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With the rapid development of quantum computing and quantum information technology, the universal quantum computer will
emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally.
Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of
attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We
also prove that the proposed scheme is provably secure in the random oracle model. *e performance analysis shows that the
proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. *us, the proposed
scheme is more suitable for practical applications.

1. Introduction

Currently, the emergence of quantum computing causes a
potential threat to the traditional cryptosystems. In 2011, the
first commercial quantum computer “D-Wave One” was
worked out, which provided the application of certain
cracking algorithms to the traditional public key cryptog-
raphy with feasible condition. Furthermore, it is because
most of mathematical hard problems in the traditional
cryptosystems are vulnerable to the strong computing power
of quantum computers. *erefore, it is obvious that the
influence quantum computers bring to the traditional
cryptosystem will permeate into the information security
and Internet security of all areas of a country, such as
politics, economy, culture, and military.

Specifically, it can be explained from two main aspects:
Firstly, for the integer factorization problem, the conjecture
that an n-bit integer can be decomposed by the n-qubit

quantum computer easily is proposed by Beauregard [1]. As
for the discrete logarithm problem, Proos and Zalka [2]
pointed out that n-bits elliptic curve discrete logarithmic
problem [3, 4] can be solved by n-qubit quantum computer.
Secondly, the valid length of the secret key in traditional
cryptosystem will be half of the original length under the
attack of quantum adversary.

Blind signature was first proposed by Chaum [5] to make
electronic money in an electronic cash system. In general,
the user can get a valid signature of any message through a
blind signature scheme, where the signer knows nothing
about the actual message. *is special property makes the
blind signature used widely. *erefore, a plenty of blind
schemes were worked out after the work of Chaum, such as
[6, 7]. However, those schemes had the significant problem
on certificates, which is the core problem in public key
infrastructure (PKI) cryptosystem. In 1984, the identity-
based (ID-based) public key cryptosystem was worked out
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by Shamir [8], which is useful to eliminate the serious defect
of the PKI cryptosystem. Since then, lots of ID-based blind
signature schemes were proposed with efficient
performance.

As is known to all, most of the above blind signature
schemes cannot resist the attack of quantum algorithms. It is
because the computational power of the quantum computers
is so strong that the hard problems in those schemes are easy
to be broken. In order to remove this threat, the post-
quantum cryptography appears in the vision of cryptogra-
phers, which is that the traditional cryptosystem still holds
its security under the attack of the quantum adversary. In the
postquantum cryptography systems, the lattice-based
cryptography is the most promising. Currently, lots of
cryptographic protocols have been devised on the lattice,
such as [9–11].

*ere are several advantages of the lattice-based
cryptography which are worth noting. Firstly, this
cryptosystem has got widespread attention in the last
decade. *en, this cryptography currently cannot be
broken by any algorithms, including quantum algo-
rithms. Moreover, lattice-based cryptography has the
same level of security in the average case and the worst
case. Finally, the designs of lattice-based schemes are
very simple and efficient, including mainly matrix-vector
multiplication, linear summation operation, and modulo
operation.

Taking advantage of these benefits, some blind signature
schemes were designed, but several problems included in
these schemes make them inapplicable in the real envi-
ronment. For example, some blind signature schemes lack
the formal security proof or describe the ability of the ad-
versary incorrectly. Besides, the efficiency shortcomings in
other schemes are too serious to be neglected, such as the
scheme proposed by Rückert [12] and the work of Zhang
et al. [13]. *e main reason for this is that complex algo-
rithms are used in the process of signing or the efficient
aborting technology is not involved in these blind signature
schemes.

In order to improve the practicability of blind signature,
a new ID-based scheme on lattice is proposed in this paper,
which is more efficient and secure. Specifically, the main
contributions of this paper are as follows:

(1) Firstly, our blind signature scheme can resist the
attack of the malicious quantum adversaries, because
it is based on lattice. Meanwhile, we prove that our
scheme is secure based on SIS problem in the ran-
dom oracle model. *e lattice cryptosystem also
makes it more efficient due to the simple operations
involved in lattice-based algorithms.

(2) Secondly, we use the bimodal Gaussian rejection
sampling in our scheme to prevent the leakage of
critical information, such as the signer’s secret key.
Using this aborting technology, it makes the mean
value of sampling times needed to generate a valid
signature smaller. Additionally, we can get the blind
signature with smaller size under this novel
technology.

(3) Finally, because the framework of ID-based cryp-
tosystem is used in our scheme, it means that the
additional cost is not needed to manage lots of
certificates in our scheme. *erefore, the proposed
scheme under this cryptosystem is more practical in
the real application.

2. Related Work

In this section, we will mainly talk about the related works on
the blind signature schemes. Due to its excellent conceal-
ment, blind signature has been studied widely and put into
the applications where important data needs to hold its
privacy, such as electronic cash (e-cash) [14], electronic
voting [15], and oblivious transfer [16].

In order to design electronic money used in the e-cash
system, Chaum [5] proposed the first blind signature
scheme. After the work of Chaum, lots of blind signature
schemes were worked out based on PKI cryptosystem, the
hardness of which is mostly based on the integer factor-
ization problem or discrete logarithm problem [17–19].
However, as we all know, the issue of certificates’ man-
agement is an apparent defect in this cryptosystem. For-
tunately, the identity-based public key cryptography was
proposed by Shamir [8] to eliminate this drawback.

Owing to the good advantages of ID-based cryptosystem,
the first ID-based blind signature scheme was worked out by
Zhang and Kim [20]. Later, Huang et al. [21] proposed
another ID-based blind signature scheme in 2005. In 2008, a
generalized ID-based blind signature with bilinear pairings
was designed by Kalkan et al. [22]. *en, in 2010, Rao et al.
[23] constructed a blind signature scheme on the basis of ID-
based digital signature framework proposed by Hess [24].
Following the work of Rao et al, a provably secure ran-
domized blind signature scheme was constructed by Fan
et al. [25] using bilinear pairings. Furthermore, there were
two other new ID-based blind signature schemes based on
bilinear pairings designed by Zhang et al. [26] and Shakerian
et al. [27], respectively, in the same year.

