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Irregular boundary lines can be characterized by fractal dimension, which provides important information for spatial analysis of
complex geographical phenomena such as cities. However, it is difficult to calculate fractal dimension of boundaries systematically
when image data are limited. An approximation estimation formula of boundary dimension based on square is widely applied in
urban and ecological studies. But the boundary dimension is sometimes overestimated. This paper is devoted to developing a
series of practicable formulae for boundary dimension estimation using ideas from fractals. A number of regular figures are
employed as reference shapes, from which the corresponding geometric measure relations are constructed; from these measure
relations, two sets of fractal dimension estimation formulae are derived for describing fractal-like boundaries. Correspondingly, a
group of shape indexes can be defined. A finding is that different formulae have different merits and spheres of application, and the
second set of boundary dimensions is a function of the shape indexes. Under condition of data shortage, these formulae can be
utilized to estimate boundary dimension values rapidly. Moreover, the relationships between boundary dimension and shape
indexes are instructive to understand the association and differences between characteristic scales and scaling. The formulae may

be useful for the prefractal studies in geography, geomorphology, ecology, landscape science, and especially, urban science.

1. Introduction

Fractal systems can be characterized by fractal dimension,
and the basic and important approach to understanding
fractal dimension is the geometric measure relations. Eu-
clidean geometric measure relations come from the principle
of dimension consistency. A measure (e.g. length) is not
proportional to another measure (e.g. area) unless they share
the same spatial dimension [1-3]. From the principle of
dimensional homogeneity, we can derive Euclidean geo-
metric measure relations, which can be generalized to fractal
geometric measure relation [3-5]. From fractal measure
relations, we can derive fractal dimension and allometric
scaling exponents [3, 6-8]. An allometric scaling relation can
be regarded as a generalized fractal measure relation. Among
various geometric measure relations, the common one is the
area-perimeter scaling relation, which was used to obtain the
boundary dimension of self-similar shapes embedded into a
2-dimensional space [3, 4]. In urban studies, the form di-
mension and boundary dimension can be derived from the

fractal measure relations [9, 10]. Form dimension of cities
includes box dimension and radial dimension, which are
defined on the basis of the relations of urban area and the
linear sizes of box or radius of concentric circles [9, 11]. This
work focuses on boundary dimension, which can be asso-
ciated with form dimension in theory.

If we have enough data, we can calculate various fractal
parameters. Taking urban research as an example, we can
research spatial distribution and structure using box di-
mension and research urban growth using radial dimension.
If there is not enough information for urban morphology,
the boundary dimension of a city can be calculated
[9, 12, 13]. However, sometimes, we only know the urban
area and urban envelope. Urban envelope represents closed
urban boundary lines, and urban area represents the region
within the boundary curve [9, 14]. In this case, we can only
estimate the boundary dimension by means of the datasets of
urban area and perimeter length. Referring to a Euclidean
shape, we can construct a series of estimation formulae of
fractal dimension. The basic reference shapes are standard
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circle and square. The formula of boundary dimension based
on square has been constructed by Olsen et al. [15], and the
formula was widely applied in urban and ecological studies
[16, 17]. The formula is simple and easy to understand and
has strong practicability. However, it has two drawbacks.
First, this formula is mainly applicable to objects extended in
the form of squares. Second, the formula sometimes over-
estimates the boundary dimension [8, 18]. Therefore, we
need not only the fractal dimension estimation formulae
based on other reference shapes but also a new fractal di-
mension estimation formula with reference square. This
paper is devoted to deriving two sets of approximation
formulae of fractal dimension estimation for the fractal-like
boundary dimension of irregular shapes. The reference
figures include regular triangle, square, regular hexagon, and
standard circle. As a contrast model, the generator of Koch
snowflake curve is also employed as one of the reference
shapes. From the geometric measure relations based on these
reference shapes, a series of formulae are derived to ap-
proximately estimate the boundary dimension of various
irregular shapes such urban envelopes.

2. Fractal Measure Relations

2.1. The First Set of Formulae. The so-called fractal di-
mension values based on the approximation formulae are
actually fractal indicators, which can be used to replace
fractal dimension under the condition of absence adequate
data. A basic postulate is that the boundary line of an
irregular region is a closed prefractal curve. A prefractal is
a fractal-like object, which is not a real fractal [19, 20]. The
“length” of true fractal line is infinite. If the irregular
boundary such as urban envelope is a real fractal curve, we
cannot derive any simple formula for fractal indicators and
shape indexes. Using the ideas from prefractals, we can
find a number of approximation formulae of boundary
dimension from a given reference shape. The reference
shapes are some types of regular geometric figures defined
in a 2-dimensional Euclidean space, including standard
circle, regular triangle, square, regular hexagon, and
regular six-pointed star (Figure 1). Triangle can be
regarded as the basic shape in Euclidean geometry. All
geometric figures, including squares, rectangles, trape-
zoids, circles, ellipses, and irregular shapes, can be reduced
to triangles. So, the first formula of fractal dimension
estimation for irregular boundaries should be derived
from a regular triangle. For an equilateral triangle with a
side length r, the area A and perimeter P can be expressed
as follows:

sin(71/3) ,
=—7r

5 , (1)

