2. ,e numerical scheme (9)
shows that, at each time step 1≤ n≤N, we shall solve the
following linear system: Given u0

h � P0
hu0, find un

h ∈ Vh such
that

τah u
n
h, vh(  + u

n
h, vh(  � τ f

n
, vh(  + u

n− 1
h , vh , ∀vh ∈ Vh.

(90)

In view of this expression, we then implemented our
numerical experiments by MATLAB package.

Example 1. We consider problem (1) with Ω � (0, 1) ×

(0, 1), T � 1.We choose the source term f such that the exact
solution is given by u(x, t) � sin(πt/ 2)x(1 − x)y(1 − y).

,e numerical results for theWOPSIP method are stated
in Table 1 and Figure 1. ,e convergence orders shown in
Table 1 (which are also the slopes of the line in Figure 1) are
consistent with the theoretical results in ,eorem 2.

Example 2. We consider problem (1) with Ω � (0, 1) ×

(0, 1), T � 1. ,e exact solution is u(x, t) � t2 sin(πx)

sin(πy), and the source term f can be computed accordingly.
,e convergence orders stated in Table 2 (see also the

slopes of the line in Figure 2) agree with the theoretical
analysis in ,eorem 2.

Table 1: Numerical results for t� 1 with τ � h2, for Example 1.

h ‖∇h(un − un
h)‖0 Order ‖un − un

h‖0 Order

1/2 9.013994e − 2 — 1.833267e − 2 —
1/4 4.754053e − 2 0.9230 5.642120e − 3 1.7001
1/8 2.375353e − 2 1.0010 1.396086e − 3 2.0148
1/16 1.184181e − 2 1.0043 3.369024e − 4 2.0510
1/32 5.915072e − 3 1.0014 8.210111e − 05 2.0369
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6. Conclusion and Future Work

A weakly overpenalized symmetric interior penalty method
is proposed and analyzed for solving the heat equation.
Optimal a priori error estimates in the energy norm are
established. Moreover, we derive a posteriori error esti-
mators which are key indicators to design adaptive algo-
rithms. We only present some numerical tests to validate the
a priori error estimate. A posteriori error estimators stated in
Section 4 include elliptic and parabolic terms. In particular,
the error estimators with respect to the mesh-change op-
erator In, such as αn and ςn, that need to be carefully in-
vestigated in the implementation procedure. ,us, the
implementation of adaptive algorithms based on the pro-
posed error estimators will be addressed in the further work.
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