However, in 2011, He et al. [28] proposed a novel ID-
based blind signature scheme using no bilinear pairings.
*eir work opened up a new direction in the design of the
ID-based blind signature scheme, because the new blind
signature scheme constructed by them guaranteed both high
efficiency and anonymity. Later, a new provably secure and
pairing-free ID-based partially blind signature scheme was
worked out by Islam et al. [29] in 2016, which was used in an
online e-cash system. Besides, this scheme was provably
secure in the random oracle model. In 2017, an untraceable
ID-based blind signature scheme without pairing for e-cash
payment system was proposed by Kumar et al. [30]. *en,
James et al. [31] proposed an efficient pairing-free ID-based
blind signature scheme with message recovery in 2018.

Although ID-based cryptosystem can solve the efficiency
drawback of schemes in PKI cryptosystem, it cannot resist
the attack of quantum algorithms. In 2010, the first lattice-
based blind signature scheme was proposed by Rückert [12],
which was provably secure in the random oracle model.
Later, in 2017, a novel round-optimal lattice-based blind
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signature scheme used in the cloud services was constructed
by Zhu et al. [32]. Similarly, a new postquantum blind
signature scheme on lattice was proposed by Zhang et al. [13]
in 2018, in which the unimodal rejection sampling tech-
nology was used to improve the probability of generating a
valid signature.

Unfortunately, the efficiency problem still existed in
these schemes because they were designed under the PKI
cryptosystem. So some ID-based blind signature schemes
were worked out to deal with this disadvantage of previous
schemes. In 2014, Zhang and Ma [33] proposed a lattice-
based proxy blind signature scheme based on ID-based
cryptosystem, whose security was held in the standard
model. *en, another ID-based blind signature scheme on
lattice was constructed by Gao et al. [34] in 2016, which was
based on the standard model. Interestingly, a two-round ID-
based blind signature scheme on lattice was still proposed by
Gao et al. [35] on the random oracle model in 2017. In
addition, this scheme was proved to have the power to resist
the selective identity and chosen message attacks to remain
unforgeable and unconditionally blind based on the SIS
problem.

However, no aborting technology or only unimodal
rejection sampling was used in these schemes. In 2013,
Ducas et al. [36] proposed a modified aborting technology
based on the original rejection sampling, called bimodal
Gaussians rejection sampling, which reduces the rejecting
field between the actual sampling distribution function and
the expected sampling distribution function.*is means that
the signer can generate a valid signature with fewer samples.
Additionally, this new aborting technology still keeps the
basic ability to prevent the leakage of information of the
signer’s secret key. *erefore, using the bimodal Gaussian
rejection sampling, a new ID-based blind signature scheme
on lattice is constructed in this paper based on the work of
Zhang et al. [13]. Our scheme has the excellent ability to
resist quantum algorithm and high efficiency, combining the
advantages of lattice-based cryptosystem with that of ID-
based cryptosystem.

3. Preliminaries

In this section, the basic knowledge about lattices will be
described firstly. Next, we introduce the Gaussian distri-
bution in detail.

3.1. Lattices. A lattice L is defined as a discrete additive
subgroup of n-dimensional Euclidean vector space Rn.
Namely, if b1, . . . , bn are n linearly independent vectors in
Rn, a lattice L is the set of all integer combinations of these
vectors:

L(B) � L b1, . . . , bn(  � 
n

i�1
xibi : xi ∈ Z

⎧⎨

⎩

⎫⎬

⎭, (1)

and the matrix B is one base of L(B). Normally, n is de-
scribed as its corresponding dimension.

In particular, the following two types of lattices should be
paid more attention, called module lattice:

L
⊥
q (A) � x ∈ Zm

: Ax � 0(mod q) ,

L
u
q(A) � x ∈ Zm

: Ax � u(mod q) .
(2)

3.1.1. Small Integer Solution (SIS) Problem. Given a positive
integer q, a matrixA ∈ Zn∗m

q , and a real number β> 0, the SIS
problem is to find a nonzero vector v ∈ Zm such that
Av � 0(mod q), and ‖v‖≤ β. *is kind of SIS problem is
homogeneous. As for inhomogeneous SIS problem, it is to
find a nonzero preimage v ∈ Zm satisfying Av � t(mod q),
where ‖v‖≤ β.

*en, there are two important algorithms used in our
protocol, which are applied to generate the secret keys of the
trusted third party and the signer.

3.1.2. Trapdoor Generation Algorithm. An integer q≥ 3,
m> 5n log q; there is an effective algorithm TrapGen(q, m)

that can generate a matrix A ∈ Zn∗m
q and a basis TA ∈ Zm∗m

of the lattice L⊥(A). Besides, the distribution of the matrixA
is the uniform distribution in Zn∗m

q approximately and the
orthogonal matrix TA ≤O(

������
n log q


).

3.1.3. General Preimage Sampling Algorithm. *ere are an
integer m≥ n, a prime number q, and a positive integer k.
*e lattice L⊥(A) is defined by the matrix A ∈ Zn∗m

q . Ad-
ditionally, the matrix TA ∈ Zm∗m is a base of the lattice
L⊥(A). If the parameter of the Gaussian distribution
s≥ ‖TA‖ω(

����
log n


), there is a polynomial-time algorithm

SampleMat(A,TA, s,U), where U is a random matrix de-
fined in Zn∗ k

q , sampling a matrix V ∈ Zm∗ k in a distribution
closing to GLU(A),s, such that AV � U(mod q).