P =3r. (2)
Thus, the geometric measure relation between area A

and perimeter P can be obtained by combining equation (1)
and equation (2). Eliminating the side length r yields
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Suppose that the three Euclidean sides are replaced by
three fractal lines and the fractal dimension of these lines is
D. In this case, a regular shape changes to an irregular shape
(Figure 2). Thus, the Euclidean geometric measure relation,
equation (3), should be substituted by a fractal geometric
measure relation:

24 vz p\UD
(sin(n/3)> :<§) ’ )

where D denotes the fractal dimension of the boundary line.
From equation (4), a formula of estimating the fractal di-
mension of boundary lines can be derived as below:

_ 2In(PB3)  2In(P/3) 5)
" In(2A/sin(7/3))  In(4A/3)

If the shape of a natural system such as a city is similar to
a triangle or a system has three growing directions, the
fractal dimension of the system’s boundary line can be es-
timated by equation (5).

The second formula can be constructed on the basis of
square. A square is simple and regular, and it is easy to
calculate its area A and perimeter P if the side length r is
known. The area and perimeter formulae are as follows:

A=1 (6)

P = 4r. (7)

Combining equations (6) and (7) yields the geometric
measure relation between the area A and perimeter P as
below:

p
— A1/2 = 8
r 2 (8)
If the sides of the square are replaced by the fractal lines
with fractal dimension D, the geometric measure relation,
equation (8), will be replaced by

A - (g)w. (9)

From equation (9), a fractal dimension estimation for-
mula can be derived as follows:

_2In(P/4)

(A (10)

This formula is familiar to many scholars who like
geographical and ecological fractals because it was once
derived by Olsen et al. [15] in another way. If the shape of a
natural system is similar to a square, or a system has four
growing directions, the boundary dimension of the system
shape can be estimated by equation (10).

The regular hexagons can be best closed to each other in
a geographical region. Therefore, the hexagonal networks
were applied to the well-known central place theory [21].
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FiGURE 1: Four typical reference shapes for derivation of approximation formulae of fractal dimension of irregular boundaries. (a) Triangle.
(b) Square. (c) Hexagon. (d) Hexagram. Note: the circumcircles of these shapes represent the standard circles, from which we can derive the
approximation formulae of boundary dimension and the criterion values for shape indexes.

%

FIGURE 2: A simple irregular shape with area A = 1515.5368 unit and perimeter P =295.1157 unit. Note: the boundary curve of this irregular
region bears the property of fractal line. Using different approximation formulae, we can obtain different fractal dimension values.




The area A and perimeter P of a regular hexagon with a side
length r can be calculated by the following formulae:

343
A=3 sin(%)r2 = T\/_rz, (11)

P = 6r. (12)

From the equations (11) and (12), we can derive a
geometric measure relation such as

2A 1/2 A 1/2 P
(m) (m) e W

Substituting the Euclidean sides of the hexagon with
fractal boundary lines, we can turn equation (13) into a
fractal measure relation as follows:

24 \12 A 12 by
rz(ﬁ) :<3sin(7r/3)) :<E> S

From equation (14), a fractal dimension estimation
formula can be obtained as below:

_ 2In(Pl6) 21In(P/6) (15)
" In(2A/(3v3))  In(A/(3sin(7/3)))

If the shape of a natural system is similar to a hexagon or
a system has six growing directions, the boundary dimension
of the system can be estimated by equation (15).

The standard circle is treated a simple and perfect shape
in Euclidean geometry. Many shape indexes of geography
are based on this kind of circle [22-25]. The area A and
perimeter P of a circle with a radius r can be given by

A =7’ (16)

P =2nr. (17)

Integrating equation (16) into equation (17) yields the
geometric measure relation between the circular area A and
circumference P as follows:

. =<é>1/2 p (18)

n) onm
Replacing the Euclidean perimeter with a fractal curve

results in a fractal measure relation as below:
12

G

Thus, the fractal dimension of the boundary can be
calculated by the following formula:

_ 21In(P/(2m))

In(A/m) (20)

If the shape of a natural system is similar to a circle or ifa
system is of isotropic growth, the boundary dimension of the
system can be estimated by equation (20).

All the above-given formulae are based on Euclidean
figures. For comparison, it is advisable to construct a
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calculation formula based on fractal generators. Koch
snowflake curve is one of classical models for fractal lines.
We can design the formula using the generator of Koch
snowflake curve, a regular six-pointed star. For fractal
generator of Koch snowflake curve with a side length r, the
area A and perimeter P are as follows:

A = 6sin(n/3)r?,
P =12r.

(21)

Thus, the geometric measure relation between the area A
and perimeter P can be derived as

1/2
P
) -2 (22)

A
r=| ——
6sin(7/3)
The generator of Koch curve is not a fractal line, but the
second step is a prefractal figure. Substituting the straight
line segments with fractal lines yields a fractal measure
relation as below:

A 1/2 p\UD
<6sin(ﬂ/3)) :<ﬁ> ’ 29

in which D refers to the fractal index of irregular curve. The
formula of fractal dimension estimation based on the Koch
snowflake generator can be derived from equation (23) as
follows:

21In(P/12) _ 2In(P/12) (24)

~In(A/(6sin(7/3)))  In(A/(3v3))

If the shape of a natural system is similar to a Koch
snowflake or a system has six protruding growth directions,
the boundary dimension of the system can be estimated by
equation (24).