3.2. Gaussian Distribution and Bimodal Gaussian Rejection
Sampling

3.2.1. Gaussian Distribution. In statistics, the distribution
function of continuous Gaussian distribution is
ρc,δ(x) � e(− ‖x− c‖2/2δ2), where c is the center and δ is the
standard deviation. Furthermore, if c � 0, we usually make
the equation simpler, writing it as ρδ(x). In the case of lattice
L, the function is ρc,δ(L) � x∈Lρc,δ(x). So the discrete
Gaussian distribution over Z is written as
Gc,δ(x) � (ρc,δ(x)/ρc,δ(Z)). Meanwhile, the discrete
Gaussian distribution defined over Zm is normally described
as Gm

c,δ(x) � (ρc,δ(x)/ρc,δ(Z
m)). If the center c � 0, we

usually write these two symbols as Gδ(x) and Gm
δ (x).

In the following, some theorems on the discrete
Gaussian distribution are shown.

Theorem 1. We assume that k≥ 1, so the following formula
holds:

Pr ‖z‖> k∗ δ ∗
��
m

√
: z⟵G

m
δ < k

m
e

(m/2) 1− k2( ). (3)

Furthermore, if we have δ, r> 0, and for any element
v ∈ Rm, the following conclusion is made out:
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Pr |〈z, v〉|> r : z⟵G
m
δ ≤ 2e

− r2/2‖v‖2δ2( ). (4)

Theorem 2. It is described that we have δ � α‖v‖, where
α> 0, and v is an element in Zm. We have

Pr
Gm
δ (z)

Gm
v,δ(z)
< e

12/α+1/2α2
: z⟵ G

m
δ  � 1 − 2− 100

. (5)

Theorem 3. If the matrix A ∈ Zn∗m
q is chosen randomly and

e⟵ GZm,δ, we have that t � Ae(mod q), whose distribution
is uniform approximately in Zn

q.

3.2.2. Rejection Sampling. *e rejection sampling is a useful
aborting skill in lattice-based schemes. Speaking in formal
terms, when the positive constant M and a special distri-
bution f are given, we need to find another distribution g,
which makes f(x)≤M∗g(x). So we can say that the
distribution x⟵g is seen as another distribution f with the
probability f(x)/Mg(x). In general, M is the mean value of
times to get an effective sample.

(1) Rejection Sampling Lemma. It is assumed that h is a
distribution whose preimage is V, where V⊆Zm, and V
maps to R. When δ � ω(T

�����
logm


), we can have a constant

M to give the distribution of the following output:

(1) v⟵ h.
(2) z⟵ Gm

δ .
(3) *e (z, v) is given out with the probability 1/M is

within the statistical distance 2− ω(logm)/M of another
distribution:

(1) v⟵ h

(2) z⟵ Gm
v,δ

(3) *e output (z, v) is sent with the probability
min(Gm

δ (z)/MGm
v,δ(z), 1)

(2) Bimodal Gaussian Rejection Sampling. In the original
Gaussian rejection sampling, the mean value of repetitions
of the sampling is M ≈ e(1), when the standard deviation
δ � τ‖Sc‖, where the Gaussian “tail-cut” factor τ is pro-
portional to the square root of the security parameter.

In this paper, we introduce the bimodal Gaussian
rejection sampling in our scheme to get a smaller rejection
area and signature size. As the paper in [13] mentioned,
z � Sc + y is considered as signer’s signature. But the form
of the signature must be changed if we need to use the
bimodal Gaussian rejection sampling in the scheme.
Before the signer begins to sign the message, a random bit
b ∈ − 1, 1{ } is sampled. *en, the relevant signature is
z � bSc + y. *us, the probability distribution of z is
(1/2)Gm

Sc,δ + (1/2)Gm
− Sc,δ. According to the requirement of

rejection sampling, firstly, the inequality f(x)≤M∗g(x)

must be held. Secondly, we need to make M as small as
possible. For the sake of interpretation, we give out the
following formula:

Gm
δ (x)

(1/2)Gm
Sc,δ(x) +(1/2)Gm

− Sc,δ(x)

� e
‖Sc‖2/2δ2( )/cosh 〈x,Sc〉/δ2( )( )

≤ e
‖Sc‖2/2δ2( ).

(6)

Because there is a fact in math that the inequality
cosh(y)≥ 1 is always true for any y, we can get the value
M � e(1) by making δ get the value ‖Sc‖/

�
2

√
instead of the

value τ‖Sc‖. It is easy to see that the mean value M in the
bimodal Gaussian rejection sampling is smaller than that of
original Gaussian rejection sampling. Besides, we know that
the size of the final signature on lattice is roughly δ

��
m

√
so

that this size of the signature produced by using this re-
jection sampling is much shorter.

4. Security Model

In this section, the security model of the blind signature will
be introduced in detail. Normally, in addition to all kinds of
security attributes that a general signature scheme has, a
blind signature should have two more security attributes:

(i) Blindness: the signer does not know the specific
content of the actual message signed by itself.

(ii) Unforgeability: after a message is signed, the signer
who gets the signature of this message cannot link
this signature to the details of the corresponding
process.

In fact, blindness means that a malicious signer can only
get information independent of the actual message. In
particular, there is a formal game used to describe the
blindness.

4.1. Blindness Game. If any probabilistic polynomial-time
algorithm cannot win the following game, we will consider
the corresponding ID-based signature protocol as blind. In
this game, there are two honest usersU0 andU1. In addition,
A is considered to be a malicious signer. *e game of
blindness is defined as follows:

(1) A gets the public parameters params by querying
Setup.

(2) A performs Extract(params, ID)⟶ SID. Namely,A
can get the secret key SID of the identity ID by using
Key Extract algorithm.

(3) A chooses a random bit b ∈ 0, 1{ } secretly. *en it
sends a pair of messages (mb, m1− b) to U0 and U1.

(4) A executes the signature scheme with U0 and U1,
respectively. *e messages input by U0 and U1 are
mb and m1− b.

(5) *e outputs (δb, mb) and (δ1− b, m1− b) received byU0
and U1 are sent to A in arbitrary order.

(6) A outputs a bit b′ ∈ 0, 1{ }.
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It is worth noting that A wins the game of blindness if
and only if b′ � b. Moreover, we consider AdvBlindIDBS as the
advantage of A to win this game.

Next, another security game aimed at unforgeability will
be defined as below. In this game, S acts as the challenger and
A is an adversary playing as a user.

4.2. Unforgeability Game. We think that A can break the
unforgeability of an ID-based blind signature scheme, if A
makes qE extract queries and qS issue queries during the time
t and the corresponding advantageAdvUFIDPS of A is ε at least.
Otherwise, this scheme is unforgeability. *e game of
unforgeability is defined as follows:

(1) Setup: after inputting the security parameter 1λ, S
runs the Setup algorithm to generate the systematic
public parameter params and the master secret key
sk. *en, the public parameter params is sent to A.

(2) Query: there are three kinds of queries that A can
choose to send to S.

(a) Hash query: after getting this query, S would
select a random value and return it to A. It is
worth noting that random oracle queries are
responded by the challenger consistently.

(b) Extract query: after receiving this query, S would
run the Key Extract algorithm to get the relevant
secret key skID and give it back to A.

(c) Issue query: after obtaining this query, S executes
the sign algorithmwithA cooperatively to get the
signature sig. But before this operation, S would
get the ID’s secret key SID by performing the
extract query. Finally, the signature sig is given
back to A.

(3) Forgery: after the above query phase, A will use the
useful information to forge a signature sig⋆ corre-
sponding to the message u⋆ of the user, of which
identity is ID⋆. Additionally, A outputs n valid
signature pairs (u1, sig1), . . . , (un, sign), where
(u⋆, sig⋆) � (un, sign). If the following conditions
are satisfied by these signature pairs, we can conclude
that A wins this game. Furthermore, AdvUFIDBS is the
advantage of A to get final success in this game.

(a) For any i and j, we have that ui ≠ uj, where i≠ j

and i, j ∈ 1, . . . , n{ }.
(b) n> qS.
(c) A never uses the extract query to get the secret

key sID⋆ of the user whose identity is ID⋆.

Generally, an ID-based blind signature is considered to
have blindness and unforgeability, if AdvBlindIDBS and AdvUFIDBS
of any polynomial time adversary are negligible.

5. Our Scheme

In this section, we will introduce our ID-based blind sig-
nature scheme in detail. Notably, there are two important
algorithms used in our scheme, which are TrapGen and

SampleMat[37, 38]. Meanwhile, public key generator (PKG)
is the trusted third party.

5.1. System Setup. After getting the safety parameter 1λ and
n, PKG performs the following four steps:

(1) Choosing a prime number q≥ 3, m> 5n log q,
s≥ Lω(

����
log n


), and δ � 12smλ, where

L � O(
������
n log q


).

(2) Executing the algorithm TrapGen(q, m)⟶ (A,B),
where ‖B‖≤L. *ese matrices A ∈ Zn∗m

q and
B ∈ Zm∗m

q are the public key and the secret key of
PKG, respectively.

(3) Selecting two secure hash functions
H : 0, 1{ }∗ ⟶ v : v ∈ − 1, 0, 1{ }n, ‖v‖1 ≤ n  and
H1: 0, 1{ }∗ ⟶ Zn∗ k

q . Actually, k � m − n.
(4) Making the parameters A, H, H1  public and

keeping sk � B as a secret.

5.2. Key Extraction Phase. In our scheme, PKG uses the
following method to generate the user’s key pair. *e key
extract phase is shown in Figure 1.

(1) Computing H1(ID) � A′ ∈ Zn∗ k
q and performing

the algorithm SampleMat(A,B, s,A′)⟶ Sm∗ k
ID . We

can know that ASID � H1(ID) and ‖SID‖≤ s
��
m

√
.

(2) Owing to m> n, getting SID⟶ SID′ , and choosing n

rows of SID randomly and then computing the rel-
evant transposed matrix S′k∗ n

� S′TID and finally
calculating A″ � A′S′(mod q).

(3) Computing An∗m
u � [2A′ | 2A″ + qI] and

Sm∗ n
u � [S′/− I]T, where I is the unit matrix, and then

making the computation T � AuSu(mod 2q) � qI.
So, T and Au are the user’s public keys and Su is the
corresponding secret key.

5.3. SignPhase. Essentially, this phase is an interactive three-
move identification scheme over lattice based on SIS
problem. It is assumed that u is the actual message needed to
be signed. *e specific interaction process is as follows:

(1) *e signer selects a random vector r⟵Gm
δ2

and
calculates x � Aur. *en, x is transmitted to the user.

(2) Blind: the user chooses two blind factors a⟵Gm
δ3

and b⟵Gn
δ1

and computes c � H(x + Aua + Tb
(mod 2q), com(u, t)). Noticeably, u is the message to
be signed and t is a random value. Besides, the
function com is a commitment. *en, e � pc + b
is worked out, where p ∈ − 1, 1{ }. Finally, e is sent to
the signer by using the bimodal Gaussian rejection
sampling to stop e from leaking some information
of c.

(3) BSign: the signer selects w⟵ − 1, 1{ } randomly.
Upon that, it can compute y � r + wSue. Similarly, y
is sent to the user in the same way to hide relevant
information of Su.
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(4) Unblind: the user can get the value of z � y + a.
*en, z is output by the unimodal Gaussian rejection
sampling. If z ∈ J, we make
result � (a, b, c, m, com(u, t)), where J is the rejec-
tion region of Gaussian sampling. Otherwise, we
have result � accept. Finally, result is given to the
signer.