2.2. The Second Set of Formulae. The aforementioned for-
mulae are suitable for the very irregular boundary lines;
otherwise, the fractal dimension may be overestimated. In
order to estimate the boundary dimension of general fractal-
like line, we should improve the formulae. Based on regular
triangles, equation (4) can be replaced by the following
fractal measure relation:

2A 1/2 Pl/D
- 25
<sin(ﬂ/3)) 3 (29)

which can be re-expressed as
12
18A
— — (12\/§A)1/2 — Pl/D. (26)
sin (71/3)

From equations (25) and (26), a triangle-based fractal
dimension formula can be derived as below:
21In(P) 21n(P)

" In(24sin(7/3)A)  In(12+/3 A) @7
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Compared with equation (5), equation (27) can give
more realistic dimension values of fractal lines. Based on
squares, equation (9) can be substituted by

PI/D
A1/2 — T> (28)
which can be rewritten as
(16A)"* = p'P. (29)

From equation (29), a square-based fractal dimension
formula can be derived as follows:

_ 2In(P)
"~ In(16A)

(30)

Compared with equation (10), equation (30) can yield
more realistic values of boundary dimension. Based on
regular hexagons, equation (14) can be replaced with

1/2 1/2 1/D
343 3sin(77/3) 6

which is equivalent to

24A 1/2 12A 1/2 .
r :<W> :<m> =P . (32)

From equations (31) and (32), a hexagon-based fractal
dimension formula can be derived as follows:
21In(P) 21n(P)

" In(12A/sin (7/3))  In(8v3 A) 3

Compared with equation (15), equation (33) can pro-
duce more realistic values of boundary dimension. Based on
the standard circle, equation (19) can be replaced by

1/2 1/D
(é) P (34)
4 2

which can be converted into

(4nA)"? = pYP. (35)

From equation (35), a circle-based fractal dimension
formula can be derived as below:

21n(P)

Compared with equation (20), equation (36) can give
more realistic fractal dimension values of boundary lines.
Based on the regular six-pointed star, equation (23) can be

substituted with
1/2 1/D
Ay L P_, (37)
6 sin (7/3) 12

which can be converted into

172
?i - pl/P. (38)
sin (77/3)

From equation (38), a Koch-snowflake-based fractal
dimension formula can be derived as below:

2In(P) _ 2In(P) (39)

" In(24A/sin (7/3))  In(16+/3 A)

Compared with equation (24), equation (39) can give
more realistic values of fractal indexes of boundary lines.

The two sets of fractal dimension estimation formulae
represent two sets of fractal boundary indexes. For the
convenience of readers, the two sets of formulae are
tabulated as follows (Table 1). Applying these formulae to
a simple irregular shape (Figure 2), we can obtain two sets
of fractal indexes values for boundary lines (Table 2).
Based on the first set of formulae, the fractal dimension
estimation results are marked as boundary dimension
D1y, and based on the second set of formulae, the fractal
dimension estimation results are marked as boundary
dimension D(,). The values of D,y are less than those of
D(l).

2.3. Relations of Boundary Dimension to Shape Indexes.
The area-perimeter measure relation is in essence a problem
of scaling in complex systems. The formulae of boundary
dimension represent various definitions of the scaling ex-
ponents of different shapes. The traditional thinking of
mathematical modeling and quantitative analysis is based on
characteristic scales [5, 26-29]. Therefore, a number of shape
indexes have been derived from the area-perimeter rela-
tions to describe natural morphology such as urban pat-
terns [22-25]. The typical shape indexes are the circularity
ratios, which are defined on the basis of area and perimeter
[23]. However, complex systems such as cities have no
significant characteristic scales in many aspects [26]. In
this case, the scaling concept is employed to substitute the
notion of typical scales such as characteristic lengths.
Correspondingly, we utilize scaling exponents instead of
shape indexes to characterize the form features of irregular
patterns. The scaling exponents are based on the ideas
from fractal geometry, while the shape indexes are based
on the notion of Euclidean geometry. Despite the differ-
ence between the scaling exponents and shape indexes,
there is inherent association of boundary dimension with
shape indexes. The relations between the circularity ratios
and the reciprocal of the boundary dimension have been
proved to be the exponential function [22]. Based on area
and perimeter, a series of shape indexes similar to the
circularity ratios can be derived from the aforementioned
geometric measure relations, which are listed in Table 1.
Applying these formulae to Figure 2 yields a series of
values for shape indexes. The relations between the new
shape indexes and the second set of boundary dimension
can be demonstrated to satisfy the following exponential

function:
1 2In(P)\ _ b
s= ﬁexp< D ) = aexp(D>, (40)

where the parameters are a=1/P* and b=2In(P). For
example, for Figure 2, the relationship between the second
type of boundary dimension and the shape index is as
follows:
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TaBLE 1: The summary of the main simple formulae for estimating fractal dimension of irregular closed boundary curves.
Initiator Reference shape The formulja for bigher fractal The formulia for }ower fractal Shape index
dimension dimension
Regular triangle D = (2In(P/3))/ (In(4A/+/3)) D= (2In(P))/(In(12+/3 A)) s= (12+/3 A)/P?
Euclidean Square D = (2In(P/4))/ (In(A)) D = (2In(P))/(In(16A)) s= (16A)/P?
shape Regular hexagon D = (21In(P/6))/ (In(2A/ (3/3))) D = (2In(P))/(In(8v/3 A)) s = (84/3 A)/P?
Standard circle D= (2In(P/(2n)))/ (In (A/m)) D = (2In(P))/(In(47A)) s = (4mA)/P?