(5) After holding result, the signer checks whether the
value of result is accept or not. If it holds, the blind
signature (z, c) is valid. On the contrary, if e − b �

mc � mH(x + Aua + Tb(mod 2q), com(u, t)),
c � H(Aua + Auy − Tc(mod 2q), com(u, t)), and
y + a ∈ J, the signer restarts the sign phase with the
user.

*e sign phase is shown in Figure 2.

5.4. Verify Phase. In this phase, the verifier should check
whether the following conditions are right or not:

(1) c � H(Auz − qc(mod 2q), com(u, t))

(2) ‖z‖≤ 2
��
m

√
δ3

Actually, (z, c) is the final signature pair. If the two above
conditions are satisfied, we have Verify(Au,T, z, c, u) � 1.

5.5. Correctness Analysis Phase. In this section, we mainly
talk about the correctness and repetition of our blind sig-
nature. Firstly, we have
Auz − qc(mod 2q) � Au(y + a) − qc(mod 2q)

� Au r + kSue(  + Aua − qc(mod 2q)

� x + kT(mc + b) + Aua − qc(mod 2q)

� x + Aua + kmqc − qc + kTb(mod 2q)

� x + Aua + kqb(mod 2q)

� x + Aua + Tb(mod 2q).

(7)

*us, we have the fact that c � H(x+

Aua + Tb(mod 2q), com(u, t)) � H(Auz − qc(mod 2q), com
(u, t)). Additionally, on the basis of*eorem 1 and rejection

sampling lemma, there is ‖z‖≤ 2δ3
��
m

√
with overwhelming

probability.
Next, because the bimodal Gaussian rejection sampling

is used in two places in our scheme, the mean value of
repetitions is smaller than that of the original scheme.
According to the introduction of Gaussian distribution, we
have that

Gm
δ3

(z)

M3G
m
y,δ3

(z)
≤

1
M3

e
24‖y‖δ3+‖y‖2/2δ23( ) ≤ 1,

Gm
δ2

(y)

M2 (1/2)Gm
Sue,δ2

(y) +(1/2)Gm
− Sue,δ2

(y) 

≤
1

M2
e

Sue‖ ‖
2/2δ22(  ≤ 1,

Gn
δ1

(e)

M1 (1/2)Gn
c,δ1

(e) +(1/2)Gn
− c,δ1

(e) 

≤
1

M1
e

‖c‖2/2δ21( ) ≤ 1.

(8)

In the rejection sampling lemma, we need to keep
Mi(i ∈ 1, 2, 3{ }) as small as possible. *erefore, the value of
Mi is worked out, where M1 � e(‖c‖2/2δ21), M2 � e(‖Sue‖

2/2δ22),
and M3 � e(24‖y‖δ3+‖y‖2/2δ23). Obviously, M1 and M2 are both
less than the original values in the general rejection sam-
pling, but not M3. *erefore, it means that a valid blind
signature can be generated successfully in lesser repetitions,
whose specific number is 

3
i�1 Mi.

6. Security Proof

In this section, we mainly prove that our scheme is blind and
unforgeable by using the security model defined in Section 4.
In fact, we need a malicious adversary to play games of
security with a challenger.

PKG SignerID

SampleMat(A, B, s, A′)→SID ∈ Zm∗k

(Au, Su)

T = AuSu (mod 2q) = qI ∈ Zn∗m

A′S′ (mod q) = H1(ID)S″ID = A″

SID→S′ID ∈ Zn∗k

(S′ID)T = S″ID = S′ ∈ Zk∗n

Au = [2A′|2A″ + qI(mod q)] ∈ Zq
n∗m

Su = [S′|–I]T ∈ Zm∗n

H1(ID) = A′ ∈ Zq
n∗m

Figure 1: Key extraction phase.
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6.1.Blindness. Wemainly prove the blindness of our scheme
from the indistinguishability of views. Normally, views are
the information conveyed between the signer and the users,
as the following theorem shows.

Theorem 4. De proposed ID-based blind signature scheme
on lattice has blindness.

Proof. As the game of blindness shows, a dishonest signer
A⋆(pk, sk) selects two messages u0 and u1. *en these
messages are sent to two honest users U0(pk, ub) and
U1(pk, u1− b), where b ∈ 0, 1{ }. *en this malicious signer
plays the game of blindness withU0 andU1 in the interactive
way, respectively. *erefore, we can prove that our ID-based
blind signature scheme is blind to A⋆ by showing all outputs
of the users are independent of the relevant messages signed.
We can see from the proposed scheme that the outputs are e
and the final signature (z, c). Because we have that
c⟵ v ∈ − 1, 0, 1{ }n: ‖v‖1 ≤ n , c is always a random
number in the view of A⋆. *erefore, we can only consider
two values e and z.

Firstly, we consider about e. We assume that eb and e1− b

are generated in the game of blindness. eb is held by U0.
Similarly, e1− b is corresponding toU1. In our scheme, we can
know that e � mc + b, where c can be seen as a random
value. Besides, e is transmitted by using the bimodal
Gaussian rejection sampling. *erefore, after getting eb and
e1− b, A⋆ cannot link eb and e1− b to their respective messages
ub or u1− b. It is because the distribution of eb and e1− b is both
(1/2)Gn

c,δ1
+ (1/2)Gn

− c,δ1
, but the output distribution of them

is the same as that of b under the bimodal Gaussian rejection
sampling, which is Gn

δ1
. In fact, the mean value of the dis-

tribution of eb should be different from that of e1− b.
However, we know these mean values can be considered as a
random number. So we set the mean value as c uniformly for
sake of simplicity. So we can say that the statistical distance
between eb and e1− b is 0; namely, Δ(eb, e1− b) � 0.

Next, we talk about z. In the proposed scheme, we have
that z � y + a, where a⟵Gm

δ3
is a blind factor. However,

the output way of z is different from that of the above
challenge e, because the Gaussian rejection sampling used in
this place is unimodal rather than bimodal. But this cannot
make an influence on the blindness. Similarly, we assume
that zb is the final signature of U0 and z1− b is related sig-
nature U1 received. Similarly, we set the mean value of
distribution of zb and z1− b as y. It is because the value y is
computed by the signer that the distribution of zb and z1− b is
both Gy,δ3. According to the Gaussian rejection sampling, the
output distribution of zb and z1− b is the same as that of a,
which is Gm

δ3
. *erefore, A⋆ cannot determine the corre-

sponding messages of zb and z1− b from their output dis-
tribution. *at is, the relevant statistical distance
Δ(zb, z1− b) � 0.

On the contrary, we assume that A⋆ gets the corre-
sponding parameters ID and the secret key SID by playing
the game of blindness with U0 and U1. Besides, δ(ub) and
δ(u1− b) are information A⋆ has after playing this game. It is
worth noting that if A⋆ uses the method of guessing a
random value of b′ without any help to win the game of
blindness, this probability is 1/2.

In addition, for i ∈ 0, 1{ }, xi, ei, and yi are the data ex-
changed between the signer and the user, when the issue
query is performed by the user. Finally, (z0, c0) and (z1, c1)
are returned to the dishonest signerA⋆. For each i, j ∈ 0, 1{ },
there are two random blind factors a, b that map xi, ei, yi to
zj, cj. *us, a � zj − yi and b � − mcj + ei. Since T � qI,
where I is the unit matrix, we have

cj � H Auzj − Tcj(mod 2q), com(u, t) 

� H Au a + yi(  − T m ei − b(  (mod 2q), com(u, t)( 

� H Aua + Auyi + T ei − b( (mod 2q), com(u, t)( 

� H Auyi + Tei + Aua − Tb(mod 2q), com(u, t)( .

(9)

In the above equations, yi, ei are two elements in one
view and zj, cj are two data in another view. Besides, two
blind factors a and b are always included in the equation,

Signer User

r ← Gm
δ2

a ← Gm
δ3

, b ← Gn
δ1

x = Au ∗ r x
c = H(x + Aua + Tb(mod 2q),u)

output e = mc + b withe
k ← {–1, 1}, y = r + kSue

output y with min (Gm
δ2

 (y)/
(M2((1/2)Gm

Sue,δ2
 (y) + (1/2)Gm

–Sue,δ2
 (y))

min (Gn
δ1

 (e)/
(M1((1/2)Gn

c,δ1
 (e) + (1/2)Gn

–c,δ1
 (e))

y
z = y + a

output z with min((Gm
δ3

 (z)/(M3Gm
y,δ3

 (z)), 1)

parse result = (a, b, c, m)

result if z ∈ J, result ← (a, b, c, m, u)
else result ← acceptif result ≠ accept

if e – b = mc = mH (x + Aua + Tb(mod 2q), u)
mc = H (Aua + Auy – qc(mod 2q), u)
y + a ∈ J Restart the protocol

t ← {0, 1}n, m ← {–1, 1}

Figure 2: Blind sign phase.
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which result in the indistinguishability to A⋆. *erefore, the
probabilistic polynomial time adversary A⋆ makes out the
right value of b successfully with probability 1/2.

In a word, our ID-based blind signature scheme on
lattice has the security attribute of blindness. □

6.2. Unforgeability. In fact, unforgeability ensures that n

valid signatures can be output by a malicious user at most. n

is the maximum of queries that this adversary can make to
the challenger. As the process of the game of unforgeability,
we will give out the specific steps of this game on the basis of
the proposed scheme.

Theorem 5. If A⋆ is a probabilistic polynomial time ad-
versary, it can break our ID-based blind signature on lattice
with the nonnegligible probability. So, we can construct a
polynomial-time algorithm using A⋆ as its subroutine to solve
the SIS problem with overwhelming probability.

Proof. We assume that h and l are the maximum of queries
that A⋆ can make to the random oracle H and the signer.
Furthermore, the values of responses of the random oracleH

are determined in advance. *us, we have
H⟶ c1, . . . , cs , where s � l + h, because the adversary
would make a query to H before sending a signature query.
As shown in the following content, A⋆ plays the game of
unforgeability with the challenger S:

(i) Setup: after inputting the security parameter 1λ, the
challenger picks a random matrix A ∈ Zn∗m

q and a
hash function H1: 0, 1{ }∗ ⟶ Zn∗ k

q . Additionally,
the random oracle H is controlled by S. *en, these
systematic public parameters are opened to A⋆.

(ii) Query: A⋆ can make four types of queries to S: H1
query, H query, extract query, and issue query. It is
worth noting that S could maintain four empty lists
before answering to those queries, namely, Hlist

1 ,
Hlist, SKlist, and Siglist. *e specific processes of the
answers to these queries will be displayed as follows:

(1) H1 query: as mentioned above, S holds an empty
list Hlist

1 in advance, whose form of item is
(ID,PID, SID). After receiving an H1 query
about the identity ID, S searches the corre-
sponding item in Hlist

1 firstly. If there is an el-
ement IDi � ID, S gives PIDi

to A⋆ as its
response. Otherwise, S chooses a matrix
SID ∈ Zm∗ k at random, whose columns obey the
distribution GZm,s. *en, S computes
PID � ASID. According to *eorems 1 and 3 in
the Gaussian Distribution section, ‖SID‖≤ s

��
m

√

and a random matrix PID ∈ Zn∗ k are held with
nonnegligible probability. Finally, the new item
(ID,PID, SID) is inserted into Hlist

1 . Besides, PID
is returned to A⋆.