Regular six-pointed

Fractal sh
ractal shape star

D = (2In(P/12))/(In(A/(3+/3)))

D = (21In(P))/(In(16+/3 A)) s= (16+/3 A)/P?

Note. The first formula based on square was proposed by Olsen et al. [15]. As a reference, the corresponding shape indexes are listed in the right column.

TaBLE 2: The boundary dimension values and the corresponding shape index values.

Reference shape Boundary dimension D,

Boundary dimension D, Shape index s

Regular triangle 1.1246
Square 1.1746
Regular hexagon 1.2234
Standard circle 1.2460
Regular six-pointed star 1.1285

1.0982 0.3617
1.1266 0.2784
1.1429 0.2411
1.1543 0.2187
1.0685 0.4822

Note. The boundary dimension values are estimated for Figure 2, for which, the area is A =1515.5368 unit and perimeter is P=295.1157 unit.

s =0.00001148 exp( (41)

11.3747)
which can be verified by the observational data (Table 2). It is
easy to testify that a=1/295.1157"2=0.00001148 and
b=2%1n(295.1157) = 11.3747.

If the boundary line is a true fractal line, then the pe-
rimeter will be infinite. In this case, equation (40) will be
invalid. This suggests that the fractal dimensions and shape
indexes in Table 1 will be invalid for true fractal boundary
lines. In the real world, the boundary lines are fractal-like
lines rather than true fractal lines. A real fractal bears no
scaling limitation, and the geometric measure relation can be
reflected by a straight line of infinite length on a log-log plot.
In contrast, a prefractal possesses fractal nature only within
certain scaling range. Therefore, the perimeters of prefractal
closed curves bear certain values, and thus the formulae
derived above are valid. Moreover, equation (40) lends
further support to the inference that the relationships be-
tween the reciprocal of boundary dimension and the cir-
cularity ratios meet an exponential function. However, the
relations between the shapes indexes and the first set of
boundary dimension cannot be described with the expo-
nential function exactly. Despite this, the inherent corre-
lation between characteristic scales and scaling can be
reflected by the relationships between boundary dimension
and shape indexes.

3. Empirical Analysis

3.1. Fractal Dimension Estimation Results. To show the ef-
fects of the two sets of fractal dimension estimation for-
mulae, we can apply them to the cities in Beijing, Tianjin,
and Hebei region, China (for short, Jing-Jin-Ji region). There
are 13 main cities in the study area. As a preparation, it is
necessary to extract urban boundary lines using a proper
method. In urban geography, the boundary curve of a city is

termed urban envelope, and the region within the urban
envelope is termed urban area [9, 14]. There are at least four
scientific approaches to identifying and delineating urban
envelopes for these cities [30], including the city clustering
algorithm (CCA) [31], the automatic identification method
of urban settlement boundaries [32], the fractal-based
method [33], and the approach to derive “natural cities” by
clustering street nodes/blocks [34]. In this paper, CCA is
employed to delineate urban boundary lines on interpreted
remote sensing images in different years. The urban
boundary determined by this method corresponds to an
urban agglomeration, which approximately corresponds to
an urbanized area. The urban envelopes give urban pe-
rimeters, and the corresponding urban areas can be counted
(Table 3). These datasets can be used to verify the geometric
measure relation between urban area and perimeter and
evaluate the fractal boundary indexes [8, 30].

It is easy to calculate the boundary fractal dimension of
the 13 cities in Beijing, Tianjin, and Hebei region using each
formula. As indicated above, the fractal dimension esti-
mation values based on the first set of formulae are marked
as boundary dimension D), and the fractal dimension
estimation values based on the second set of formulae are
marked as boundary dimension D,). Based on the first set of
formulae, the estimated values of the boundary fractal di-
mension are sometimes very high or very low or even greater
than 2 or less than 0. In contrast, if we utilize the second set
of formulae to estimate the boundary dimension, the results
are relatively reasonable. All the values range from 1 to 2. In
other words, no value is greater than 2 or less than 0. The
results of 2000, 2005, and 2010 are listed in Tables 4-6. The
shape indexes are listed separately for reference (Table 7).
The boundary fractal dimension based on the first set of
formulae has weak correlation with the shape index.
However, there is negative correlation between the fractal
dimension values based on the second set of formulae and
the shape indexes (Supplementary File 1).
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TaBLE 3: The measures of area and perimeter of major cities in Beijing-Tianjin-Hebei region in 2000, 2005, and 2010.