(2) Extract query: after acquiring this query, S looks
for the corresponding item (ID,PID, SID) inHlist

1
firstly. *en A⋆ gets a random matrix SID′ from
the matrix SID, where SID′ ∈ Zn∗ k. Moreover,A⋆

can compute the transposed matrix S″k∗ n
ID of the

matrix SID′ and we assign the value of SID″ to S′.
In the end, S′ is inserted in SKlist and SKID �

[S′I]T is given back to A⋆. If a corresponding
item does not exist, S picks a random matrix
S′ ∈ Zk∗ n andmakes anH1 query. Similarly, the
new item (ID,PID, SID, S′) is added in the list
SKlist and the relevant matrix SKID is trans-
mitted to A⋆. Furthermore, S calculates
A″ � PIDSKID(mod q). *en, S can compute
Au � [2PID|2A′′ + qI] and give Au to the ad-
versary as the public key of the user whose
identity is ID.

(3) H query: similarly, the challenger maintains an
empty list Hlist, of which item is
(xi + Aa + Tb, u, h). When A⋆ launches an H
query, S searches the corresponding item in
Hlist. If there is a related item in Hlist, the ele-
ment h is given back to A⋆. Otherwise, the
answer h to the adversary is a random ci that is
not used yet, i ∈ 1, . . . , s{ }. Besides, the new item
ci � h is added in Hlist.

(4) Issue query: after acquiring this query, S
searches for the corresponding item
(ID,PID, SID, S′) on the basis of ID in SKlist.
*en, S uses [S′| − I]T as the secret key to ex-
ecute the sign algorithm. Indeed, we can get the
final signature (z, h). Finally, S sends (z, h) to
A⋆ as a response to this issue query.

(iii) Forgery: after completing l valid issue queries, A⋆
gives out l + 1 valid message-signature pairs
(z1, c1), u1 , . . . , (zl+1, cl+1), ul+1  with non-
negligible probability ρ. It is worth noting that we
always have ‖zi‖≤ 2δ3

��
m

√
.

If the response to an H query is predetermined, namely,
c ∉ c1, . . . , cs , A⋆ can make c as the answer of the random
oracle H with the probability 1/|H|. Here, |H| is the size of
output set of the random oracle H. In other words, c is one
element in c1, . . . , cs  with probability 1 − (1/|H|). *ere-
fore, A⋆ can make a successful forgery ((zl+1, cl+1), ul+1) with
the probability ρ − (1/|H|), where cl+1 comes from
c1, . . . , cs . As mentioned previously, the H query can take
place in two places, so we need to talk about the specific
scheme in two different scenarios:

(1) Scenario 1: c is generated by S during responding to
an issue query made by A⋆. Because c is the response
of a signature on (Auz′ − Tc, u′), we can have
H(Auz − Tc, u) � H(Auz′ − Tc, u′). *us, we must
have that u � u′ and Auz − Tc � Auz′ − Tc. If not, it
means that we can find a collision of the hash
function H. So, we can make a conclusion that
Au(z − z′) � 0(mod 2q). Besides, we have
‖z − z′‖≤ 4δ3

��
m

√
, because ‖z‖, ‖z′‖≤ 2δ3

��
m

√
.

(2) Scenario 2: c is an answer of the random oracle H. In
order to solve the SIS problem, S replays the game of
unforgeability with A⋆. However, there is something
different from the first process of this game. S
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changes the values of response of random oracle H,
which is (c1, . . . , cj− 1, cj

′, . . . , cs
′). cj
′, . . . , cs
′  are

different random values. According to the General
Forking Lemma,A⋆ can forge a new signature (c, z⋆)
of (ID, ul+1) with the probability ρ′, such that c≠ cl+1
and Auzl+1 − Tcl+1 � Auz⋆ − Tc. Additionally, the
probability of ρ′ is

ρ′ � ρ −
1

|H|
 

ρ − (1/H)

s
−
1
H

 . (10)

Because of T � AuSKID, we can have

Au zl+1 − z⋆ + SKIDcl+1 − SKIDc(  � 0. (11)

In addition, ‖zl+1‖, ‖z⋆‖≤ 2δ3
��
m

√
and

‖SKIDcl+1‖, ‖SKIDc‖≤ sλ
��
m

√
are held. *us, with over-

whelming probability, we have

zl+1 − z⋆ + SKIDcl+1 − SKIDc
����

����≤ 4δ3 + 2sλ( 
��
m

√
. (12)

If zl+1 − z⋆ + SKIDcl+1 − SKIDc≠ 0, then a valid solution
of the SIS hard problem is found.*us, we need to prove that
the probability of zl+1 − z⋆ + SKIDcl+1 − SKIDc≠ 0 is over-
whelming. According to the property of minimum entropy
of the preimage, we can know that there is another secret key
S⋆ID such that AuS⋆ID � AuSID, which is different from SID.
Additionally, the adversary cannot distinguish the secret key
S⋆ID from SID, after getting the view (x, e, y). Currently, we
assume the secret key used in this game is S⋆ID. Furthermore,
we calculate r′ by the following way:

r′ � y − kS⋆IDe � r + kSIDe − kS⋆IDe

� r + ke SID − S⋆ID( .
(13)

As mentioned above, we have AuSID � AuS⋆ID, so the
equation Aur′ � Aur is set up. *en we can get
y′ � r′ + kS⋆IDe � y. *erefore, the event thatA⋆ wants to tell
the relevant secret on the basis of r could not take place.
*en, we have

zl+1 − z⋆ + SID cl+1 − c(  − zl+1 − z⋆ + S⋆ID cl+1 − c( ( 

� SID − S⋆ID(  cl+1 − c( ≠ 0.

(14)

So, if zl+1 − z⋆ + SID(cl+1 − c) � 0, we can get the con-
clusion that zl+1 − z⋆ + S⋆ID(cl+1 − c)≠ 0 is satisfied. Simul-
taneously, the adversary cannot tell which secret key is used
by the challenger S in the game. *us, zl+1 − z⋆ + SID(cl+1 −

c)≠ 0 is set up with the probability 1/2 at least. □

7. Performance Evaluation

In this section, the performance analysis of our scheme is
talked about in detail. Generally, we will give out the result of
comparison between our scheme and two other represen-
tative articles in terms of communication complexity and
computing complexity. Specifically, these data are mainly
derived from the signature’s size and computational cost of
generating system parameters of the relevant scheme.
Currently, most of the lattice-based blind signature schemes

are proved secure in the random oracle model, where the
scheme in [39] proposed by Rückert was the most au-
thoritative in 2010. Besides, another blind scheme was
proposed by Zhang et al. [13] in 2018, on which we design
our new ID-based blind signature scheme. It is worth noting
that we do not consider the computational cost of the key
extraction phase of our scheme when we make a comparison
of the performance between our scheme and Zhang et al.’s
[13] signature scheme because their scheme is a PKI-based
blind signature scheme on lattice.

Firstly, we show a detailed comparison between our
scheme and the blind signature scheme proposed by Zhang
et al. [13]. To keep the reasonability, we will use the same way
in Zhang et al.’s scheme [13] to choose the public system
parameters. Namely, the security level of our scheme is the
same as that of the scheme [13] proposed by Zhang et al.
owing to the Hermite factor δ � 1.007 defined in [40], which
can reach 80 bits. Table 1 shows some important system
parameters in these two schemes, where n, q, and k are used
to keep the hardness of SIS problem.

In Table 1, the parameters of the rejection sampling in
our scheme are smaller than those of the scheme [13]
proposed by Zhang et al. obviously. *is is because the
bimodal Gaussian rejection sampling is used in our scheme.
Specifically, the size of a challenge is determined by the
parameter κ. In general, κ should satisfy the condition

2κ k

κ ≥ 2100 to keep the correctness error at 2− 100.

According to rejection sampling lemma, we need to keep the
rejection area between the actual distribution and objective
distribution as small as possible. In this way, the signature
algorithm can generate a valid signature using as few repe-
titions as possible. On the basis of the property of bimodal
Gaussian rejection sampling, we only need to require that δ �

‖c‖/
�
2

√
instead of 12‖c‖. In this case, the bimodal Gaussian

rejection sampling can work with the minimum mean value
M � e(1). Normally, becauseM1 andM2 are themean values
of the bimodal Gaussian rejection sampling, they are inde-
pendent of δ1, ‖c‖ and δ2, ‖Sue‖. For M1, we have that M1 �

e(κ/(2δ21)) when δ1 � ‖c‖/
�
2

√
�

�
κ

√
/

�
2

√
. *is can hold because

we have ‖c‖1 ≤ κ and ‖c‖2 ≤
�
κ

√
. Similarly, we can get the

optimal value of M2 while we make that δ2 � dη δ1
���
mk

√
/

�
2

√
.

However, because M3 is the mean value of the unimodal
rejection sampling, we need to only require that
δ3 � 12ηδ2

��
m

√
. In addition, the distribution of the final

signature z is Gm
δ3
. By *eorem 1, we can determine that the

size of z’s every coefficient is 12δ3 with the probability at least
1 − 2− 100. Because the value of δ3 in our scheme is far less than
that in Zhang et al.’s scheme [13], we can get the smaller valid
signature that is equal to m log(12δ3) bits approximately.
Additionally, our M1, M2, and M3 are smaller than those of
the scheme proposed by Zhang et al. [13]. *is means our
blind signature scheme can use less time to generate a valid
signature in the same security level. In the end, what we need
to emphasize is that our blind signature scheme on lattice is
based on the ID-based cryptosystem, which has already
stronger efficiency than the PKI cryptosystem.
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Next, we will give out the comparison between our
scheme and the classical scheme proposed by Rückert et al.
simply [39]. Here, m and n are the common system pa-
rameters in these two schemes. Moreover, c is the bit size of
the user’s identity and s � s

��������
(c + 1)m


ω(

����
log n


) is the

expansive Gaussian parameter in Rückert et al.’s scheme
[39]. We can know that the size of final signature in our
scheme is m log(12δ3). According to the explanation of
Rückert et al. [39], the size of signature is
(c + 1)m log(s

�������
(c + 1m


) + n in their ID-based blind

scheme. Obviously, it is easy to make the conclusion that the
signature’s size in our scheme is smaller than that of Rückert
et al.’s scheme [39] in the random oracle model. In terms of
computing complexity, there are only some simple operators
involved in our sign algorithm and verify algorithm, such as
scalar-multiplication on vector, addition on vector, matrix-
vector multiplication, and hash function. However, in sign
algorithm and verify algorithm of Rückert et al.’s scheme
[39], the complex algorithms are included to generate a valid
signature, such as ExtBasis algorithm and SamplePre al-
gorithm. So our scheme is simpler and more efficient than
the scheme proposed by Rückert et al. [39].

Based on the above result, we can make a conclusion that
our scheme has less communicational and computational
cost, compared with the latest blind signature scheme on
lattice proposed by Zhang et al. [13] and the most au-
thoritative blind signature scheme on lattice proposed by
Rückert et al. [39]. *us, our scheme has more efficient and
practical value in applications. Table 2 shows the result of
relevant comparison in detail.

8. Conclusion

Integrating the advantage of ID-based cryptosystem with
lattice-based cryptosystem, we construct an efficient and
secure ID-based blind signature scheme in this paper to

protect the privacy of confidential data, which can be widely
applied to the e-cash and electronic voting system. More-
over, a useful aborting technology, bimodal Gaussian re-
jection sampling, is used in our scheme to accelerate the
speed of generating a valid blind signature. Meanwhile, our
scheme is provably secure in the random oracle model,
which is on the basis of the SIS problem. By showing the
comparison with the scheme of Zhang et al. [13] and that of
Rückert et al. [39], we demonstrate the superiority of our
scheme in communicational and computational efficiency.

To extend our scheme to get other useful properties and
complete an original model of evaluating the extended
scheme in the real application environment is the future
work executed by us.
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