Cit 2000 2005 2010
ly Perimeter Area Perimeter Area Perimeter Area

Baoding 648.9145 165.6927 614.5161 177.6204 618.4115 181.7597
Beijing 1851.1617 1633.7361 2638.7369 2372.6209 3256.7105 2890.8456
Cangzhou 359.7652 96.5368 411.0804 111.0267 387.1366 107.9078
Chengde 383.2282 83.3696 386.8770 82.2602 385.7290 85.9915
Handan 497.2757 165.9174 587.4799 176.9860 587.4799 176.9860
Hengshui 286.5358 86.7690 217.3211 81.6262 275.6421 109.7244
Langfang 288.8174 96.1140 292.5072 99.8148 285.4678 101.9814
Qinhuangdao 429.0707 121.1679 451.5457 159.4474 403.8776 173.9307
Shijiazhuang 671.2512 329.6986 796.1045 389.8407 852.5650 446.2061
Tangshan 720.8655 214.2018 744.8371 226.1832 771.5667 264.4586
Tianjin 1867.5855 850.6298 2428.3672 1595.2827 2480.1692 2029.3596
Xingtai 402.1714 125.8745 391.3236 128.2210 386.5214 132.7910
Zhangjiakou 181.2180 53.7583 186.2037 55.4021 249.4361 90.7300
Average 660.6047 309.4974 780.5308 435.1025 841.5933 522.5133

Note. The results based on the data in 2000, 2005, and 2010 are partially shown below. All the results can be found in the supplementary files.

TaBLE 4: Two sets of fractal dimension estimation for boundary lines of major cities in Beijing-Tianjin-Hebei region in 2000.

Ci Boundary dimension Dy Boundary dimension D,
ity Triangle Square Hexagon Circle Hexagram Triangle Square Hexagon Circle Hexagram

Baoding 1.8082 1.9917 2.2542 2.3389 2.3051 1.5901 1.6429 1.6734 1.6948 1.5359
Beijing 1.5603 1.6590 1.7790 1.8183 1.7524 1.4423 1.4794 1.5006 1.5154 1.4036
Cangzhou 1.7706 1.9690 2.2647 2.3634 2.3275 1.5480 1.6031 1.6351 1.6577 1.4915
Chengde 1.8440 2.0629 2.3969 2.5077 2.4960 1.5953 1.6533 1.6871 1.7108 1.5361
Handan 1.7183 1.8871 2.1254 2.2039 2.1505 1.5245 1.5751 1.6044 1.6249 1.4725
Hengshui 1.7204 1.9141 2.2039 2.3022 2.2541 1.5093 1.5638 1.5956 1.6179 1.4535
Langfang 1.6908 1.8747 2.1458 2.2380 2.1805 1.4910 1.5442 1.5751 1.5968 1.4367
Qinhuangdao 1.7618 1.9492 2.2225 2.3128 2.2715 1.5480 1.6015 1.6326 1.6543 1.4932
Shijiazhuang 1.6309 1.7671 1.9480 2.0077 1.9393 1.4739 1.5189 1.5448 1.5630 1.4274
Tangshan 1.7672 1.9356 2.1707 2.2465 2.2025 1.5666 1.6169 1.6460 1.6664 1.5147
Tianjin 1.6969 1.8222 1.9825 2.0333 1.9802 1.5403 1.5827 1.6070 1.6239 1.4963
Xingtai 1.7271 1.9071 2.1673 2.2539 2.2037 1.5241 1.5765 1.6069 1.6282 1.4703
Zhangjiakou 1.7012 1.9141 2.2497 2.3677 2.3237 1.4817 1.5390 1.5725 1.5961 1.4233
Average 1.7229 1.8964 2.1470 2.2303 2.1836 1.5258 1.5767 1.6062 1.6269 1.4735

TaBLE 5: Two sets of fractal dimension estimation for boundary lines of major cities in Beijing-Tianjin-Hebei region in 2005.

Ci Boundary dimension D Boundary dimension D,y
1ty Triangle Square Hexagon Circle Hexagram Triangle Square Hexagon Circle Hexagram

Baoding 1.7692 1.9440 2.1913 2.2716 2.2289 1.5634 1.6148 1.6446 1.6654 1.5105
Beijing 1.5750 1.6706 1.7856 1.8229 1.7614 1.4581 1.4943 1.5149 1.5293 1.4203
Cangzhou 1.7741 1.9672 2.2514 2.3455 2.3083 1.5544 1.6088 1.6403 1.6625 1.4988
Chengde 1.8523 2.0734 24117 2.5238 2.5150 1.6008 1.6591 1.6930 1.7168 1.5412
Handan 1.7553 1.9279 2.1719 2.2513 2.2057 1.5531 1.6043 1.6338 1.6545 1.5006
Hengshui 1.6349 1.8151 2.0825 2.1756 2.1033 1.4473 1.5001 1.5308 1.5524 1.3934
Langfang 1.6837 1.8648 2.1306 2.2209 2.1612 1.4870 1.5397 1.5704 1.5919 1.4330
Qinhuangdao 1.6972 1.8638 2.0991 2.1771 2.1192 1.5082 1.5585 1.5876 1.6080 1.4565
Shijiazhuang 1.6408 1.7746 1.9509 2.0086 1.9430 1.4844 1.5288 1.5544 1.5723 1.4384
Tangshan 1.7623 1.9283 2.1589 2.2332 2.1881 1.5642 1.6142 1.6430 1.6632 1.5127
Tianjin 1.6309 1.7380 1.8702 1.9124 1.8544 1.4977 1.5363 1.5584 1.5738 1.4575
Xingtai 1.7119 1.8885 2.1430 2.2279 2.1739 1.5136 1.5655 1.5956 1.6167 1.4603
Zhangjiakou 1.7018 1.9133 2.2453 2.3617 2.3171 1.4830 1.5402 1.5736 1.5970 1.4249
Average 1.7069 1.8746 2.1148 2.1948 2.1446 1.5166 1.5665 1.5954 1.6157 1.4652

Several points of explanations should be provided for =~ 2-dimensional embedding space is supposed to come be-
the exceptional values in the fractal dimension estima-  tweenOand2 [3,9,12,13,35,36]. The reasonable values vary
tion results. In theory, the boundary dimension definedina  from 1 to 1.5. However, the following causes often result in
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TaBLE 6: Two sets of fractal dimension estimation for boundary lines of major cities in Beijing-Tianjin-Hebei region in 2010.
Ci Boundary dimension D Boundary dimension D(,)

R Triangle  Square = Hexagon  Circle = Hexagram  Triangle  Square  Hexagon  Circle = Hexagram
Baoding 1.7645 1.9378 2.1824 2.2619 2.2180 1.5606 1.6118 1.6414 1.6621 1.5079
Beijing 1.5875 1.6820 1.7953 1.8318 1.7729 1.4702 1.5060 1.5264 1.5406 1.4327
Cangzhou 1.7615 1.9535 2.2364 2.3305 2.2904 1.5446 1.5988 1.6303 1.6524 1.4891
Chengde 1.8357 2.0515 2.3794 2.4881 2.4731 1.5905 1.6481 1.6815 1.7051 1.5316
Handan 1.7553 1.9279 2.1719 2.2513 2.2057 1.5531 1.6043 1.6338 1.6545 1.5006
Hengshui 1.6334 1.8020 2.0450 2.1283 2.0552 1.4534 1.5043 1.5339 1.5546 1.4013
Langfang 1.6681 1.8456 2.1048 2.1932 2.1292 1.4765 1.5287 1.5590 1.5803 1.4230
Qinhuangdao 1.6354 1.7892 2.0026 2.0744 2.0031 1.4650 1.5133 1.5412 1.5608 1.4153
Shijiazhuang 1.6287 1.7578 1.9263 1.9816 1.9149 1.4775 1.5210 1.5461 1.5636 1.4323
Tangshan 1.7303 1.8869 2.1011 2.1704 2.1190 1.5440 1.5924 1.6203 1.6398 1.4941
Tianjin 1.5895 1.6886 1.8089 1.8478 1.7867 1.4679 1.5048 1.5259 1.5406 1.4292
Xingtai 1.6971 1.8700 2.1177 2.2005 2.1428 1.5038 1.5551 1.5849 1.6058 1.4511
Zhangjiakou 1.6541 1.8336 2.0981 2.1892 21219 1.4636 1.5162 1.5467 1.5682 1.4098
Average 1.6878 1.8482 2.0746 2.1499 2.0948 1.5054 1.5542 1.5824 1.6022 1.4552

overestimation of boundary dimension. First, the boundary
dimension calculation is based on the geometric measure
relation deriving from regular real fractals in the mathe-
matical world. A real fractal has no scaling range, or, in other
words, the scaling range of a real fractal is infinite. Applying
the fractal measure relations proceeding from regular real
fractals to the random prefractals gives rise to significant bias
in many cases [18]. Second, if the image resolution is high
enough, the length of the boundary line may be very long,
but the area within the boundary curve is certain. This
phenomenon can be illustrated by a regular fractal termed
Koch lake (see Appendix). The Koch lake can be treated as
models of lakes, islands, urban region, and so on. Third,
compared with the second set of approximate formulae, the
first set of approximate formulae enlarges the ratio of the
perimeter logarithm to the area logarithm of a shape rela-
tively. For example, for the formulae based on square, in
equation (10), the circumference is reduced to a quarter of
the original length, while in equation (30), the area is en-
larged to 16 times the original one. As a result, the boundary
dimension value of a shape based on equation (10) is sig-
nificantly greater than the value based on equation (30).
Generally speaking, the estimated value of a boundary di-
mension is not less than 1. However, if a figure is near a
Euclidean shape, the fractal dimension estimation result may
be an outlier and less than 1 because the formulae are
designed for prefractals rather than for Euclidean shapes.

3.2. Fractal Dimension Adjustment and Transformation.
Fractal lines fall into two types: one is boundary lines and the
other is what is called space-filling curves. In theory, the
well-known boundary line is Koch snowflake curve, and the
well-known space-filling curve is Peano curve [3]. In reality,
fractal boundary lines include coast lines, urban boundaries,
lake boundaries, and national boundaries, and space-filling
curves include rivers, traffic networks, and hierarchical
boundaries in central place systems. Generally speaking, the
average values of fractal dimension of boundary lines come
between 1 and 1.5, while the fractal dimension values of
space-filling curves vary from 1.5 to 2. If a fractal dimension

of urban boundary is overestimated, it can be adjusted by a
simple formula. Furthermore, the adjusted boundary di-
mension can be converted into the fractal dimension of
urban form. The adjusted boundary dimension is as follows
[18]:

_ 1+ D

D
b 2

. (42)
where Dy, denotes the adjusted boundary dimension and D,
refers to the originally estimated fractal dimension (note: the
subscript for D is the Latin letter 1, not the Arabic numeral
1). Using this formula, we can adjust the boundary di-
mension values (Table 8). The boundary dimension and the
form dimension satisfy a hyperbolic relation as below [18]:

e (43)

where Dy refers to the form dimension of a city. Using this
formula, we can transform the adjusted boundary dimension
values into the fractal dimension of urban form (Table 9).
The approximate fractal dimensions are in fact fractal
indexes. An index can condense many data into a number,
describing the characteristics of a system and simplifying the
analytical process. Given the area and perimeter of an ir-
regular shape such as an urban envelope, we can calculate its
fractal indexes using these sets of formulae. All these ap-
proximate formulae can be applied to estimation of
boundary dimension of the cities in the Yangtze River Delta,
China. The datasets in 1985, 1996, and 2005 have been
published [8]. The results show that the fractal index values
of city boundaries in the Yangtze River Delta are signifi-
cantly lower than those in Beijing, Tianjin, and Hebei region.
The reason may be that the resolution of remote sensing
images of Beijing, Tianjin, and Hebei cities is higher than
that of Yangtze River Delta cities (Supplementary File 2).

4. Discussion

The aforementioned results are based on power-law re-
lations, and a power law represents a geometric measure
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relation and reflects a proportional relationship. A power
function has two parameters: one is the proportionality
coefficient and the other is the power exponent. In the
framework of Euclidean geometry, the power exponent is
always a known constant and bears little useful infor-
mation. Thus, we can construct various shape indexes
based on proportionality coeflicients. A proportional
constant is always a dimensionless parameter reflecting a
ratio of one measure to another measure. On the contrary,
in the framework of fractal geometry, the proportionality
coefficient bears little information, but the power exponent
is unknown parameter and possesses spatial information.
A simple system has characteristic scale and can be de-
scribed with the mathematical method based on Euclidean
geometry, while a complex system has no characteristic
scale and cannot be effectively described by conventional
mathematical methods. In this case, it is necessary to
replace the characteristic scale concept with scaling idea.
The power exponent is known as scaling exponent. Fractal
geometry is a powerful tool for scaling analysis of complex
systems, and the fractal dimension is an important scaling
exponent. Based on the notion of fractals, various fractal
indexes can be defined to characterize fractal-like
phenomena.

A set of formulae for estimating the boundary dimension
of irregular shapes has been derived from the geometric
measure relations between the area and perimeter of certain
reference figures. The reference shapes include regular tri-
angle, square, regular hexagon, circle, and the generator of
Koch snowflake curve. From difference reference shape, we
can obtain different formulae; from the same reference
shape, we can obtain at least two different formulae based on
different conditions (Table 1). Different formulae have
different spheres of application. In practice, we should select
the proper formula according to the shape and irregularity of
studied objects. As a matter of fact, a number of methods can
be used to calculate the boundary dimension. The common
methods include divider method [37, 38], box counting
method [39, 40], and so on. Longley and Batty [12, 13]
developed four methods to measure the fractal dimension of
fractal lines. Given enough image data, it is not problematic
to calculate the boundary dimension [6, 8, 41-43]. The
formulae proposed in this paper are suitable for fractal
dimension estimation of irregular boundaries under the
condition of data shortage. Concretely speaking, we need to
use these formulae in three cases. (1) Limitation of data: the
amount of data is small, and the existing data do not support
the calculation of fractal dimension by the least squares
calculation. (2) Approximation of results: an approximate
estimation of fractal dimension can meet the needs of special
research. (3) Comparability of datasets: image data of dif-
ferent years or places have the same quality. For example, we
do not have any data except the numbers of boundary
lengths of a city’s and the area within the boundary lines in
different years. In this instance, we can estimate the
boundary dimension of the city and analyze its growing
process and pattern. The results of fractal dimension esti-
mation are not real fractal dimension, but a kind of char-
acteristic indexes to describe the fractal-like boundaries.

Mathematical Problems in Engineering

A fractal measure relation can be treated as an allometric
scaling relation. These scaling relations are widely applied to
urban research. In fact, the geometric measure relation
between urban area and urban perimeter bears analogy with
the allometric scaling relation between urban population
and urban area, which can be expressed as

SI/DP o A1/2’ (44)

where S denotes the population size of a city. Thus, the
allometric scaling relation between urban population size S
and urban boundary length P can be derived as follows:

SI/Dp OCPl/D, (45)

which can be reexpressed as
Soc PP = yp?, (46)

where y = SP™ represents the proportionality coefficient and
a=D,/D is the scaling exponent. This suggests that urban
population size is in a proportion to & power of the urban
perimeter.

Further, the geometric measure relation can be gener-
alized to the traffic network of a city. Suppose that the urban
area is A and the total length of traffic lines is L. According to
the principle of dimension consistency, we have

LI/Dw o AI/Z, (47)

where D,, denotes the fractal dimension of traffic networks.
For comparability, the proportionality coefficient is assumed
to be 1, and then equation (47) can be transformed into

2In(L) = D,,In(A). (48)

From equation (48), a fractal index can be derived as
below:
_2In(L)

Y ln(A) (49)

This is the formula of fractal dimension of traffic network
in an urbanized area. This also implies that the effect of
measures’ dimension on the result can be eliminated by taking
logarithms of measures when constructing a fractal index.

Fractal measures are significant in the research on
complex landscape, which bear no characteristic scale and
cannot be characterized by the common indexes in theory.
Cities represent complex human landscape. The shape in-
dexes and boundary dimension are basic measures in urban
studies, and both characteristic scales and scaling are im-
portant concepts in urban geography. Comparably speaking,
scaling concept is more important. Cities are complex spatial
systems, and many aspects of urban systems have no
characteristic scales. Scaling in cities has attracted more and
more attention of scholars [26, 44-51]. Fractal geometry is
one of the powerful tools in scaling analysis and has been
applied to urban studies, which resulted in a number of
interesting achievements. The series of approximation for-
mulae of boundary dimension provide simple approaches to
scaling analysis of cities. The shortcomings of this study lie in
two aspects. First, the formulae of boundary dimensions and
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FIGURE 3: The first four steps of the Koch lake model. Note: Koch’s lake is sometimes termed Koch island in the literature.

the corresponding shape indexes have not yet been derived
from regular pentagon. Compared with the regular triangle,
square, regular hexagon, and standard circle, the regular
pentagon is more complex because it can be associated with
fractals. Second, the systematic positive study has not been
made. The empirical evidences shown in this paper are only
for methodology rather than for urban studies. Furthermore,
the formulae are only suitable for random prefractals rather
than real fractals (Appendix). Due to the limitation of space
of the paper, the pending questions will be answered in
future studies.

5. Conclusions

Boundary line represents a perspective of spatial patterns
and landscape analysis of complex systems. In this paper,
various possible formulae for estimating boundary dimen-
sion are systematically studied and compared. The aim of
this work is to provide two sets of practical formulae for
approximate estimation of boundary dimension of fractal-
like phenomena. The main conclusions can be reached as
follows. First, the approximate formulae of boundary di-
mension can be derived from geometric measure relation in
light of scaling thinking. Traditional mathematical modeling
and quantitative analysis are based on characteristic scales,
and a number of shape indexes are derived from these re-
lations to describe various shapes; complex systems bear no
characteristic scales, so a number of scaling exponents are
derived to characterize various patterns. Second, the ap-
proximate estimation formulae of boundary dimension are
not unique, but diverse. On the one hand, different fractal
boundary dimension can be defined based on different
reference shapes; on the other hand, under different con-
ditions, different formulae can be derived from the same
geometric measure relation. Therefore, in practice, proper
approximate formula should be selected according to the
shape and irregularity of natural morphology. Third, the
approximate boundary dimension are essentially scaling
exponents for describing complex curves. These formulae are
used to estimate fractal parameters of boundary lines only in
case of data shortage. The estimation results using the ap-
proximation formulae are actually fractal indexes instead of
the calculated values of real fractal dimension. These

formulae are suitable for prefractal curves rather than real
fractal lines. If we have enough image data, we should use
normal methods to calculate the fractal dimension with
higher confidence level. Sometimes, even if the data are
sufficient, these formulae can be used to estimate the fractal
parameters quickly when the accuracy requirement is not so
high.

Appendix
Fractal Indexes of Koch Lake

The approximate formulae developed in this paper is suitable
for fractal-like curves rather than real fractal lines. Let us
apply the fractal index formulae to a regular fractal, i.e., Koch
lake, which comprises of three Koch curves (Figure 3).
Suppose that the initiator of each Koch curve is a line
segment of unit length, namely, L, = 1. Thus, the initiator of
Koch lake is an equilateral triangle with a perimeter
P;=3L=3. Correspondingly, the area of the triangle is
A, = L3sin(n/3)/2 = cos (n/3)sin (n/3) = 3'2/4. According
to the knowledge of geometry and trigonometry, the pe-
rimeter of Koch lake can be expressed as

1 1-D 1 1-1n(4)/In(3)
P = 3(3'”-1) - 3<3m—1>

1 m—1\l0g;4 4\m1
=3(5m) (7)™ =3(5)

where m=1, 2, 3, ... denotes steps of fractal generation.
Clearly, if m — o0, then P,,, — 0. In contrast, the area of
Koch lake is limited. In light of the knowledge of geometry
and trigonometry, the area of Koch lake is

Am:Al<1+;g((;)2)"">
sl 356))

1

(A1)

(A.2)

where m=1, 2, ... refers to steps of fractal development.
Under the limit condition, the area of Koch lake approxi-
mates a constant, that is,
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(A.3)
V3 1 2v3
— ly— | =22
3(1 - 4/9) 5
This is one of the characteristics of fractals: infinite filling
in a finite space. In this case, regardless of the formula in
Table 1, the fractal dimension is a variable dependent on m

instead of a constant. For example, based on square, the
fractal indexes and shape index are as follows:

2 (m —2)In(4/3)
™ In(2V3/5)

5 =21n(3(4/3)’"*1)’
" 1n((324/3)/5)

. - 32+/3/5
"9(4/3)7 Y

(A4)

This suggests that both the approximate fractal di-
mension formulae and shape index are meaningless for real
fractal curves.
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